
Abstract: - It is considered that children’s normal growth depends on their ability to use their fine motor skills.
Deficits in fine motor skills in preschool children can interfere with even basic daily activities. Research also
links these problems to future challenges. Therefore, early identification of preschool children’s fine motoric
abilities is considered essential. However, the assessment of the development of fine motor skills is considered to
be a rather complex process. Complex and time-consuming methods are used for their reliable assessment, which
also requires the presence of educational experts. The aim of this study is to investigate whether it is possible to
create a simple and useful tool for assessing fine motor skills in preschool children, based on convolutional neural
networks. For this purpose, a comparative study between 5 state-of-the-art CNN architectures is carried out, to
investigate their accuracy in assessing fine motor skills. Drawings of Greek students from public kindergartens
were used to train the investigated CNN models. The Griffiths II and the Eye Coordination Scale were used
to assess the developmental age of preschool children. The findings demonstrate that, although challenging,
automatic and precise detection of fine motor skills is feasible if a larger dataset is used to train deep learning
models.
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1 Introduction
Motor development refers to the change and enrich-
ment of motor behaviour throughout life. The devel-
opment of motor skills in children can be divided into
two main categories: gross motor skills and fine mo-
tor skills. Gross motor skills refer to skills and move-
ments that involve whole-body movements and large
muscle groups to perform, while fine motor skills re-
fer to precise movements that use smaller muscles,
such as writing, drawing, tying shoelaces, etc. Dur-
ing the first few years of life, children grow rapidly
and develop both gross and fine motor skills. Sat-
isfactory development of fine motor skills is cru-
cial for children’s well-being. Several studies have
shown that early difficulties in gross and fine mo-

tor skills have significant effects on academic per-
formance and psychosocial maladjustment, [1]. They
are also associated with reading development in pri-
mary school, [2], numeracy, [3], arithmetic, [4], men-
tal imagery, [5], and working memory impairments,
[6]. Various factors can prevent children from de-
veloping their fine motor skills to the full. One ex-
ample is media use, which may have a negative im-
pact on the development of fine motor skills in early
childhood, [7]. In addition, obesity could also lead
to lower fine motor precision performance, [8], while
more generally the impact of modern society has also
been studied as a factor that could potentially af-
fect fine motor development, [9]. However, parental
support for pre-school children, even if it is mini-
mal, was considered to be really important to miti-
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gate the consequences of fine motor impairments and
to help children to reach their maximum potential in
the development of fine motor skills, [10]. The same
seems to be true for physical activity, which is con-
sidered to be beneficial for children, especially when
provided regularly in a formal setting, [11], as well
as for touch typing interventions, [12]. Therefore,
the assessment of preschool children’s fine motor
skills is considered essential, considering the above-
mentioned effects on children’s development. The
Griffiths Scales No II is considered to be one of the
most reliable developmental screening tests, [13]. It
consists of six subscales to better assess motor devel-
opment. In the bibliography, other reliable screen-
ing developmental tests such as Movement-ABC 2,
[14], DSNR, [15], and pegboard tasks, [16], are also
widely used. Recently, a new method using deep
machine learning techniques, specifically convolu-
tional neural networks (CNN), has been proposed for
the assessment of fine motor skills in preschool chil-
dren, called FineMotorSkillsCNN, [17]. Convolu-
tional neural networks (CNN) are important tools for
image recognition and classification tasks in various
fields, such as smart agriculture, [18], medicine, [19],
and self-driving cars, [20], probably because of their
powerful image processing capability. Due to the
stack of convolutional layers, CNNs can automati-
cally extract features. Depending on the depth of the
layers, CNNs could extract from low-level features,
such as edges and dark spots, to high-level features,
such as an object. Therefore, due to the success and
high performance of CNNs in complex image pro-
cessing problems, various methods have been pro-
posed. In this paper, an evaluation of the performance
of different state-of-the-art CNN architectures such
as Efficient-Net, [21], ResNet, [22], VGG16, [23],
and MobileNet, [24], for the assessment of fine mo-
tor skills of preschool children is presented, in order
to investigate whether it could become a simple and
useful tool for teachers and parents to detect possi-
ble impairments early and to help children reach their
full potential in the development of fine motor skills.
The remainder of the paper is organized as follows:
Section 2, presents the basic elements of the theory
and the methodology used, while Sections 3 and 4,
present the results of the comparative study and the
conclusions respectively.

2 Methods and materials
2.1 Dataset
The original dataset used in this study consists of 1601
images representing pictures of a man or a woman
drawn by 442 children from 20 different preschool
units. The dataset was divided into training and test
sets. The training set, which was used to train the dif-

ferent CNN models, consists of 1121 images, while
480 images were used as the test set. As in [17] the
images were divided into six different classes accord-
ing to their developmental age, where class 0 to class
5 correspond to low and high developmental ages, re-
spectively ( Table 1).

Table 1: Griffiths II test scores and classes according
to Developmental age (DA).

DA Class
32-47 0
48-53 1
54-61 2
62-67 3
68-73 4
74-150 5

The classification of the pictures was carried out
by three educational experts on the basis of the Grif-
fiths II Scale D, which consists of six items for each
year, such as threading beads onto a lace, building a
tower of cubes, cutting with scissors, copying simple
geometric shapes and drawing a house and a person
freely. The developmental age (in months) was cal-
culated by multiplying the number of items passed by
two. The testing process started with simple tasks cor-
responding to a younger age and was stopped after six
consecutive failures in six different skills. The devel-
opmental age of each child was then determined. Fig-
ure 1, shows pictures randomly selected from each of
the six different developmental age classes.

(a) Class 0 (b) Class 1 (c) Class 2

(d) Class 3 (e) Class 4 (f) Class 5

Figure 1: Sample painting-class pairs from dataset.
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2.2 State-of-the-art CNN architectures
The CNN architectures employed, are described in
this chapter. The models studied were trained using a
transfer learning approach.

2.2.1 VGG16
Attempting to improve on the original Convolutional
Network Architecture proposed by Krizhevsky, [25],
VGG addresses an important aspect of Convolutional
Network Architecture, which is depth. VGG achieves
high performance in both localisation and classifi-
cation tasks by increasing the depth of the network
(16 layers) and using small 3×3 convolutional kernels
with convolutional stride 1 and 2×2 pooling layers
with step size 2. Thus, the number of parameters in-
creases significantly, while the decision function be-
comes more discriminative.

2.2.2 ResNet
ResNet primarily addresses the degradation problem.
It has been found that as the depth of the networks
increases, the accuracy decreases rapidly. To deal
with this problem, ResNet introduced a deep resid-
ual learning framework that skips connections from
initial filters to later layers. Identity mapping is per-
formed on the shortcut connections. Based on the idea
that if the model becomes deeper by adding layers
constructed as identity mappings, the performance of
the model shouldn’t be worse than its shallower coun-
terpart, ResNet prompts the network to approximate
the residual function. Due to the small sample size of
our dataset, ResNet50 is used in this study.

2.2.3 MobileNet
MobileNet is designed for mobile and embedded
vision applications due to its low computational
cost without compromising accuracy. To build
lightweight deep neural networks, MobileNet differs
from traditional approaches regarding convolution ar-
chitecture. MobileNet is based on depth-separable
convolutions, which split the process of both filtering
and combining inputs into a new set of outputs into
two distinct processes, a filtering layer and a combin-
ing layer. This is in contrast to standard convolution,
which performs the entire process in one step. As a
result, the parameters are drastically reduced and the
model becomes less computationally intensive com-
pared to a network of the same depth using regular
convolutions.

2.2.4 EfficientNet
EfficientNet’s baseline network is generated by a
multi-objective neural architecture search, similar to
MnasNet, [26]. Focusing on model scaling, it was
found that performance can be improved by carefully
balancing network depth, width and resolution. To

achieve this, a compound scaling method was pro-
posed, that scales network depth, width and resolu-
tion uniformly, using a set of predetermined constant
scaling coefficients. Specifically:

d = αϕ

w = βϕ

r = γϕ

α ∗ β2 ∗ γ2 ≈ 2

and

α ≥ 1, β ≥ 1, γ ≥ 1

where d,w, r correspond to depth, width and res-
olution respectively, α, β, γ are constants that can
be identified using a simple grid search, while ϕ is
a compound coefficient for uniformly scaling net-
work depth, width and resolution. EfficientNet con-
sists of 8 different models, namely EfficientNet-B0
to EfficientNet-B7, which are obtained by scaling the
baseline mesh. In this study, EfficientNet-B0 and
EfficientNet-B1 are used.

2.3 Transfer learning
Through the use of the machine learning task known
as transfer learning, it is possible to transfer the
knowledge gained from the training of a neural net-
work in one problem to another task or domain, [27].
This method has been widely used to efficiently train
models with limited data sets, and to overcome cost
and time constraints. The use of pre-trained mod-
els instead of training neural networks from scratch
speeds up the process, since the training model uses
information from previous training processes and al-
ready understands the features of the problem under
investigation. In summary, transfer learning produces
more reliable and generalised models, while signifi-
cantly reducing the risk of over-fitting.

2.4 Experimental setup
The study was conducted on a system running Win-
dows 11 Pro, equipped with a 2nd Gen Intel(R)
Core(TM) i7-12700 2.10GHz, 16GB RAM and a
1000GB SSD. Each of the models studied was trained
for 15 epochs using the pre-trained model weights
and an additional 5 epochs using its own weights to
train on all three class scenarios. Adam was used as
the optimiser, with a learning rate of 0.0001 and a
loss function of categorical cross-entropy. Data aug-
mentation techniques were used to extend the train-
ing set. Several techniques such as Horizontal Ran-
domFlip, RandomRotation(0.2), RandomWidth(0.2),
RandomHeight(0.2) and RandomZoom(0.2) were
used to transform existing images. Tensorflow,
Numpy, Keras, Matplotlib and sklearn libraries were
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used for the training and evaluation of the CNN mod-
els investigated in this study.

3 Results
As mentioned above, the main work of this study is
to compare state-of-the-art CNN architectures for the
assessment of preschoolers’ fine motor skills. Due to
the small sample size, and in order to further inves-
tigate the accuracy of the CNN models under study,
the aforementioned classes of the dataset (see 2.1)
were also merged into two and three classes. Thus,
although it is assumed that the 6-classes case more
accurately represents the groups of preschoolers stud-
ied, the 2-classes and 3-classes cases are also studied.
In the case of two classes, the classes 0, 1, 2 and 3, 4, 5
from Table 1 were merged into classes 0 and 1 respec-
tively. Similarly, in the case of three classes, classes
0, 1 were merged into class 0, while classes 2, 3 and
4, 5 were merged into classes 1 and 2 respectively.
The sample size for each case is shown in detail in
Table 3. The training and testing accuracies of the in-
vestigated methods are presented both in tabular form
(Table 2) and in graphical form (Fig. 2).

Table 2: Accuracy of the examined CNN architectures
for a total of 2,3 and 6 classes.

Number of Classes 2 3 6
Training Testing Training Testing Training Testing

EfficientNetB0 74.13% 68.94% 60.57% 38.12% 48.62% 22.92%
EfficientNetB1 75.74% 49.07% 63.07% 44.79% 46.74% 25.42%
MobileNet 70.21% 69.98% 48.53% 45.21% 30.95% 31.25%
ResNet 71.81% 55.69% 58.07% 53.33% 43.53% 30.00%
VGG16 70.21% 69.98% 50.76% 50.63% 29.88% 30.21%

Figure 2: Accuracy of the examined CNN archi-
tectures, where CNNmodel_x refer to the number of
classes.

The results suggest that as the number of classes
increase, the accuracy of the examined methods de-
crease. For the case of two classes, two meth-
ods namely MobileNet and VGG16 both achieved

the highest accuracy (69.98%) on testing data, while
EfficientNet-B1 had the lowest accuracy (49.5%).
Similarly to EfficientNet-B1, ResNet50 didn’t per-
formed well, with an accuracy equal to 55.69%. For
the case of three classes, the accuracy of all the ex-
amined methods significantly decreased. In con-
trast to the 2-classes case, where ResNet50 performed
poorly compared to the other methods, for the 3-
classes case ResNet50 achieved the highest accuracy,
namely 53.33%, while EfficientNet-B0 performed
worse, with an accuracy equal to 38.12%, although
it achieved the second highest accuracy on training
data (60.57%). It should be noted that for the classi-
fication task of 3 classes, only ResNet50 and VGG16
achieved a performance ofmore than 50%. In the case
of six classes, none of the examined methods man-
aged to achieve an accuracy ofmore than 50%, neither
on the test data nor on the training data. The highest
accuracy was 31.25% achieved by MobileNet, while
the second highest was 30.21% achieved by VGG16.
Similar to the case of three classes, EffiecientNet-
B0 performed poorly compared to the other investi-
gated methods, achieving a classification accuracy of
22.92%.

Beyond the case of two classes, these results ini-
tially suggest a poor classification performance. This
could be due to the small sample size. Table 3 shows
that the number of images in the training and test sets
is not evenly distributed. Specifically, out of a total
of 483 images in the test set, only 12 correspond to
class 0, while 30 and 49 correspond to classes 1 and
5 respectively. The above results for the 6-classes
case indicate that ResNet50 achieved one of the high-
est performances, namely 30%. From its class distri-
bution, which can be seen from the confusion matrix
(Fig. 4: (b)), it can be seen that for class 3, out of a
total number of 143 images, ResNet50 correctly clas-
sified 123 of them (86%). For classes 2 and 4, which
also contained a large number of images in both the
training and test sets, the model had a poor accuracy
of 3% and 11.6% respectively. Nevertheless, for the
second class, 86 out of 100 drawings were classified
in the next class and for the fourth class, 111 out of
146 drawings were classified in the previous class.
This doesn’t seem to be the case for the classes men-
tioned above, to which a small number of drawings
correspond (Table 3), because for class 0, the draw-
ings weren’t classified either in the correct class or in
a neighbouring class. The same seems to be true for
both the first and the fifth class. Therefore, this could
be an indication that a larger data set is needed to in-
crease the accuracy.

As already mentioned, in the case of six classes,
even for classes 2 and 4, which contain a larger
number of drawings compared to the other classes,
ResNet50 had a poor accuracy of 3% and 11.6% re-
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spectively. For the same case, although EfficientNet-
B1 had the second worst performance in general
(25.42%), it is observed that for class 2 (see Fig. 4),
out of a total number of 100 images, 34were correctly
classified (34%), while for class 4 the accuracy was
around 15%. In addition, many of the images in the
test set are classified into neighboring classes. There-
fore, with the exception of class 3, for the classes with
more images in the test set, EfficieNet-B1 shows a
higher classification performance. It’s worth noting
that for class 1, EfficientNet-B1 was the only one to
correctly classify one image and 17 out of 30 to the
correct class or to a neighbouring class, in contrast to
the other methods examined, for which, for the same
case, they did not classify any image, either to the
correct class or to a neighbouring class. Thus, de-
spite its poor accuracy, EffiecientNet-B1 would tend
to be considered more convincing than the other mod-
els examined, since it is considered to be more dis-
criminative. The accuracy of VGG16, ResNet50 and
MobileNet is significantly increased due to the fact
that they classify most of the images of the test set in
class 3, regardless of their actual class (see Fig. 4).
This leads to a higher classification performance in
general, since class 3 contains 143 out of 480 images
of the test set and VGG16, ResNet50 and MobileNet
achieve at least 85% accuracy in this class.

Figure 4 shows the rest of the confusion matri-
ces of the investigated CNN models for the 6-classes
case. Compared to MobileNet and VGG16, it can
be observed that EfficientNet-B0 and EfficientNet-
B1 are more discriminative. In particular, for class
2 case, MobileNet and VGG16 classify 91% and
97% of the drawings to the fourth class, while e.g.
EfficientNet-B1 classifies 34% to the actual class and
1%, 40%, 10% and 15% to classes 1, 3, 4, 5 respec-
tively.

The same seems to be true for all cases studied.
For the case of 3-classes, it is observed that the mod-
els didn’t correctly classify any of the images of class
1 (see Fig. 5 and Fig. 6). Table 2 illustrates that
VGG16 had the second best accuracy, specifically
50.63%, but from Figure 5 it is observed that all the
images are classified to class 2. Similar to VGG16,
the MobileNet classifies most of the images to class
2 and the rest of them to class 3, achieving 45.21%
accuracy. For the case of three classes, ResNet50
seems to perform better compared to the other meth-
ods, both in terms of accuracy and of the allocation
of the images. ResNet50 achieved the highest accu-
racy, namely 53.33%. Figure 6 shows that ResNet50
classified correctly 0 out of 42 images of class 1, 155
out of 243 images of class 2 and 93 out of 195 im-
ages of class 3, contrary to VGG16, which achieved
the second highest accuracy, but for classes 1 and 3
it classified correctly 0 out of 42 and 195 images re-

spectively, while its performance improved since it
classified all of the 242 images of class 2 correctly
(see Fig. 5). Similar to ResNet, the EfficientNet-B0
and EfficientNet-B1 appeared to be more discrimi-
native, since the images were allocated to different
classes, while achieving 38.12% and 44.79% classifi-
cation accuracy respectively.

Table 3: Sample size for each class of train and test
set, where Train_x and Test_x, refer to train and test
set respectively for the x-classes case.

Class Train_6 Test_6 Train_3 Test_3 Train_2 Test_2
0 27 12 98 42 334 142
1 71 30 569 243 787 338
2 236 100 454 195 - -
3 333 143 - - - -
4 335 146 - - - -
5 119 49 - - - -

Figure 3: Confusion matrix of test set of EfficientNet-
B1 for the 6-classes case. Columns and rows refer to
predictive and actual values respectively.

In summary, for the three cases studied, VGG16
achieved the highest average classification accuracy
on testing data with 50.27%, followed by MobileNet
with an average accuracy of 48.8%. On the testing
data, the worst average classification accuracy was
observed by EfficientNet-B1, which was limited to
an accuracy of 39.76%. In contrast, on training data,
EfficientNet-B1 outperformed the other CNNmodels
examined with an average classification accuracy of
61.85%, followed by EfficientNet-B0 with 61.10%.
In addition, MobileNet achieved a classification ac-
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(a) EfficientNet-B0 (b) ResNet50

(c) MobileNet (d) VGG16

Figure 4: Confusion Matrices of the examined CNN
architectures for the 6-classes case.

curacy of 49.89%, which was the worst performance
on training data.

4 Conclusion
This study compared five state-of-the-art CNN archi-
tectures to investigate their accuracy in assessing fine
motor skills in preschool children. The data set used
consists of drawings of children (male or female),
classified by experts according to the children’s de-
velopmental age. The Griffiths II and the Eye Co-
ordination Scale were used to assess the preschool
children’s developmental age. As for the results, on
testing data, besides that VGG16 achieved the high-
est average classification accuracy of 50.27% usually
classifies most of data on a specific class. On training
data, EfficientNet-B1 achieved the highest classifica-
tion performance with an average classification accu-
racy of 61.85%. For the case of 3-classes ResNet50
seems to classify the drawings best. For the case of
6-classes EffiecientNet-B1 seems to perform better
compared to the other models, since it allocates better
the images to the correct classes or to the neighboring
classes. In general, all the methods examined showed
poor classification accuracy. This may be due to the
small sample size. Confusion matrices confirm that
the classes with larger sample sizes improve the clas-
sification, in contrast to the classes with fewer draw-
ings in their image set. In summary, the results sug-
gest that although challenging, automatic and accu-
rate scoring of fine motor skills may be feasible when

(a) EfficientNet-B0 (b) EfficientNet-B1

(c) MobileNet (d) VGG16

Figure 5: Confusion Matrices of the examined CNN
architectures for the 3-classes case.

using a larger dataset.
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