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Abstract—In this paper we suggest a hybridization scheme to 

solve Economic Lot Scheduling Problem (ELSP) using basic 

period approach. We proposed a hybrid approach based on 

Particle Swarm Optimization(PSO)to find the optimum value 

of ki’s and Golden Section Search (GSS) to find the optimum 

value of basic period T. The proposed hybridized scheme is 

compared with the best known Genetic Algorithm (GA) on 

Bomberger’sdataset. This hybridapproach is found 

competitive and efficient in solving Economic Lot Scheduling 

Problem and outperform the Genetic Algorithm on problems 

with lower machine utilization as well as higher machine 

utilization. 

Keywords-Economic Lot Scheduling Problem; Basic Period 

Approach;Particle Swarm Optimization; Golden Section Search. 

I.  INTRODUCTION 

The Economic Lot Scheduling Problem (ELSP) has been 
under research for more than four decades. The problem is 
computationally very complex and has been classified as 
NP-hard problem [1]. Despite its complexity the ELSP has 
been encountered in most production planning scenarios. 
Due to NP hardness of the problem many researchers have 
developed heuristic solutions to the problem. There are four 
approaches to solve the ELSP problem: common cycle [7]; 
basic period [4]; extended basic approach [3]; and time 
varying lot size approach [6].  

As the ELSP is generally viewed as NP-hard, the focus of 
most research efforts has been towards generating near 
optimal repetitive schedule(s). To date, several heuristic 
solutions [4, 9, 10, 11, 12, 18] have been proposed using any 
one of the common cycle, basic period, extended basic 
approach, or time-varying lot size approaches. The common 
cycle approach always produces a feasible schedule and is 
the simplest to implement, however, in some cases the 
solution when compared to the lower bound is of poor 
quality [16]. Unlike the common cycle approach, the basic 
period approach allows different cycle times for different 
products, however, the cycle times must be an integer 
multiple of a basic period. Although the basic period 
approach generally produces a better solution to ELSP than 
common cycle approach, but getting a feasible schedule is 
NP-hard [1]. The BP approach assumes that the production 
runs of all products shall be made in each basic period. 

Then,the basic period must be long enough to accommodate 
the production of all the products. This is a rather restrictive 
condition which usually results in suboptimal solutions. The 
extended basic period approach removes this restriction and 
admits the possibility that in any basic period only a subset 
of the products shall be produced [14, 15]. This obviates the 
waste of capacity of the production facility. Lastly, the time-
varying lot size approach is more flexible than the other two 
approaches, allowing for different lot sizes for the different 
products in a cycle [16]. Dobson [6] showed that the time-
varying lot size approach always produced a feasible 
schedule as well as giving a better quality solution.  

The proposed research is motivated by the recent success 
[4, 9, 10, 11, 12, 18] of the meta-heuristics to solve 
ELSP.Therefore, this research investigates the use of meta-
heuristics to solve the ELSP problem using basic period 
approach. We applied Particle Swarm Optimization with 
Golden Section Search (GSS)to find the solution and 
compared with existing Genetic Algorithm (GA) [4] based 
best known solution. The two meta-heuristics will be 
compared in order to calibrate their performance in regards 
to solution quality produced and computation time needed.  

II. BASIC PERIOD APPROACH TO ELSP 

We present ELSP model [1] which is based on the basic 
period approach. We have to produce m distinct products on 
single production facility with the following assumptions. 

• The competing products for production facility do not 
have any precedence over each other.  

• Back-orders are not allowed.  

• An item is considered for production only if its 
inventory is depleted to the zero level. This rule is 
known as Zero-Switching-Rule (ZSR). 

• The production facility is assumed to be failure free and 
to always produce perfect quality products.  

The solution of the ELSP is based on specifying an 
inventory cycle for each part, subject to following 
conditions: 
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• The quantity of a part produced during its cycle must be 
sufficient to meet demand over the cycle. 

• The length of the cycle must be sufficient to permit the 
production of other parts scheduled during the cycle. 

A schedule is feasible if the above conditions are met. 
This feasible solution becomes optimal if the total 
costminimizes. 

 

The following notations are used: 

i : An item index, i={1,2, …,n} 

Di : Annual demand for item i (units/ year) 

Pi : Annual production rate for item i (units/year) 

Hi : Holding cost for item i ($/unit-year) 

Si : Setup cost for item i ($/setup) 

τi : Setup time for item i (years) 

Qi : Production quantity for item i, a decision variable 
(units) 

Ti : Cycle time for item i, a decision variable (in days) 

TCi : Total annual holding and setup cost for item i ($/year) 

TC : Total annual holding and setup cost for all item 
($/year) 

 

The total cost for an item iis: 

 ��� � ��2 �1 	 
� ���  �� �  �
� ���  �� (1) 

 

The total annual cost of all n items is: 

 

�� � � ���2 �1 	 
� ���  �� � �
� ���  ����
���  (2) 

 

The ELSP is formulated as follows: 
 

Minimize TC 

Subject to �  �
� ���  !� � 
��� " # 1�
���  (3) 

  

No two items are produced at the same time (4) 

 
The first constraint ensures that the time spent setting up 

the machine and producing the items does not exceed the 
time available. Solving the unconstrained problem results a 
loose lower bound known as the independent solution (IS). 
The optimal order quantity for item iis: 

 

 

Substituting from equation (5) into equation(2) gives IS 
lower bound on the ELSP as follows: 
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�
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Alternatively, a tighter lower bound (TCL) can be 
obtained by minimizing the total cost (TC) subject to 
constraint in equation (3): 

 

��( � %2 
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Andsatisfying: 

 

 

In case if the production facility in under-utilized, the 
capacity constraint will not be binding and TCL will be same 
as TCIS. However, with the higher utilization, TCL is higher 
than the IS lower bound. The increase in TC and TCL 
relative to TCIS at high utilization is due to production 
quantities becoming larger to reduce the time spend on setup, 
which substantially increases the holding cost.  

Now, we discuss an analytical approach which allows 
achieving the optimal solution to a restricted version of the 
original problem mentioned in [2, 3]. The approach is called 
basic period approach. In basic period approach, the cycle 
time for every item i is an integer multiple ki of a 
fundamental cycle T. Thus, the cycle time for an item iis: 

 

�� � *�� (9) 

 

Also the production quantity for an item i will becomes: 

�� � ��
 (10) 

 
The total cost incurred under basic period approach 

(TCBP) is obtained from substituting Ti and Qiinto equation 
(2). Thus, the total cost is: 

 
TCBP established in Equation (11) is now a function of T 

and ki's. Once TCBP is established, the ELSP under BP 
approach is: 

 
Minimize TCBP 

 

Subject to � +!� � 
� � *��� , # ��
���  (12) 
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 The constraint in the above optimization problem ensures 
that the fundamental cycle is long enough to accommodate 
the production of all items even though not every item has 
to be produced during every fundamental cycle. The 
constraint guarantees the feasibility but may result in a 
suboptimal solution to the original problem. In [1], it is 
shown that the above problem can be formulated and solved 
as a Dynamic Programming (DP) problem. The main idea of 
[1] was to fix T, and solve the DP problem to obtain the 
optimal ki's and then use the information to get a better 
estimate of the optimal T. Thus, this approach requires 
solving a number of DP problems to find the optimal T.  

 In a nutshell this approach requires a one-dimensional 
search on T. In each of the iteration of the search, a DP 
problem must be solved. Thus, a more precise estimate of 
the optimal T requires larger number of the DP problems to 
be solved that makes the use of meta-heuristics even more 
attractive alternate to solve the problem. The above 
formulation very well suits meta-heuristics. GA [4] 
suggested that both the T and ki'sare simultaneously 
determined leaving no need to solveDP problems repeatedly 
with different values of T. Furthermore, the curse of 
dimensionality due to DP is not encountered in using GA. In 
this research;ParticleSwarm Optimization (PSO) is used to 
find an optimal T using a one-dimensional nonlinear 
programming method for a combination of ki's.  

III. PARTCILE SWARM OPTIMIZATION 

Particle swarm optimization is a population based swarm 
intelligence algorithm. It was originally proposed by 
Kennedy [5, 8, 17] as a simulation of the social behavior of 
social organisms, such as bird flocking and fish schooling. 
PSO uses the physical movements of the individuals 
(particles) in the swarm and has a flexible and well balanced 
mechanism to enhance and adapt to global and local 
exploration abilities. The PSO algorithm is widely used in 
many optimization problems due to the intrinsic simplicity 
of the algorithm itself. It does not require mathematical 
computation like derivatives or complex encoding like 
Genetic Algorithm.  PSO maintain best solution of each 
particle along with the global best solution of the whole 
population and therefore it is less sensitive to local minima 
problem. 

The PSO algorithm works by selecting a set of P particles 
and initialized by placing it into random positions in the 
solution space.  The position of each particle represents a 
solution to the problem and its performance is evaluated by 
objective function specific to a particular problem. The 
velocity of the each particle vj is defined as the change of its 
position. The direction of movement of each particle is the 
active interaction of individual and whole swarm flying 
experiences. Each particle adjusts its path towards the 
solution based on its own previous best position and 
previous best position of the whole population, namely pj 
and pg. The velocities and positions of particles are updated 
using the following formulas: 

 
Where t is the previous iteration and t+1 is the current 

iteration to compute; cj and cg are the acceleration 
coefficients; randj, randg are random numbers between 0 
and 1 inclusive associated with the best solution of a 
particular particle and the best solution of the whole swarm. 
cj and cg are used to provide the maximum distance a 
particle will move in a single iteration. The objective 
function is than computed using particles placed in new 
positions at iteration t+1. The same equations (13) and (14) 
are repeated until the maximum iteration becomes reached 
or until a convergence criterion has been met. At the end of 
all iterations the best solution found by the whole swarm is 
returned.  

IV. PROPOSED HYBRIDIZATION SCHEME 

 The proposed hybridized Particle Swarm Optimization 
(PSO) with Golden Section Search (GSS) algorithm is 
discussed below: 

•   The nonlinear objective function given in equation (11) 
is minimized subject to constraint given in equation 
(12). 

•   Computes lower and upper bounds of T and ki’s using 
following equations [4], 

 

�01 �  � 0.25 ��(/��
�

���  (15) 

 

       �51 � max 
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�
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�&1 	 
���'',�
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���'�
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 (16) 

 *�01 �  1 (17) 

 

*�51 � A&5 &��(/
�'/�'&B� 
���
�

��� 'CB , D �  1, 2, … , F (18) 

 

•  Initialize ki’srandomly between [*�01, *�51], i = 1, 2, …, 
n 

•   Given the initial ki’s, the TCBP subject to constraint 
(12) can be minimized by performing a one 
dimensional search on Tbased on Golden section search 
usingMatlabfminbnd[13] function. 

•   Repeat the following steps until the maximum number 
of iteration is reached or until a convergence criterion is 
met. 

• Apply PSO algorithm as discussed in section 3 using 
equation (13) and (14) to generate the new positions of 

GH&I � 1' �  GH&I' � JHKLFMH �NH 	 OH&I' � JPKLFMP �NP 	 OH&I' &13' 
 OH&I � 1' �  OH&I' � GH&I � 1'&14' 
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P particles in k-dimensional search space. Here, the 
position of each particle in each dimension represents 
one kiand the whole particle represents one complete 
possible solution to ELSP problem. 

•   Updateski’s associated with each particle that do not 
fulfill lower and upper bound requirements with 

randomly generated values between [*�01, *�51]. 

• Given newly generated ki’sassociated with each particle 
in k-dimensional search space; apply a one  

 

 

 
 

dimensional search on T based on Golden section search 
using Matlabfminbnd[13] function to minimize TCBP 
subject to constraint (12). 

• Update current best ki’sand T that minimize TCBP. 

• Update best position (solution) pj of each particle in the 
swarm.  

• Update best position pg of the whole swarm using best 
solution of all the particles in the swarm. 

 
 
 

 

 
 

Table 1: Data of Bomberger’s problem 

Product 

index, i 

1 2 3 4 5 6 7 8 9 10 

 

Base Demand 24,000 24,000 48,000 96,000 4800 4800 1440 20,400 20,400 24,000 

Setup cost 
(Si): $ 

15 20 30 10 110 50 310 130 200 5 

Production 
rate (Pi): 
units/day 

30,000 8000 9500 7500 2000 6000 2400 1300 2000 15,000 

Setup time 
(τi) : h 

1 1 2 1 4 2 8 4 6 1 

Holding cost 
(Hi): $/unit-
year 

0.00065 0.01775 0.01275 0.01000 0.27850 0.02675 0.15000 0.59000 0.09000 0.00400 

Table 2: Comparison of TSIS, TCL, GA, and Hybrid PSO solutions for Bomberger’s problem   

  Total Annual Costs       
Utilization (%) TSIS TCL GA Hybrid PSO Best Cost Best Algorithm(s)  

50 5960.445 5960.445 6038.410 6036.513 6036.513 PSO 

55 6218.253 6218.253 6328.670 6328.086 6328.086 PSO 

60 6459.905 6459.905 6621.750 6618.572 6618.572 PSO 

65 6687.131 6687.131 6914.700 6914.837 6914.700 GA 

66.18 6738.810 6738.810 7024.110 7024.100 7024.100 GA, PSO 

70 6901.335 6901.335 7395.460 7395.466 7395.460 GA, PSO 

75 7103.674 7103.674 7789.630 7794.202 7789.630 GA 

80 7295.114 7295.114 8096.010 8085.485 8085.485 PSO 

83 7405.090 7405.090 8250.290 8250.290 8250.290 GA, PSO 

86 7511.593 7511.593 8553.310 8483.945 8483.945 PSO 

88.24 7588.934 7588.934 8782.420 8782.289 8782.289  PSO 

89 7614.763 7614.763 8874.550 8874.803 8874.550 GA 

92 7714.729 7714.729 9745.800 10086.443 9745.800 GA 

95 7811.608 8418.885 12018.080 11949.646 11949.646 PSO 

97 7874.534 11290.966 17143.000 17134.260 17134.260 PSO 

98 7905.510 15681.535 24533.820 24457.541 24457.541 PSO 

99 7936.166 29942.667 55544.470 47550.735 47550.735 PSO 
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Table 3: Comparison of Relative Deviation from TCL, Improvement over GA, and CPU time taken by 

algorithms for Bomberger’s problem 

  % Relative Deviation from TCL % Improvement over GA CPU time (sec.) 

Utilization (%) GA Hybrid PSO Hybrid PSO Hybrid PSO 

50 1.308 1.276 0.031 15.189 

55 1.776 1.766 0.009 15.019 

60 2.505 2.456 0.048 15.489 

65 3.403 3.405 0 15.690 

66.18 4.234 4.234 0 15.972 

70 7.160 7.160 0 16.059 

75 9.656 9.721 0 16.060 

80 10.979 10.834 0.130 15.561 

83 11.414 11.414 0 16.205 

86 13.868 12.945 0.811 14.813 

88.24 15.727 15.725 0.001 13.786 

89 16.544 16.547 0 13.465 

92 26.327 30.743 0 11.131 

95 42.751 41.939 0.569 11.075 

97 51.829 51.752 0.051 11.283 

98 56.450 55.964 0.311 11.140 

99 85.503 58.806 14.392 11.063 

Average 21.261 19.805 0.962 14.059 

Min. 1.308 1.276 0 11.063 

Max. 85.503 58.806 14.392 16.205 

σ 23.939 20.042 3.469 2.078 

Table 4: Detail comparison of GA and Hybrid PSO results for Bomberger’s problem 

Utilization Meta-heuristic 

 GA Hybrid PSO 

50 T= 28.183 and K=[5,1,2,1,2,4,10,1,3,1] T = 28.594 and K=[3,2,2,1,2,4,8,1,3,1] 

55 T = 28.762 and K=[5,2,2,1,2,4,8,1,2,1] T = 29.439 and K=[5,2,2,1,2,4,9,1,2,1] 

60 T = 28.863 and K=[4,1,1,1,2,4,9,1,2,2] T = 29.306 and K=[5,1,1,1,2,4,8,1,2,2] 

65 T = 30.828 and K=[2,1,1,1,2,3,7,1,2,1] T = 30.838 and K=[2,1,1,1,2,3,7,1,2,1] 

66.18 T = 30.443 and K=[2,1,1,1,2,2,6,1,2,1] T = 30.449 and K=[2,1,1,1,2,2,6,1,2,1] 

70 T = 33.42 and K=[2,1,1,1,1,2,3,1,2,1] T = 33.42 and K=[2,1,1,1,1,2,5,1,2,1] 

75 T = 31.794 and K=[3,1,1,1,2,3,7,1,1,1] T = 32.11 and K=[3,1,1,1,2,4,6,1,1,1] 

80 T = 34.438 and K=[2,1,1,1,1,3,6,1,1,1] T = 35.28 and K=[3,1,1,1,1,3,6,1,1,1] 

83 T = 34.951 and K=[1,1,1,1,1,2,5,1,1,1] T = 34.961 and K=[2,1,1,1,1,2,5,1,1,1] 

86 T = 37.131 and K=[1,1,1,1,1,1,5,1,1,1] T = 38.371 and K=[1,1,1,1,1,2,4,1,1,1] 

88.24 T = 38.442 and K=[1,1,1,1,1,1,3,1,1,1] T = 38.436 and K=[1,1,1,1,1,1,3,1,1,1] 

89 T = 41.748 and K=[1,1,1,1,1,1,3,1,1,1] T = 41.758 and K=[1,1,1,1,1,1,3,1,1,1] 

92 T = 53.904 and K=[1,1,1,1,1,1,2,1,1,1] T = 53.914 and K=[1,1,1,1,1,1,1,1,1,1] 

95 T = 75.809 and K=[1,1,1,1,1,1,1,1,1,1] T = 75 and K=[1,1,1,1,1,1,1,1,1,1] 

97 T = 125.08 and K=[1,1,1,1,1,1,1,1,1,1] T = 125 and K=[1,1,1,1,1,1,1,1,1,1] 

98 T = 188.14 and K=[1,1,1,1,1,1,1,1,1,1] T = 187.5 and K=[1,1,1,1,1,1,1,1,1,1] 

99 T = 439.45 and K=[1,1,1,1,1,1,1,1,1,1] T = 375 and K=[1,1,1,1,1,1,1,1,1,1] 
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V. RESULTS 

The results obtained from detailed analysis are shown in 
Table 2, Table 3, and Table 4. Table 2 compares the cost 
obtained by solving [1] problem as shown in Table 1 using 
Hybrid PSO and GA [4] algorithms. Table 3 compares the 
(i) relative deviation from tighter lower bound (TCL), (ii) 
improvement achieved through Hybrid PSO algorithm over 
results obtained through GA algorithm [4], (iii) efficiency in 
terms of execution time taken by Hybrid PSO algorithm. 
Table 4 compares the detailed solution found by Hybrid 
PSO with GA solution [4].  

Table 2 shows that 71% of Hybrid PSO solutions are 
either better or similar to best result obtained from GA 
algorithm, while only 41% of GA solution are better or 
similar to best result obtained from Hybrid PSO algorithm. 
So, in majority of cases Hybrid PSO performed better than 
GA algorithm. 

Table 3 shows that average relative deviation from TCL 
is 19.805% using Hybrid PSO and worst average relative 
deviation from TCL is 21.261% using GA algorithm, 
average improvement over GA is 0.962% using PSO, and 
average CPU utilization time is 14.049 sec using PSO. It is 
also important to note that GA differs with PSO algorithm 
for high utilization as well as low utilization cases. GA 
found worst relative deviation from TCL for higher 
utilization but results for lower utilization cases are 
comparatively closed to PSO algorithm.  

Table 4 shows the detail comparison of values for T and 
ki(i.e., i=1,2,…10) using Hybrid PSO with GA algorithm. 
For low utilization cases 50 to 92 ki have different values 
but for high utilization cases 95 to 99 all ki have same value 
‘1’. Hybrid PSO found same value for T and kiwhich gives 
low deviation from TCL. GA found the same value for ki 
but failed to found value for T similar to Hybrid PSO 
algorithm and therefore it results in high deviation from 
TCL.   

VI. CONCLUSION 

This research presented hybridization scheme based on 
Particle Swarm Optimization and Golden Section Search to 
solve the ELSP problem under basic period approach. This 
Hybrid PSO technique used PSO optimization to find the 
optimum value of ki‘s and followed by GSS to find the basic 
period T. The feasibility of the solution is guaranteed with a 
constraint that ensures the items assigned in each period can 
be produced within the length of the period. The 
experimental results indicate following outcomes: 
 

• The hybridization scheme was able to find 
comparatively better BP solutions than GA [4]for the 
low utilization problems. 

• The hybridization scheme was also able to find 
comparatively better BP solutions than GA [4] for the 

high utilization problems. 
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