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Abstract: In this paper, we are presenting a new pedagogical method for the introduction of the study of non-
linear systems. Our approach is based on the use of open-source software which is publicly available. In response
to this motivation, we are using the Python programming language which offers a holistic approach to scientific
research. We will present the analysis of the pendulum motion under the influence of an external force. The
differential equation governing the system will be presented and solved using numerical methods. Moreover, the
phase diagram of the system will be presented for various system parameters. We will describe the transition to
a chaotic operation and the key factors of this procedure. The chaotic behaviour is verified by calculating the
maximum Lyapunov exponent. This pedagogical approach emerging is based on the physical properties of the
system and not on the numerical methods used so that the student can understand the dynamics of the systemmore
comprehensively.
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Introduction
Computer modeling is an essential part of engineer-
ing education, as it provides students with the op-
portunity to develop and apply their knowledge in a
practical setting. By utilizing computer models, en-
gineers can gain a better understanding of how dif-
ferent components interact within complex systems,
[1]. For this purpose, the knowledge of computer
programming should be an integral part of the edu-
cation of engineers and scientists. In the past, lan-
guages such as Fortran, C, C++, etc. have been used
for expressing the mathematical models which are de-
scribing the system, [2]. Using these languages re-
quires experience and a deep understanding of how
computers work which should not be a prerequisite
for a new scientist to get an introduction to the field
of dynamical system study. On the other hand, the
Python programming language offers a user-friendly
working environment, offers fairly good documenta-
tion, and can be used even by the new scientist, [3].

Python is an ideal language for physics simula-
tion and modeling due to its ease of use, flexibil-
ity, and availability of a wide range of libraries for
physics. Python allows for fast prototyping of simu-
lations andmodels and can be used to quickly develop
user interfaces for visualization and control. Addi-
tionally, Python can be used to integrate data from
different sources, such as sensor data, to develop com-
plex models and simulations. Python is also well-

suited for developing physics-based models and sim-
ulations due to its powerful graphics capabilities. Fi-
nally, Python is a great choice for physics research
and engineering, as it can be used to automate data
analysis and the development of models and simula-
tions. The Python programming language has been
generally accepted as a scientific tool in the field of
the study of dynamical systems, [4].

There are several publicly available packages for
the Python programming language that offer ready-
to-use numerical methods, [5]. The use of these
methods focuses students’ interest in understanding
the model and the main parameters and constants
that govern it. As an example of the application of
these methods, we will present the use of the function
odeint() for solving differential the system of dif-
ferential equations which describe the behavior of the
system could be found in the library scipy which is
a scientific computation library that apart from ODE
(Ordinary Differential Equations) solvers offers mod-
ules for optimization, integration, interpolation, linear
algebra, FFT (Fast Fourier transform ), signal, and im-
age processing, [6]. The use of Python for teaching
purposes in the context of courses such as Computa-
tional Physics and Dynamical Systems is constantly
gaining ground over other languages, [7].

Chaos is the appearance of a lack of order in a
system that nevertheless follows laws or rules. [8]
Chaos is present in systems with non-linear behavior,

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION 
DOI: 10.37394/232010.2023.20.1 Joan Jani

E-ISSN: 2224-3410 1 Volume 20, 2023



the non-linearity in a system means that the measured
values in the output of the system are not propor-
tional to the values of the input. The presence of non-
linearity in a system does not mean that the system
will behave chaotically but a form of non-linearity if
required to achieve chaotic behavior, [9]. A system
showing chaotic behavior undergoes transitions be-
tween non-chaotic and chaotic states in general, [10].
A similar approach could be found in [11] where the
transition to chaos is made by changing the angular
frequency of external force, in our approach the tran-
sition to chaos is made by changing the amplitude of
the external force applied to the system.

1 Simple oscillator
We begin our pedagogical method by using the inte-
gration method on a well-known problem such as that
of the oscillator.

Fig. 1: Simple Harmonic Oscillator with a spring
mass system

In figure 1 a simple harmonic oscillator with a
spring mass system is presented. Since the constant
of elasticity of the spring is denoted with k and the
mass of the object withm, we can express the differ-
ential equation of the motion of the system as follows:

m
d2x

dt2
= −kx (1)

the system is governed by a second-order linear dif-
ferential equation, [12]. To apply a numerical method
of integration for equation (1) we rewrite it as a pair of
first-order differential equations, which are presented
at equation (2).

dv

dt
= − k

m
x and

dx

dt
= v (2)

We suppose the system with parameters k =
9N/m and m = 1 kg and with initial conditions
x = 5m and v = 0m/s. The simulation will cal-
culate the position and velocity for the time interval
of the oscillator from t = 0 s to t = 10 s. Will be cal-
culated N = 1000 points of the trajectory. Increas-
ing the sampling (N>1000) of the trajectory would
require more computing power to achieve the solu-
tion, while reducing it would result in an increase
in the computational error of the numerical method.

For our purpose, we will use the numpy which is a
Python library used for working with arrays, and the
matplotlibwhich is a plotting library for the Python
programming language.

# O s c i l a t o r
from s c i p y . i n t e g r a t e import o d e i n t
import numpy as np
import ma t p l o t l i b . p y p l o t a s p l t
# Sys tem Parame ter s
[ k , m] = [ 9 , 1 ]
# I n i t i a l Cond i t i o n s
x = [ 5 , 0 ]
# S imu l a t i o n parame t e r s
N = 1000
t = np . l i n s p a c e ( 0 , 1 0 ,N)
def f ( x , t ) :

dvd t = −(k /m)*x [ 0 ]
dxd t = x [ 1 ]
re turn [ dxdt , dvd t ]

s o l u t i o n = o d e i n t ( f , x , t )

The above code implements the solution. The
code can be easily understood by someone who has
no programming knowledge. In the beginning, the
necessary packages are loaded into the program. The
commands for the system parameters and the ini-
tial conditions are given following with the function
f(x,t) with the differential equations of the system.
The function odeint solves the system and the results
are saved to variable solution

p l t . p l o t ( t , s o l u t i o n [ : , 0 ] )
p l t . x l a b e l ( ’ Time t [ s ] ’ )
p l t . y l a b e l ( ’ x [m] ’ )
p l t . show ( )

To plot the solution which we are getting from
odeint, the above code is used. The presented code
uses the library matplotlibwhich has a very similar
syntax to MATLAB. The result is presented in figure (2)
from were the sinusoidal correlation of the position of
the oscillator in relation to time can be seen.

The phase space of the system is created with some
minor changes to the above code. (fig. 3). The phase
diagram gives us an overview of the evolution of the
system. Τhe position of the oscillator is shown on the
horizontal axis, while its speed is on the vertical axis.
Furthermore, from the Fig. 3 we observe that the pe-
riod of the system is T = 2.09 s as we expect from
the relation T = 2π/

√
k/m

2 Driven damped pendulum
Considering a simple pendulum in a constant gravita-
tional field as it is presented in fig. 4. The equation of
motion is given by the differential equation 3 where
its current angle is denoted by θ and angular velocity
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Fig. 2: Position of the oscillator vs time
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Fig. 3: Phase space of the harmonic oscillator

by θ̇.
−mlθ̈ = mg sin(θ) (3)

The reason that the small-angle approximation is
made is that otherwise the differential equation which
describes the system could not be solved using analyt-
ical methods. The solution of the equation could eas-
ily get using the code below. Regardless of the initial
conditions, the system will go to a steady state. [11]

Equation (4) shows the differential equation of a
damped-driven pendulum. The motion of the pendu-
lum is damped by a force proportional to its velocity
which is expressed in the equation with the term−βθ̇.
Moreover, equation (4) represents a pendulum with a
time-varying external force with amplitudeA and fre-
quency ω expressed by the term A sin(ωt).

θ̈ = − g

L
sin θ − βθ̇ +A sin(ωt) (4)

For solving the differential equation (4) we con-
sider a system with parameters, g = 10m/s2, L =
10m, β = 0.5Ns/m, A = 1N and ω = 2, 3 rad/s.
The simulation starts from initial position θ = 0.5 rad

Fig. 4: A simple pendulum

and θ̇ = 0 rad/s. The simulation will be performed
for 0 < t < 200 s using N = 20000 time samples.

# Dr iven dumped pendulum
from s c i p y . i n t e g r a t e import o d e i n t
import numpy as np
import ma t p l o t l i b . p y p l o t a s p l t

# Sys tem Parame ter s
[ g , L , b ]= [ 10 , 10 , 0 . 5 ]
[w , A] = [ 2 / 3 , 1 ]
# I n i t i a l Cond i t i o n s
θ = [ 0 . 5 , 0 ]
# S imu l a t i o n parame t e r s
N = 20000
t = np . l i n s p a c e ( 0 , 200 ,N)
def f (θ , t ) :

dvd t = −(g / L)*np . s i n (θ [ 0 ] ) . . .
. . . − b*θ [ 1 ]+A*np . s i n (w* t )

dθ d t = θ [ 1 ]
re turn [ dθdt , dvd t ]

s o l u t i o n = o d e i n t ( f , θ , t )

We run the code and the results are saved in the
variable “solution”. The time needed for the solu-
tion is relatively short although the number of cal-
culation points is significantly larger. Then we pro-
ceed with the creation of the corresponding graphical
representations of the angular displacement with time
and phase space.

The graph is shown in Fig. 5 where we see that
after the time of 100 seconds the system performs
harmonic oscillation of constant amplitude and fre-
quency. At this point we let the students experiment
with the various initial conditions of the system. By
choosing different initial conditions we see that the
system exhibits the same behavior and finally per-
forms harmonic oscillations.

To construct the phase diagram we will use the
states of the system after harmonic oscillation is
reached. We should also ensure that the value of the
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Fig. 5: Position of the oscillator vs time

angle should not exceed the range −π ≤ θ ≤ π.
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Fig. 6: Phase space of the system with A = 1N

In order to bring the system described by the equa-
tion (4) in chaotic operation we use the method of
period doubling by changing the amplitude of the
external force. We have changed the angular fre-
quency of the external force to ω = 2/3 rad/s and
we change the amplitude of the external force to A =
[1.35, 1.45, 1.47, and 1.5]

The transition to chaos is shown in figure 7 where
the phase space of the system is presented when the
amplitude of the driving force is A = 1.35. The tra-
jectory of the system in the phase space diagram is a
closed loop as expected. Increasing the amplitude to
A = 1.45 the trajectory in the phase space is chang-
ing, and a second path is appearing denoting the pe-
riod doubling of the system as it is shown in fig. 8.

By increasing the amplitude toA = 1.47 the phase
space diagram of the system changes again as it is pre-
sented in figure 9. The system doubles its period, but
its behavior is still predictable.

By choosing the amplitude of the external force
A = 1.5 the operation of the system becomes chaotic
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Fig. 7: Phase space of the system with A = 1.35N
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Fig. 8: Phase space of the system with A = 1.45N

as it shown in Fig. 10. It has to be mentioned that
the motion of the system is not random. There is
a periodicity but the period is large enough. This
makes a small observation of the operation look to-
tally stochastic. In this state, the system is called a
strange attractor. In this situation, a small change in
the initial conditions of the system will cause a big
difference in its motion, regardless that the shape of
the phase space will not change.

The chaotic operation could be characterized by
the rate of separation of infinitesimally close trajecto-
ries. this is done by the calculation of the Lyapunov
exponent described below. The presence of chaos is
verified also in electronic circuits [13].

3 Lyapunov exponent calculation
The chaotic behavior of a systems is verified by the
calculation of the Lyapunov exponent, [14]. The cal-
culation of this exponent is done by equation (5):

δt ∼= δ0e
λt λ =

1

N

N∑
j=1

log
δt,j
δ0,j

(5)
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Fig. 9: Phase space of the system with A = 1.47N
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Fig. 10: Phase space of the system with A = 1.5

were λ is the Lyapunov exponent δt is the separation
of trajectories after t time, δ0 is the initial separation.
For discrete time systems, like in our case, N is the
time samples needed for the calculation. In order to
make the calculation, we simulate two trajectories of
the system whose initial conditions differ very little.
The initial conditions θ1o and θ2o where θ2o = θ1o+ϵ,
where ϵ is value very close to the machine epsilon, for
our case ϵ = 2.220e− 16. so the initial separation of
the trajectories in the phase space is:

δ0 = |θ2o − θ1o|

After the calculation of each trajectory for the cor-
responding initial condition we calculate their differ-
ence through the relation.

δ0 = ∆θ = |θ2 − θ1|

the difference is growing exponentially with time as
it is shown in fig. 11. The graph is assumed to be
linear when we create a log-linear plot. From our
calculations, the Lyapunov exponent of this system
is λ = 0.06132158503950399. The positive value
verifies the chaotic operation as was expected.
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Fig. 11: Exponential increase of the difference be-
tween two very close orbits with respect to time. The
red line represents the linear regression.

4 Discussion
This approach is applied in the context of the Compu-
tational Physics course taught to second-year students
in the Applied Physics department of the Polytechnic
University of Tirana in Albania. After the explanation
of the basic principles governing the phenomenon, the
students, with the help of the lecturer, construct the
mathematical model that describes it. This model is
then run on the computer and the graphs describing
its evolution are created.

Our didactic approach presents clearly and com-
prehensively the transition of a nonlinear system from
order to chaos. The demonstration could be presented
in the lecture or a laboratory environment giving stu-
dents a hands-on experience in the field of dynamic
systems and chaos.

In the future, we will try to make a create the code
that implements the Poincare section of the system.

5 Conclusion
In this paper, we demonstrate the use of Python pro-
gramming language in simulating a simple linear sys-
tem. We showed that this methodology can be used in
simulations of a non-linear system. This demonstra-
tion can be used as a didactic tool for introduction to
dynamical system analysis of its elegance and ease of
use.
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