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Abstract—This paper investigates the dynamic model of a 

nonlinear magnetic levitation system and its precise control using 

robust control technique. In this study, a magnetic levitation 

system model is first identified using piecewise linearization 

technique and numerical computation. Then a robust controller 

which could stand up to 50% displacement around the operating 

area is designed and investigated in simulation.  Then this 

technique is extended to the whole range operation, using 

switched controller techniques. Finally, the performance of the 

designed controller was evaluated both in simulation and 

experiments. The results showed that the performance is 

consistently better off comparing with that of a traditional PID 

controller. 
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I.  INTRODUCTION 

Magnetic levitation systems can be applied to a wide area 
such as maglev passenger trains, levitation of wind tunnel 
model, frictionless bearings, etc.  In particular, the magnetic 
levitation train reduces rolling friction between the locomotive 
and the railway, much higher speeds and less energy lost to 
friction can be achieved. For the Transrapid Maglev train in 
Germany, the gap between the train and the guidance coil is 
around 10cm [1]. Therefore the free play of the train is 
estimated to be around 1-2cm. It can be seen that for a train 
travelling at 500km/h (achievable by Maglev), keeping the 
train within a 2cm tolerance would require a precise control 
system. The goal is to ensure the train stays within the 
prescribed distances inside the guide rail while maintaining 
the safety of the passengers and cargo. 

Due to open-loop instability and inherent nonlinearities 
associated with the electromechanical dynamics, the control 
problem is usually quite challenging to the control engineers. 
A lot of work has been done in the past decades and most of 
the research focuses on the nonlinearities of the system model 
and the uncertainties of physical parameters. Unfortunately, 
most of these techniques generally need linearization 
techniques and have a common drawback: exact information 
of the system parameters for a complete linearized model is 
always required [2]. This drawback often leads to the 
robustness problem of control systems [3]. In order to solve 
the robustness problem caused by the feedback linearization 
strategy, an integral sliding-mode control with H∞ method is 

proposed. Studies on applications of the integral sliding-mode 
control to the magnetic levitation systems have been published 
in [4-5]. These studies take use the advantages of the integral 
sliding-mode control: nominal performance dependent on 
sliding surface design and insensitivity to system uncertainties 
in the whole process [6–8]. However, both the conventional 
sliding-mode and integral sliding-mode controls are only 
robust to matched uncertainties or perturbations. Therefore, 
developments in recent years on improving the (integral) 
sliding-mode controls for robustness to unmatched 
uncertainties have been presented. These methods summarily 
include the following: dynamic sliding-surface design [4], a 
modified switching algorithm [6], and robust optimal controls 
[7-8]. In particular, [7-8] give a good control-design concept; 
that is, combining the integral sliding-mode control with 
another robust technique can effectively guarantee the stability 
of the systems with the presence of unmatched uncertainties. 

In this study, we take the nonlinear system as a linear one 
for small degrees of motion. In this case, a process called 
piecewise linearization is applied to obtain the system 
parameters at each operation point. Once the system 
parameters have been identified, a switched controller is 
designed for robust deadbeat control. Finally, the proposed 
controller is implemented and tested in simulation and 
experiments.  

This paper is presented in five sections. Following the 
Introduction is the Maglev and Model section which describes 
the system and identifies the system model. Section 3 presents 
the Robust Deadbeat Control Technique. Section 4 illustrates 
the simulation study, the system parameters selection, and the 
experiment results. The conclusion is drown in section 5. 

II. MAGLEV SYSTEM AND MODEL  

The Maglev development system shown in Fig. 1 is a one-
degree-of-freedom (vertical) control system. There are two 
coils in the machine. The bottom coil is effective for the 
bottom half of the glass rod, and the top coil is effective for 
the top half (with minor cross-coupling). SISO (Single Input, 
Single Output) operation uses the bottom coil and one magnet, 
and the top coil is not energised. Fig. 2 shows the interaction 
of forces which are exerted on the magnets (MIMO 
configuration), all the variables and constants are provided in 
the ECP manual. 
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Fig. 1. ECP Model 730 Representation (Source: Educational Control Products 2002

This study focuses on the control of a single magnet using 
the bottom coil, in a SISO configuration. Therefore all forces 
related to coil 2 and magnet 2 is null. The following equation 
shows the summation of forces in the system.

  

  

Note from the equation above, the coil current I is directly 
proportional to the control effort U. The control effort is the 
output of the real time control algorithm, and the IO controller 
converts this into an actual current. From (2), it can be seen 
that as the distance increases between the coil and magnet, a 
much greater control effort (current) is required to produce the 
same force [9]. This creates nonlinearities in the control 
system. The nonlinear relationship between the distance of the 
magnet from the coil, and the force imparted on the magnet 
must be compensated for while the plant is modelled as a 
linear system. Therefore, a linear approximation of this 
nonlinear characteristic must be made. As ECP manual states 
that there may be up to a 10% var
force/distance/current equation for any Maglev machine. For 
the accurate realisation of the Maglev system parameters, this
relationship must be numerically calculated for each plant. To
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Free-body diagram with force interactions 

ECP Model 730 Representation (Source: Educational Control Products 2002

This study focuses on the control of a single magnet using 
a SISO configuration. Therefore all forces 

related to coil 2 and magnet 2 is null. The following equation 
shows the summation of forces in the system. 

(1) 

(2)  

Note from the equation above, the coil current I is directly 
proportional to the control effort U. The control effort is the 
output of the real time control algorithm, and the IO controller 
converts this into an actual current. From (2), it can be seen 

t as the distance increases between the coil and magnet, a 
much greater control effort (current) is required to produce the 
same force [9]. This creates nonlinearities in the control 
system. The nonlinear relationship between the distance of the 

m the coil, and the force imparted on the magnet 
must be compensated for while the plant is modelled as a 
linear system. Therefore, a linear approximation of this 
nonlinear characteristic must be made. As ECP manual states 
that there may be up to a 10% variance in the 
force/distance/current equation for any Maglev machine. For  
the accurate realisation of the Maglev system parameters, this 
relationship must be numerically calculated for each plant. To 

body diagram with force interactions [9] 

obtain the force/distance/current relationship, the machine 
must be energised with different coil efforts (proportional to 
current) and the height at which the magnet settles is recorded. 
Via numerical analysis, the constants a and b are calculated as 
1.64 and 6.2 respectively. 

Fig.3 shows how close the estimated curve follows the 
measured data points. 

Taylor’s series expansion method is applied to the above 
system, and results in a linearized system for small excursions 
about the operating point. The e
control system in terms of differentials is: 

 

Applying Taylor’s series expansion to (3) to get the 
linearized equation, then the system can be repr
state-space form. 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Representation of the estimated curve against the experimental data 
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obtain the force/distance/current relationship, the machine 
must be energised with different coil efforts (proportional to 
current) and the height at which the magnet settles is recorded. 
Via numerical analysis, the constants a and b are calculated as 

shows how close the estimated curve follows the 

Taylor’s series expansion method is applied to the above 
system, and results in a linearized system for small excursions 
about the operating point. The equation which represents the 
control system in terms of differentials is:  

  

 (3) 

Applying Taylor’s series expansion to (3) to get the 
system can be represented in the 

Representation of the estimated curve against the experimental data 
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x � �y�y�� � , A � 
 0 1��
���������� 0� , B � 
 0�

����������� , C � �1 00 1�   
  (4) 

Equation (4) gives a linear approximation about the 
desired operating point (y10) and the corresponding equalising 
control effort (U1). 

The linearization theorem exhibits the highest accuracy 
when the magnet is close to the linearization point. However, 
the accuracy degrades exponentially as the magnet moves 
away from point. Therefore it is deemed that this model of the 
system is accurate only for small movements about the 
linearization point. 

III. ROBUST DEADBEAT CONTROL TECHNIQUE 

The robust deadbeat control technique for a known system 
was proposed by Dawes, Ng, Dorf and Tam (1994) [10]. This 
technique includes the robust control abilities of a PID 
controller, and applies feedback poles and constants which 
result the deadbeat response properly. Fig. 4 shows a diagram 
of the proposed robust deadbeat controller. 

In Fig. 4, a ‘zero’ is added in a feedback loop �1 �K�s! .Through this feedback loop, the error between the 
desired position and the current position is calculated. A PID 
controller is then applied to this error signal, making the 
system robust. A state variable feedback constant is applied to 
the output of the controller. Dawes, Ng, Dorf and Tam (1994) 
claimed that the robust deadbeat controller could reject up to a 
50% change in the system dynamics before the response of the 
controller was affected. Therefore it is assumed that for small 
movements of the magnet, the controller is able to reject the 
nonlinear error. Note that the procedures for applying this 
controller to different order plants differ slightly. The 
following procedure outlines the method which applies a 
robust deadbeat controller to a second order plant, as the 
approximation for the Maglev characteristics is second order 
[10]:  

 

 

 

 

 

 

 

 

 

 

 

 

1. Approximate the plant transfer function GP(s) 

2. Let K=1 (or any other arbitrary number) 

3. Have the characteristic equation of the system equal 

  C. E � s$ � αw's( � βw'(s � w'$ (5) 

4. Find the alpha, beta gains based on the order of the plant 

5. Compare the characteristic equation above to the closed 

loop transfer function of the controller and plant, finding 

X, Y etc. 

6. Simulate the system with different K values until the best 

response is found 

The next step is to calculate the controller parameters 
specific to the Maglev plant. The design of the controller must 
use an approximation of the plant in order to achieve a 
deadbeat response. The approximation for the preliminary 
design is made to be about a magnet position of 2cm. As 
stated, linearizing the plant about 2cm will cause the plant to 
be accurate at this position; however the accuracy will degrade 
as the magnet moves away from this position. (6) shows the 
result of applying Taylor’s theorem to the plant for a magnet 
position of 2cm. 

 *+�,! � ����
-.�-�/0.1 (6) 

This equation is a linear approximation of the plant 
parameters. The characteristic equation of the plant is to be 
compared with (5). Dawes, Ng, Dorf and Tam (1994) state 
that for a second order system, the following constants are to 
be used [10]: 

2 � 1.90, 4 � 2.20, 6789 � 3.48, 6- � 4.04 

Combining (10) and (12), the characteristic equation is 
described as: 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Deadbeat Control Technique [10]. 
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 C. E � s$ � 73.104s( � 3256.9s � 56961 (7) 

The closed loop transfer function of the controller and 
plant is described as: 

 *�,! � @A�-!@B�-!
��@A�-!@B�-!CCD�@A�-!@B�-!���CE! (8) 

Substituting the plant and controller parameters, the entire 
system transfer function with the controller variables is: 

1110FF$�,( � G, � H!
,$ � ,(�1110FF$ � 1110FF$FIG � 4!1110FF$FI � 1 � ,�1110FJ � 1110FF$G � 1110FF$FIH � 479!1110FF$FI � 1 � 1110FF$H1110FF$FI � 1

 

 

The characteristic equation is the entire denominator of the 
above equation. Note that the s-variable orders (s

2
, s etc.) have 

been separated, which assists in the following comparison 
between the characteristic equations. Comparing (7) and (8), 
we have 

  �1110KK$ � 1110KK$K�X � 4!1110KK$K� � 1 � 73.104 
�1110K� � 1110KK$X � 1110KK$K�Y � 479!1110KK$K� � 1 � 3256.9 

1110KK$Y1110KK$K� � 1 � 56961 

By choosing arbitrary K, K3 and TS values, the variables 
X, Y and Ka can be found using simultaneous solutions. Note 
that Kb is directly related to the Tdesired value. It can be seen 
that varying both K and K3 will result in dramatic changes in 
the control constants, and that these values must be optimised 
in order to get the best response.  

IV. SIMULATION AND EXPERIMENT STUDY 

A Simulink model is designed to accept 
constants/parameters from the Matlab script in order to 
automate the entire simulation process. The model is also able 
to pass data from the input, output and other key points of 
interest back to the Matlab variable workspace. This helps in 
plotting the data, finding the settling time and system 
diagnostics. Fig. 5 shows the basic Simulink model which was 
 
 
 
 
 
 
 
 
 
 
 
 
 

used to simulate the whole system including controller and 
plant. 

In the model, it can be seen that the basic controller is 
broken down into sections, each being created using certain 
blocks in Simulink. The feedback zero, �1 � sK�! , is 
converted to the summation of the output and the Kb constant 
multiplied by the derivative of the output. This signal is then 
negated from the input, creating an error signal. The PID 
 
 

 (9) 
 
 
controller inside the robust deadbeat controller is a simple 
summation of the proportional, integral and derivative of the 
error signal, multiplied by the respective gains. The cascade 
gain, Ka, is then negated from the output of the PID controller, 
giving the final control signal which is fed into the Maglev 
plant simulation block. This completes the controller design in 
Simulink. The constants/parameters are pre-computed, and 
Simulink handles the actual step-by-step simulation. Fig. 6 
shows the simulation results.  

Fig. 6 shows the movement from magnet rest to 2cm, and 
the response is shown in the top figure. The settling time is 
181ms. When observing the initial current surge at <50ms, the 
current limiter clamps the machine to maximum current, 
which is quite acceptable, as the inertia of the magnet must be 
overcome. 

As the controller is only designed for movements about 
2cm, it is known that the linearity error will increase as the 
desired position moves away from 2cm. The oscillations 
appear when an 1 cm deviation from the linearized point is 
generated. When the desired position is moved more than 2cm 
from the linearization point, the plant becomes almost unstable 
and exhibits violent oscillations. 

The initial implantation of the controller on the plant using 
the optimised simulation values failed. The magnet was found 
to vibrate about the control point, with movements of up to 
±1.5cm. It was found that the plant controller was critically 
stable, as the oscillation amplitudes were consistent over time.  

 

 

 

 

 

 

 

 

 

 

Fig. 5. Robust deadbeat controller simulation model 
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Fig. 6. Best Simulink response for a 2cm movement

This response was anticipated, as the plant is subjected to 
many different environmental and machine issues which could 
not be investigate in simulation. Diagnostics were undertaken 
to identify the issue, and solutions to obtain a better response
were found through filtering out sensor noise, adding thermal 
compensation and changing settling time specification. 

Fig. 7 shows the responses of an switched adaptive 
deadbeat controller designed using piecewise linearization 
techniques and the response of an optimised PID controller. 
The red line is the input to the system which is applied to both 
the switched adaptive deadbeat controller and the PID 
controller. This line is about 2cm, and deviates by 
which shows a good range of responses. This pr
test for the controllers, as it causes the switched deadbeat 
controller to switch between controllers. The blue line 
indicates the response of the best PID controller, as shown by 
ECP. It can be seen that there is a large overshoot, which is 
present for a significant amount of time. The response here is 
quite slow, as the controller does take time for correction. The 
settling time is 550ms on average, and the stability of the 
system is quite good as there are no significant oscillations 
present.  

V. CONCLUSION 

This paper studied the model and dynamic control of a 
magnetic levitation system based on an ECP Magnetic 
Levitation plant, and proposed a new adaptive switched 
controller. This study firstly investigated the system dynamics 
and identified its nonlinearity. Then a system model was 
developed using linearization technique. A robust deadbeat 
controller was designed and simulated based on the developed 
model. The initial simulations found that this model works 
only in a small range around the operating point, a
wise system model and a switch controller were required, due 
to the nonlinear dynamics of the plant. While applying the 
designed switch controller to the plant, some real
problems such as noise and control errors were encountered. 
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This response was anticipated, as the plant is subjected to 
many different environmental and machine issues which could 
not be investigate in simulation. Diagnostics were undertaken 
to identify the issue, and solutions to obtain a better response 
were found through filtering out sensor noise, adding thermal 
compensation and changing settling time specification.  

7 shows the responses of an switched adaptive 
deadbeat controller designed using piecewise linearization 

of an optimised PID controller. 
The red line is the input to the system which is applied to both 
the switched adaptive deadbeat controller and the PID 
controller. This line is about 2cm, and deviates by ±1cm, 
which shows a good range of responses. This provides a good 
test for the controllers, as it causes the switched deadbeat 
controller to switch between controllers. The blue line 
indicates the response of the best PID controller, as shown by 
ECP. It can be seen that there is a large overshoot, which is 
present for a significant amount of time. The response here is 
quite slow, as the controller does take time for correction. The 
settling time is 550ms on average, and the stability of the 
system is quite good as there are no significant oscillations 

This paper studied the model and dynamic control of a 
magnetic levitation system based on an ECP Magnetic 
Levitation plant, and proposed a new adaptive switched 
controller. This study firstly investigated the system dynamics 

. Then a system model was 
developed using linearization technique. A robust deadbeat 
controller was designed and simulated based on the developed 
model. The initial simulations found that this model works 
only in a small range around the operating point, and a piece-
wise system model and a switch controller were required, due 
to the nonlinear dynamics of the plant. While applying the 
designed switch controller to the plant, some real-world 
problems such as noise and control errors were encountered.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 7.  Step response comparison for small magnet movements

Digital signal processing techniques were applied to solve 
these problems. In the final testing, the performance of the 
designed controller was evaluated by comparing with an 
optimised PID controller. The results showed that the 
performance is consistently 60% better in settling ti
that of a traditional PID controller. Other performance 
includes 66% better off in disturbance rejection, and 30% 
increasing in bandwidth in frequency response.
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designed controller was evaluated by comparing with an 
optimised PID controller. The results showed that the 
performance is consistently 60% better in settling time than 
that of a traditional PID controller. Other performance 
includes 66% better off in disturbance rejection, and 30% 
increasing in bandwidth in frequency response. 

REFERENCES 

Chan, and Lee Ju, Review of Maglev Train 
IEEE Transaction on Magnetics, Vol. 42, No.7, pp. 1917-

Jyh, and Fu Li-Chen, “A novel dual-axis 
repulsive maglev guiding system with permanent magnet: modelling and 
control design,” IEEE/ASME Trans. Mechatronics., Vol. 8, No. 1, pp. 

Sastry, Shankar, Nonlinear Systems: Analysis, Stability, and Control, 
Springer, New York, U.S.A. 1999. 

Yang, Z. J., K. Miyazaki, S. Kanae, K. Wada,“Robust position control of 
a magnetic levitation system via dynamic surface control technique,” 
IEEE Trans. Ind. Electron., Vol. 51, No. 1, pp. 26–34 (2004). 

Lee, J. H., P. E. Allaire, G. Tao, X. Zhang, “Integral sliding mode 
control of a magnetically suspended balance beam: analysis, simulation, 

. Ind. Electron., Vol. 6, No. 3, pp. 338–346 

Castanos, F. and L. Fridman, “Design of integral sliding manifolds for 
model uncertain systems via LMI.” Proc. Int. Workshop Variable 

67 (2006). 

dman, A. Poznyak, “Output integral sliding mode 
with application to the LQ optimal control,” Proc. Int. Workshop 
Variable Struct. Syst., Italy, pp. 68–73 (2006). 

Castanos, F. and L. Fridman, “Analysis and design of integral sliding 
th unmatched perturbations,” IEEE Trans. 

Autom. Control, Vol. 51, No. 5, pp. 853–858 (2006). 

Parks, T 1999, Manual for Model 730 Magnetic Levitation System, 
Educational Control Products, California, America. 

J. Dawes, L. Ng, R. Dorf, and C. Tam, “Design of deadbeat robust 
-1598, 1994. 

 

  
Ιnternational Journal of Electrical Engineering and Computer Science (EEACS)Volume 2, 2020

ISSN: 2769-2507 19




