On convergence of orthogonal expansion of a function from the class in the eigenfunctions of a differential operator of the third order

AYGUN GARAYEVA, FATIMA GULIYEVA
Baku State University Z.Khalilov 23, AZ 1148
AZERBAIJAN

Abstract

We consider a third-order ordinary differential operator with summable coefficients. The absolute and uniform convergence of the orthogonal expansion of a function from the class in the eigenfunctionsof this operator is studied and the rate of uniform convergence of these expansions on is estimated.

Keywords- eigenfunctions, third-order ordinary differential operator, orthogonal expansion
Received: May 17, 2021. Revised: August 19, 2021. Accepted: September 20, 2021. Published: October 9, 2021.

1. Introduction

IT is well known that any function in the domain of a selfadjoint ordinary differential operator can be expanded in a uniformly convergent series in the eigenfunctions of this operator [1. p. 90]. For functions that do not belong to the domain of self-adjoing Strum-Liouville operator, the problems of absolute and uniform convergence have been studied in [25] in [2,3] the Strum-Liouville operator
$L u=-u^{\prime \prime}+q(x) u, \quad x \in G=(0,1)$,
with two point self-adjoint boundary conditions (the coefficients in the boundary conditions are real) was considered, and under the condition $q(x) \in L_{1}(G)$, the absolute and uniform convergence on the interval \bar{G} of the expansions of functions $f(x) \in W_{1}^{1}(G) 1<p \leq 2$, $f(0)=f(1)=0$, in orthonormal eigenfunctions of this operator was proved.
The operator L with a real potential $q(x) \in L_{1}(G)$ independent of the specific boundary conditions (in particular, self-adjoint boundary conditions with complex coefficients are also allowed) was consider in [4, 5]. The results obtained in [2-5] were generalized in [6] and [7] (for the one-dimensional Şchrödinger operator).
On the interval $G=(0,1)$, consider the differential operator

$$
\begin{equation*}
L u=u^{(3)}+p_{1}(x) u^{(2)}+p_{2}(x) u^{(1)}+p_{3}(x) u \tag{1}
\end{equation*}
$$

with coefficients

$$
p_{1}(x) \in L_{2}(G), \quad p_{l}(x) \in L_{1}(G), \quad l=2,3 .
$$

In the present paper, we study the problems of absolute and uniform convergence of expansions of functions of the class $W_{1}^{1}(G)$ in the eigenfunctions of a third-order differential operator (1) (see [8], [9]). Sufficient conditions for the absolute and uniform convergence of these expansions are obtained, and the rate of uniform convergence is estimated.

This study are based on Ilins spectral method [10].
By $D(G)$ we denote the class of functions absolutely continuous together with their derivatives up to the second order, inclusively, on the segment $\bar{G}=[0,1]$.
An eigenfunctions of the operator L corresponding to the eigenvalue λ is understood as any function not identically equal to zero $u(x) \in D(G)$ and satisfying (almost everywhere in G) the equation (see [10])

$$
L u+\lambda u=0
$$

We say that a function $f(x)$ belongs to $W_{p}^{1}(G), 1 \leq p \leq \infty$, if $f(x)$ is absolutely continuous on \bar{G} and $f^{\prime}(x)$ belongs to $L_{p}(G)$. The norm of the function $f(x) \in W_{p}^{1}(G)$ is given by the equality

$$
\|f\|_{W_{p}^{1}(G)}=\|f\|_{p}+\left\|f^{\prime}\right\|_{p}
$$

where $\|\cdot\|_{p}=\|\cdot\|_{L_{p}(G)}$.
Assume that $\left\{u_{k}(x)\right\}_{k=1}^{\infty}$ is the complete system of eigenfunctions of the operator L ortonormal in $L_{2}(G)$. By $\left\{\lambda_{k}\right\}_{k=1}^{\infty}$ we denote the corresponding system of eigenvalues. Moreover, we assume that $\operatorname{Re} \lambda_{k}=0$. Parallel with the spectral parameter λ_{k}, we consider a parameter μ :

$$
\mu_{k}=\left\{\begin{array}{cc}
\left(-i \lambda_{k}\right)^{1 / 3} & \text { for } \quad I_{m} \lambda_{k} \geq 0 \\
\left(i \lambda_{k}\right)^{1 / 3} & \text { for } \quad I_{m} \lambda_{k}<0
\end{array}\right.
$$

We now introduce a partial sum of the orthogonal expansion of the function $f(x) \in W_{1}^{1}(G)$ in the system $\left\{u_{k}(x)\right\}_{k=1}^{\infty}$:

$$
\sigma_{v}(x, f)=\sum_{\mu_{k} \leq v} f_{k} u_{k}(x), \quad v>0,
$$

where

$$
f_{k}=\left(f, u_{k}\right)=\int_{G} f(x) \overline{u_{k}(x)} d x,
$$

and the difference

$$
R_{v}(x, f)=f(x)-\sigma_{v}(x, f) .
$$

In the present paper, we prove the following statements:
Theorem 1. Suppose that $f(x) \in W_{p}^{1}(G), p_{1}(x) \in L_{2}(G)$, $p_{l}(x) \in L_{1}(G), l=2,3$ and following conditions are satisfied:

$$
\begin{gather*}
\left|f(x) \overline{u^{(2)}(x)}\right| \leq C_{1}(f) \mu_{k}^{\alpha}\left\|u_{k}\right\|_{\infty} \tag{2}\\
0 \leq \alpha<2, \quad \mu_{k} \geq 1 \\
\sum_{k=2}^{\infty} k^{-1} \omega_{1}\left(f^{\prime}, k^{-1}\right)<\infty \tag{3}
\end{gather*}
$$

Then the spectral expansion of the function $f(x)$ in the system $\left\{u_{k}(x)\right\}_{k=1}^{\infty}$ absolutely and uniformly converges on the segment $\bar{G}=[0,1]$ and the following estimate is true:

$$
\begin{gather*}
\left\|R_{v}(\cdot, \infty)\right\|_{C[0,1]} \leq C\left\{C_{1}(f) v^{\alpha-2}+v^{-\frac{1}{2}}\left\|p_{1} f\right\|_{2}+\right. \\
+\left(1+\left\|p_{1}\right\|_{1}\right)\left\lfloor\sum_{k=[v]}^{\infty} k^{-1} \omega_{1}\left(f^{\prime}, k^{-1}\right)+\omega_{1}\left(f^{\prime}, v^{-1}\right)\right\rfloor \\
+\left(1+\left\|p_{1}\right\|_{1}\right)\left\|f^{\prime}\right\|_{1} v^{-1}+ \\
\left.+v^{-1}\left(\|f\|_{\infty}+\left\|f^{\prime}\right\|_{1}\right) \sum_{r=2}^{\infty} v^{2-r}\left\|p_{r}\right\|_{1}\right\} \tag{4}\\
v \geq 8 \pi
\end{gather*}
$$

where $\omega_{1}(g, \delta)$ is the integral modulus of continuity of the function $g(x) \in L_{1}(G)$, and the constant C is independent of $f(x)$.
Corollary 1. If the function $f(x) \in W_{1}^{1}(G)$ in the Theorem 1 satisfies the conditions $f(0)=f(1)=0$, then condition (2) is necessarily satisfied (with the constant $C_{1}(f)=0$), its spectral expansion in the system $\left\{u_{k}(x)\right\}_{k=1}^{\infty}$ converges absolutely and uniformly on the segment $\bar{G}=[0,1]$, and the following estimate holds:

$$
\begin{gathered}
\left\|R_{v}(\cdot, \infty)\right\|_{C[0,1]} \leq \\
\leq \mathrm{const}\left\{v^{-\frac{1}{2}}\left\|p_{1} f\right\|_{2}+\left[\omega_{1}\left(f, v^{-1}\right)+\sum_{k=[v]}^{\infty} k^{-1} \omega_{1}\left(f^{\prime}, k^{-1}\right)\right]\right.
\end{gathered}
$$

$$
\left.\left(1+\left\|p_{1}\right\|_{1}\right)+v^{-1}\left\{1+\left\|p_{1}\right\|_{1}+2 \sum_{r=2}^{\infty} v^{2-r}\left\|p_{r}\right\|_{1}\right\rfloor\left\|f^{\prime}\right\|_{1}\right\}
$$

$$
v \geq 8 \pi
$$

Corollary 2. If the function in the Theorem 1 satisfies the relations

$$
f(0)=f(1)=0
$$

and

$$
f^{\prime}(x) \in H_{1}^{\beta}(G), 0<\beta \leq 1,\left(H_{1}^{\beta}(G)\right.
$$

is the Nikolski class), then conditions (2) and (3) are necessarily satisfied, its spectral expansion converges absolutely and uniformly on the segment $\bar{G}=[0,1]$, and the following estimate holds:

$$
\begin{gathered}
\left\|R_{v}(\cdot, \infty)\right\|_{C[0,1]} \leq \\
\leq \text { const }\left\{v^{-\frac{1}{2}}\left\|p_{1} f\right\|_{2}+v^{-\beta}\left\|f^{\prime}\right\|_{1}^{\beta}\right\}, v \geq 8 \pi
\end{gathered}
$$

where

$$
\left\|f^{\prime}\right\|_{1}^{\beta}=\left\|f^{\prime}\right\|_{1}+\delta^{-\beta} \omega_{1}\left(f^{\prime}, \delta\right)
$$

Theorem 2. Suppose that

$$
\begin{gathered}
f(x) \in W_{1}^{1}(G), \\
p_{1}(x) \in L_{2}(G), \\
p_{l}(x) \in L_{1}(G), l=2,3 ;
\end{gathered}
$$

conditions (2), (3) and

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{-1} \omega_{1}\left(p_{1} f, k^{-1}\right)<\infty \tag{5}
\end{equation*}
$$

are satisfied. Then the spectral expansion of the function $f(x)$ in the system $\left\{u_{k}(x)\right\}_{k=1}^{\infty}$ absolutely and uniformly converges on $\bar{G}=[0,1]$ and the following estimate is true:

$$
\left\|R_{v}(\cdot, \infty)\right\|_{C[0,1]} \leq C\left\{C_{1}(f) v^{\alpha-2}+\right.
$$

$$
\begin{gather*}
+\sum_{k=|v|}^{\infty} k^{-1} \omega_{1}\left(\bar{p}_{1} f, k^{-1}\right)+\sum_{k=[\mid]}^{\infty} k^{-1} \omega_{1}\left(f^{\prime}, k^{-1}\right)+\omega_{1}\left(\bar{p}_{1} f, v^{-1}\right)+\omega_{1}\left(f^{\prime}, v^{-1}\right)+ \\
\left.+v^{-1}\left(\left\|p_{1} f\right\|_{1}+\left\|f^{\prime}\right\|_{1}\right)\right]+v^{-1}\left(\left\|p_{1} f\right\|_{1}+\|f\|_{\infty}+\left\|f^{\prime}\right\|_{1} \sum_{r=2}^{\infty} v^{2-r}\left\|p_{r}\right\|_{\|}\right\}, \tag{6}\\
v \geq 8 \pi .
\end{gather*}
$$

Corollary 3. If the function $f(x) \in W_{1}^{1}(G)$ in the Theorem 2
satisfies the relations $f(0)=f(1)=0$ and

$$
\begin{aligned}
& f^{\prime}(x) \in H_{1}^{\beta}(G), \quad 0<\beta \leq 1 \\
& \bar{p}_{1} f \in H_{1}^{\gamma}(G), \quad 0<\gamma \leq 1
\end{aligned}
$$

then condition (2) and (3) are necessarily satisfied, its spectral expansion converges absolutely and uniformly on the segment $\bar{G}=[0,1]$, and the following estimate holds:

$$
\begin{gathered}
\left\|R_{v}(\cdot, \infty)\right\|_{C[0,1]} \leq \\
\leq \mathrm{const}\left\{v^{-\beta}\left\|f^{\prime}\right\|_{1}^{\beta}+v^{-\gamma}\left\|\bar{p}_{1} f\right\|_{1}^{\gamma}\right\}, v \geq 8 \pi
\end{gathered}
$$

where constant is independent of the function $f(x)$.

2. Some auxiliary lemmas

To prove the results, we must estimate the Fourier coefficients f_{k} of the function $f(x) \in W_{1}^{1}(G)$. To this end, we use representation of the eigenfunction $u_{k}(x)$. Let as introduce

$$
\begin{array}{r}
x_{j}^{ \pm} \equiv x_{j k}^{ \pm}(0)=\frac{1}{3 \mu_{k}^{2}} \sum_{r=0}^{2}\left(i \mu_{k}\right)^{r} \omega_{j}^{r+1} u^{2-r}(0) \\
\mu\left(\xi, u_{k}\right)=\frac{-1}{3 \mu_{k}^{2}} \sum_{e=1}^{3} p_{l}(\zeta) \omega_{j}^{r+1} u^{(3-l)}(\xi) \\
i=\sqrt{-1}
\end{array}
$$

where

$$
\begin{gathered}
\omega_{1}=-1 \\
\omega_{2}=\exp (-i \pi / 3) \\
\omega_{3}=\exp (i \pi / 3)
\end{gathered}
$$

Lemma1. (see $[8,9]$). If $\lambda_{k} \neq 0$, then the following representation is valid for the eigenfunction $u_{k}(x)$:

$$
\begin{gather*}
\mu_{k}^{-l} u_{k}^{(l)}(t)= \\
=\sum_{j=1}^{2}\left(-i \omega_{j}\right)^{l} x_{j}^{-}(0) \exp \left(-i \omega_{j} \mu_{k} t\right)+\left(-i \omega_{j}\right)^{l} B_{3 k}^{-} \exp \left(i \omega_{3} \mu_{k}(1-t)\right)- \\
-\sum_{j=1}^{2}(-i)^{l} \omega_{j}^{l+1} \int_{0}^{t} M\left(\xi, u_{k}\right) \exp \left(i \omega_{j} \mu_{k}(\xi-t)\right) d \xi+ \\
\quad+(-i)^{l} \omega_{j}^{l+1} \int_{t}^{1} M\left(\xi, u_{k}\right) \exp \left(i \omega_{3} \mu_{k}(\xi-t)\right) d \xi \tag{7}
\end{gather*}
$$

for $\operatorname{Im} \lambda_{k}>0$ and
$\mu_{k}^{-l} u_{k}^{(l)}(t)=$

$$
\begin{align*}
= & \sum_{j=1, j \neq 2}^{3}\left(i \omega_{j}\right)^{l} x_{j}^{+}(0) \exp \left(i \omega_{j} \mu_{k} t\right)+\left(i \omega_{2}\right)^{l} B_{2 k}^{+} \exp \left(-i \omega_{2} \mu_{k}(1-t)\right)- \\
& -\sum_{j=1, j \neq 2}^{3}(i)^{l} \omega_{j}^{l+1} \int_{0}^{t} M\left(\xi, u_{k}\right) \exp \left(-i \omega_{j} \mu_{k}(\xi-t)\right) d \xi+ \\
& +(i)^{l} \omega_{2}^{l+1} \int_{t}^{1} M\left(\xi, u_{k}\right) \exp \left(-i \omega_{2} \mu_{k}(\xi-t)\right) d \xi \tag{8}
\end{align*}
$$

for $\operatorname{Im} \lambda_{k}<0$ and. Moreover,

$$
\begin{gathered}
B_{3}^{-}=x_{3}^{-}(0) \exp \left(-i \omega_{3} \mu_{k}\right)- \\
-\omega_{3} \int_{0}^{1} M\left(\xi, u_{k}\right) \exp \left(-i \omega_{3} \mu_{k}(\xi-1)\right) d \xi \\
B_{2}^{+}=x_{2}^{+}(0) \exp \left(i \omega_{2} \mu_{k}\right)- \\
-\omega_{2} \int_{0}^{1} M\left(\xi, u_{k}\right) \exp \left(i \omega_{2} \mu_{k}(\xi-1)\right) d \xi
\end{gathered}
$$

the coefficients in relations (7) and (8) satisfy the inequalities:

$$
\left|x_{1}^{ \pm}(0)\right| \leq C\left\|u_{k}\right\|_{2} \leq C ; \quad\left|x_{j}^{ \pm}(0)\right| \leq C\left\|u_{k}\right\|_{\infty}
$$

for

$$
j=2,3 ; \quad\left|B_{2 k}^{+}\right| \leq C\left\|u_{k}\right\|_{\infty} ; \quad\left|B_{3 k}^{-}\right| \leq C\left\|u_{k}\right\|_{\infty} \quad \text { where }
$$ C is a constant.

Lemma 2. Suppose that the function $f(x) \in W_{1}^{1}(G)$ and the system $\left\{u_{k}(x)\right\}_{k=1}^{\infty}$ satisfy condition (2). Then the Fourier coefficients f_{k} satisfy the inequalities $\left(\mu_{k} \geq 8 \pi\right)$:

$$
\begin{gather*}
\left|f_{k}\right| \leq C\left\{C_{1}(f) \mu_{k}^{\alpha-3}+\right. \\
+\mu_{k}^{-1}\left(1+\left\|p_{1}\right\|_{1}\right)\left[\omega_{1}\left(f^{\prime}, \mu_{k}^{-1}\right)+\mu_{k}^{-1}\left\|f^{\prime}\right\|_{1}\right]+ \\
\left.+\mu_{k}^{-2}\left(\left\|f^{\prime}\right\|+\|f\|_{\infty}\right) \sum_{r=2}^{3} \mu_{k}^{2-r}\left\|_{p_{r}}\right\|_{1}\right\}\left\|u_{k}\right\|_{\infty}+ \tag{9}\\
+C \mu_{k}^{-1}\left|\left(\bar{p}_{1} f, \mu_{k}^{-2} u_{k}^{(2)}\right)\right| \\
\left|f_{k}\right| \leq C\left\{C_{1}(f) \mu_{k}^{\alpha-3}+\mu_{k}^{-1}\left(1+\left\|p_{1}\right\|_{1}\right)\left[\omega_{1}\left(\bar{p}_{1} f, \mu_{k}^{-1}\right)+\right.\right. \\
+\omega_{1}\left(f^{\prime}, \mu_{k}^{-1}\right)+\mu_{k}^{-1}\left\|p_{1} f\right\|_{1}+ \\
\left.\left.+\mu_{k}^{-1}\left\|f^{\prime}\right\|_{1}\right]+\mu_{k}^{-2}\left(\left\|f^{\prime}\right\|_{1}+\|f\|_{\infty}+\left\|p_{1} f\right\|_{1}\right) \sum_{r=2}^{3} \mu_{k}^{2-r}\left\|p_{r}\right\|_{1}\right\}\left\|u_{k}\right\|_{\infty} ;\left(9^{`}\right)
\end{gather*}
$$

where C is a a constant independent of $f(x)$.
Proof. Since the eigenfunction $u_{k}(x)$ is a solution of the equation $L u_{k}=-\lambda_{k} u_{k}$, we represent the Fourier coefficient
f_{k} of $\mu_{k} \neq 0$ to the form

$$
\begin{gather*}
f_{k}=\left(f, u_{k}\right)=\left(f,-\lambda_{k}^{-1} L u_{k}\right)= \\
=-\bar{\lambda}_{k}^{-1}\left(f, u_{k}^{(3)}\right)-\bar{\lambda}_{k}^{-1} \sum_{r=1}^{3}\left(f, p_{r} u_{k}^{(3-r)}\right)= \\
=-\bar{\lambda}_{k}^{-1}\left(f, u_{k}^{(3)}\right)-\bar{\lambda}_{k}^{-1}\left(f, p_{1} u_{k}^{(2)}\right)-\bar{\lambda}_{k}^{-1} \sum_{r=2}^{3}\left(f, p_{r} u^{(3-r)}\right) . \tag{10}
\end{gather*}
$$

By virtue of the estimate (see [11])

$$
\begin{gather*}
\left\|u_{k}^{s}\right\|_{\infty} \leq \operatorname{const}(1+\mu)^{s+\frac{1}{p}}\left\|u_{k}\right\|_{p} \tag{11}\\
p \geq 1, \quad s=\overline{0,2}
\end{gather*}
$$

we obtain the following estimate of the third term of the right-hand side in (10):

$$
\begin{align*}
& \left|\bar{\lambda}_{k}^{-1} \sum_{r=2}^{3}\left(f, p_{r} u^{(3-r)}\right)\right| \leq \mu_{k}^{-3}\|f\|_{\infty} \sum_{r=2}^{3}\left\|p_{r}\right\|_{1}\left\|u_{k}^{(3-r)}\right\|_{\infty} \leq \\
& \leq \text { const } \mu_{k}^{-3}\|f\|_{\infty}\left(\sum_{r=2}^{3}\left\|p_{r}\right\|_{1} \mu_{k}^{3-r}\right)\left\|u_{k}\right\|_{\infty} \leq \\
& \quad \leq \text { const } \mu_{k}^{-2}\|f\|_{\infty}\left\|u_{k}\right\|_{\infty} \sum_{r=2}^{3} \mu_{k}^{2-r}\left\|p_{r}\right\|_{1} . \tag{12}
\end{align*}
$$

Integrating the first term on the right-hand side of equality (10) by parts and using condition (2), we get

$$
\begin{align*}
& \left|\lambda_{k}\right|^{-1}\left|\left(f, u_{k}^{3}\right)\right| \leq\left|\lambda_{k}\right|^{-1}\left|f(t) \overline{u_{k}^{(2)}(t)}\right|_{0}^{1} \mid+ \\
& +\left|\lambda_{k}\right|^{-1}\left|\int_{0}^{1} f^{\prime}(t) u_{k}^{(2)}(t)\right| \leq \\
& \leq C_{1}(f) \mu_{k}^{\alpha-3}\left|u_{k} \|_{\infty}+\mu_{k}^{-3}\right|\left(f^{\prime}, u_{k}^{(2)}\right) \mid . \tag{13}
\end{align*}
$$

We now estimate the expression $\mu_{k}^{-3}\left|\left(f^{\prime}, u_{k}^{2}\right)\right|$ on the right-hand side of inequality (13). For that we use formulas (7) and (8) subject to the sign of $\operatorname{Im} \lambda_{k}$. For definiteness consider the case $\operatorname{Im} \lambda_{k}<0$ and apply relation (8) with $l=2$.

$$
\begin{gathered}
\mu_{k}^{-3}\left(f^{\prime}, u_{k}^{(2)}\right)=\mu_{k}^{-1}\left(f^{\prime}, \mu_{k}^{-2} u^{(2)}\right)= \\
=\mu_{k}^{-1} \sum_{j=1, j \neq 2}^{3}\left(f^{\prime} x_{j}^{+}(0)\left(i \omega_{j}\right)^{2} \exp \left(i \omega_{j} \mu_{k} t\right)\right)+ \\
+\mu_{k}^{-1} \overline{B_{2 k}^{+}\left(i \omega_{2}\right)^{2}}\left(f^{\prime}, \exp \left(-i \omega_{2} \mu_{k}(1-t)\right)-\right. \\
-\mu_{k}^{-1} \sum_{j=1, j \neq 2}^{3}\left(f^{\prime}, \int_{0}^{t} M\left(\xi, u_{k}\right) \exp \left(-i \omega_{j} \mu_{k}(\xi-t)\right) d \xi\right)+
\end{gathered}
$$

$$
\begin{equation*}
-\mu_{k}^{-1}\left(f^{\prime}, \int_{t}^{1} M\left(\xi, u_{k}\right) \exp \left(-i \omega_{2} \mu_{k}(\xi-t)\right) d \xi\right) \tag{14}
\end{equation*}
$$

Estimate each term in this equality. Obviously

$$
\begin{gathered}
\left(f^{\prime}, x_{j}^{+}(0)\left(i \omega_{j}\right)^{2} \exp \left(i \omega_{j} \mu_{k} t\right)\right)= \\
=\overline{x_{j}^{+}(0)\left(i \omega_{j}\right)^{2}}\left(f, \exp \left(i \omega_{j} \mu_{k} t\right)\right), \quad j=1,3 .
\end{gathered}
$$

Taking into account the inequality

$$
\begin{equation*}
\left|x_{j}^{+}(0)\right| \leq \text { const }\left\|u_{k}\right\|_{\infty}, \quad j=1,3, \tag{15}
\end{equation*}
$$

That follows from estimation (11), and using the estimation (see [12], [13])

$$
\left|\int_{0}^{1} \overline{f^{\prime}(t)} \exp \left(i \omega_{j} \mu_{k} t\right) d t\right| \leq
$$

$$
\leq \mathrm{const}\left\{\omega_{1}\left(f^{\prime}, \mu_{k}^{-1}\right)+\mu_{k}^{-1}\left\|f^{\prime}\right\|_{1}\right\}, \quad j=1,3
$$

we have

$$
\begin{align*}
& \left|\left(f^{\prime}, x_{j}^{+}(0)\left(i \omega_{j}\right)^{2} \exp \left(i \omega_{j} \mu_{k} t\right)\right)\right| \leq \\
& \leq \text { const }\left\{\omega_{1}\left(f^{\prime}, \mu_{k}^{-1}\right)+\mu_{k}^{-1}\left\|f^{\prime}\right\|_{1}\right\}\left\|u_{k}\right\|_{\infty}, \quad j=1,3 \tag{16}
\end{align*}
$$

Apply the estimation $\left|\beta_{2 k}^{+}\right| \leq$const $\left\|u_{k}\right\|_{\infty}$ in the second term of equality (14). As a result we have

$$
\begin{align*}
& \left|B_{2 k}^{+}\left(i w_{2}\right)^{2}\left(f^{\prime}, \exp \left(i \omega_{2} \mu_{k}(1-t)\right)\right)\right| \leq \\
\leq & \text { const }\left\{\omega_{1}\left(f^{\prime}, \mu_{k}^{-1}\right)+\mu_{k}^{-1}\left\|f^{\prime}\right\|_{1}\right\}\left\|u_{k}\right\|_{\infty} \tag{17}
\end{align*} .
$$

The third and fourth terms in equality (14) are estimated by the same scheme. Therefore we estimate the third term. For that we use the representation
$M\left(\xi, u_{k}\right)=-\frac{1}{3 \mu_{k}^{2}} p_{1}(\xi) u_{k}^{(2)}(\xi)-\frac{1}{3 \mu_{k}^{2}} \sum_{r=2}^{3} p_{r}(\xi)$.
$u_{k}^{(3-r)}(\xi)$ and the inequality

$$
\begin{gathered}
\left|\frac{1}{3 \mu_{k}^{2}} \sum_{r=2}^{3} p_{r}(\xi) u_{k}^{(3-r)}\right| \leq \\
\leq \text { const } \mu_{k}^{-1}\left[\sum_{r=2}^{3}\left|p_{r}(\xi)\right| \mu_{k}^{2-r}\right]\left\|u_{k}\right\|_{\infty}
\end{gathered}
$$

Then we have

$$
\begin{gather*}
\left|\mu_{k}^{-1} \sum_{j=1, j \neq 2}^{3}\left(f^{\prime}, \int_{0}^{t} M\left(\xi, u_{k}\right) \exp \left(-i \omega_{j} \mu_{k}(\xi-t)\right) d \xi\right)\right| \leq \\
\leq \frac{1}{3 \mu_{k}^{3}} \sum_{j=1,1}^{3}\left|\left(f^{\prime} \mid, f_{0}^{t} p_{1}(\xi) u_{k}^{(2)}(\xi) \exp \left(-i \omega_{j} \mu_{k}(\xi-t)\right) d \xi\right)\right|+ \\
+\frac{\text { const }}{\mu_{k}^{2}}\left[\sum_{r=2}^{3}\left\|p_{r}\right\|_{1} \mu_{k}^{2-r}\right]\left\|f^{\prime}\right\|_{1}\left\|u_{k}\right\|_{\infty} . \tag{18}
\end{gather*}
$$

After changing the integration order in the first term, we get that it doesn`t exceed the quantity

$$
\begin{array}{r}
\text { const } \tag{19}\\
\mu_{k} \\
\sum_{j=1, j \neq 2}^{3} \int_{0}^{1}\left|p_{1}(\xi)\right| \int_{\xi}^{1} \overline{f^{\prime}(t)} \exp \left(-i \omega_{j} \mu_{k}(\xi-t)\right) d t \mid d \xi\left\|u_{k}\right\|_{\infty}, \\
j=1,3
\end{array}
$$

Taking into account the following chain of inequalities (see [5], [6])

$$
\begin{aligned}
& \quad\left|\int_{\xi}^{1} \overline{f^{\prime}(t)} \exp \left(-i \omega_{j} \mu_{k}(\xi-t)\right) d t\right| \leq \\
& \leq \text { const }\left\{\omega_{1}\left(g_{\xi}, \mu_{k}^{-1}\right)+\mu_{k}^{-1}\left\|g_{\xi}\right\|_{1}\right\} \leq \\
& \leq \text { const }\left\{\omega_{1}\left(f^{\prime}, \mu_{k}^{-1}\right)+\mu_{k}^{-1}\left\|f^{\prime}\right\|_{1}+\mu_{k}^{-1}\left\|f^{\prime}\right\|_{1}\right\} \leq \\
& \leq \text { const }\left\{\omega_{1}\left(f^{\prime}, \mu_{k}^{-1}\right)+\mu_{k}^{-1}\left\|f^{\prime}\right\|_{1}\right\}, \quad j=1,3,
\end{aligned}
$$

where

$$
g_{\xi}(z)=\left\{\begin{array}{cc}
f^{\prime}(\xi+z) & \text { for } \quad 0 \leq z \leq 1-\xi \\
0 & \text { for } 1-\xi<z \leq 1,
\end{array} \quad \xi \in[0,1],\right.
$$

we prove that expression (19) is bounded from above by the quantity

$$
\frac{\text { const }}{\mu_{k}}\left\|p_{1}\right\|_{1}\left\{\omega_{1}\left(f^{\prime}, \mu_{k}^{-1}\right)+\mu_{k}^{-1}\left\|f^{\prime}\right\|_{1}\right\}\left\|u_{k}\right\|_{\infty}
$$

Consequently, the left side of (18) doesn't exceed the quantity

$$
\begin{aligned}
& \frac{\text { const }}{\mu_{k}}\left\|p_{1}\right\|_{1}\left\{\omega_{1}\left(f^{\prime}, \mu_{k}^{-1}\right)+\mu_{k}^{-1}\left\|f^{\prime}\right\|_{1}\right\}\left\|u_{k}\right\|_{\infty}+ \\
& +\frac{\text { const }}{\mu_{k}^{2}} \sum_{r=2}^{3}\left\|p_{r}\right\|_{1} \mu_{k}^{2-r}\left\|f^{\prime}\right\|\left\|u_{k}\right\|_{\infty}
\end{aligned}
$$

Hence and from estimations (16), (17) and relation (14) we get

$$
\begin{gather*}
\mu_{k}^{-3}\left|\left(f^{\prime}, u_{k}^{(2)}\right)\right| \leq \\
\leq \frac{\text { const }}{\mu_{k}}\left\{\left(1+\left\|p_{1}\right\|_{1}\right)\left[\omega_{1}\left(f^{\prime}, \mu_{k}^{-1}\right)+\mu_{k}^{-1}\left\|f^{\prime}\right\|_{1}\right]+\right. \\
\left.+\mu_{k}^{-1}\left\|f^{\prime}\right\|_{1} \sum_{r=2}^{3}\left\|p_{r}\right\|_{1} \mu_{k}^{2-r}\right\}\left\|u_{k}\right\|_{\infty} \tag{20}
\end{gather*}
$$

Estimate now the term $\bar{\lambda}_{k}^{-1}\left(f, p_{1} u_{k}^{2}\right)$ in equality (10).
Obviously

$$
\begin{equation*}
\left|\frac{1}{\bar{\lambda}_{k}}\left(f, p_{1} u_{k}^{2}\right)\right|=\frac{1}{\mu_{k}^{3}}\left|\left(\bar{p}_{1} f, u_{k}^{2}\right)\right| . \tag{21}
\end{equation*}
$$

By estimations (12), (13), (20) and equality (21) from equality (10) we get inequality (9).

Since the function $\bar{p}_{1}(x) f(x)$ belongs to the class
$L_{1}(G)$, we can apply estimation (20) with substitution of $p_{1} f$ for f^{\prime}. As a result, we have

$$
\begin{align*}
& \left|\frac{1}{\bar{\lambda}_{k}}\left(f, p_{1} u_{k}^{2}\right)\right|=\frac{1}{\mu_{k}^{3}}\left|\left(\bar{p}_{1} f, u_{k}^{2}\right)\right| \leq \\
& \leq \frac{\text { const }}{\mu_{k}}\left\{\left(1+\left\|p_{1}\right\|_{1}\right)\left[\omega_{1}\left(\bar{p}_{1} f, \mu_{k}^{-1}\right)+\mu_{k}^{-1}\left\|p_{1} f\right\|_{1}\right]+\right. \\
& \left.+\mu_{k}^{-1}\left\|p_{1} f\right\|_{1} \sum_{r=2}^{3}\left\|p_{r}\right\|_{1} \mu_{k}^{2-r}\right\}\left\|u_{k}\right\|_{\infty} \tag{22}
\end{align*}
$$

Consequently, by estimations (12), (13), (20) and (22) from equality (10) we have

$$
\begin{aligned}
& \left|f_{k}\right| \leq \operatorname{const}\left\{C_{1}(f) \mu_{k}^{\alpha-3}+\mu_{k}^{-1}\left(1+\left\|p_{1}\right\|_{1}\right)\left[\omega_{1}\left(f^{\prime}, \mu_{k}^{-1}\right)+\omega_{1}\left(\bar{p}_{1} f, \mu_{k}^{-1}\right)+\right.\right. \\
& \left.\left.\quad+\mu_{k}^{-1}\left\|f^{\prime}\right\|_{1}+\mu_{k}^{-1}\left\|p_{1} f\right\|_{1}\right]+\mu_{k}^{-2}\left(\left\|f^{\prime}\right\|_{1}+\|f\|_{\infty}+\left\|p_{1} f\right\|_{1}\right) \sum_{r=2}^{3} \mu_{k}^{2-r}\left\|p_{r}\right\|_{1}\right\}\left\|u_{k}\right\|_{\infty}
\end{aligned}
$$

The case $\operatorname{Im} \lambda_{k}>0$ is considered in the same way. The lemma 2 is proved.
Lemma 3. (see [11]) Assume that $p_{1}(x) \in L_{2}(G), \quad p_{l}(x) \in L_{1}(G), l=2,3$. Then for the orthonormal system of eigenfunctions $\left\{u_{k}(x)\right\}_{k=1}^{\infty}$ and the sequence $\left\{\mu_{k}\right\}_{k=1}^{\infty}$, the following estimates are true:

$$
\begin{gather*}
\sum_{\tau \leq \mu_{k} \leq \tau+1}^{\prime} 1 \leq C \text { for any } \tau \geq 0 \tag{23}\\
\sum_{\tau \leq \mu_{k} \leq \tau}\left\|u_{k}\right\|_{\infty}^{2} \leq C(1+\tau) \text { for any } \tau \geq 0 \tag{24}
\end{gather*}
$$

Lemma 4. (see [14]). If the conditions of Lemma 3 a satisfies, then

$$
\left\{\mu_{k}^{-2} u_{k}^{(2)}(x)\right\}_{k=1}^{\infty}, \quad \mu_{k} \neq 0
$$

is a Bessel system, i.e., for any function $f(x) \in L_{2}(G)$, the following inequality a true:

$$
\begin{equation*}
\left(\sum_{\mu_{k}>0}\left|\left(f, \mu_{k}^{2-r} u_{k}^{(2)}\right)\right|^{2}\right)^{1 / 2} \leq \text { const }\|f\|_{2} \tag{25}
\end{equation*}
$$

Lemma 5. Suppose that the conditions of Lemma 3 are satisfied. Then the following estimate hold for the system $\left\{u_{k}(x)\right\}_{k=1}^{\infty}$ for any $\mu \geq 2$

$$
\begin{equation*}
\sum_{\mu_{k} \geq \mu} \mu_{k}^{-(1+\delta)}\left\|u_{k}\right\|_{\infty}^{2} \leq C(\delta), \quad \delta>0 \tag{26}
\end{equation*}
$$

where $C(\delta)$ is positive constant.
Proof. Take a positive integer n_{0}. By the estimates (23) and (24), using the Abel transformation, we obtain the chain of inequalities

$$
\begin{aligned}
& \sum_{\left.\mu \leq \mu_{k} \leq \leq \mu\right]+n_{0}} \mu_{k}^{-(1+\delta)}\left\|u_{k}\right\|_{\infty}^{2} \leq \sum_{[\mu] \leq \mu_{k} \leq[\mu]+n_{0}} \mu_{k}^{-(1+\delta)}\left\|u_{k}\right\|_{\infty}^{2} \leq \\
& \left.\leq \sum_{n=[\mu]}^{[\mu]+n_{0}} n^{-(1+\delta)}\left\|u_{k}\right\|_{\infty}^{2} \sum_{n \leq \mu_{k}<n+1}\left\|u_{k}\right\|_{\infty}^{2}\right) \leq \\
& \leq \sum_{n=[\mu]}^{[\mu]+n_{0}-1}\left(\sum_{n \leq \mu_{k}<n+1}\left\|u_{k}\right\|_{\infty}^{2}\right)\left(n^{-(1+\delta)}-(n+1)^{-(1+\delta)}\right)+ \\
& \quad+\left(\sum_{1 \leq \mu_{k}<[\mu]+n_{0}+1}\left\|u_{k}\right\|_{\infty}^{2}\right)\left([\mu]+n_{0}\right)^{-(1+\delta)}+ \\
& \quad+\left(\sum_{1 \leq \mu_{k}<[\mu]}\left\|u_{k}\right\|_{\infty}^{2}\right)[\mu]^{-(1+\delta)} \leq \\
& \leq \text { const } \sum_{n=[\mu]+n_{0}-1}(n+1) \frac{(1+\delta)(1+n)^{\delta}}{(n(n+1))^{1+\delta}+} \\
& \quad+\text { const }\left(n_{0}+[\mu]\right)^{-(1+\delta)}\left(n_{0}+[\mu]+1\right)+ \\
& \quad+\text { const }[\mu]^{-(1+\delta)}(1+[\mu]) \leq
\end{aligned}
$$

$$
\leq \text { const }\left\{(1+\delta) \sum_{n=[\mu]}^{\infty}(n)^{-(1+\delta)}+[\mu]^{-\delta}\right\} \leq C(\delta) \mu^{-\delta}
$$

whence, since the number n_{0} is arbitrary, we obtain the estimate (26).

Lemma 6. Assume that

$$
p_{1}(x) \in L_{2}(G), \quad p_{l}(x) \in L_{1}(G), \quad l=2,3 ;
$$

and a $g(x) \in L_{1}(G)$ function satisfies condition

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{-1} \omega_{1}\left(g, k^{-1}\right)<\infty \tag{27}
\end{equation*}
$$

Then the estimate

$$
\begin{gather*}
\sum_{\mu_{k} \geq \mu} \mu_{k}^{-1}\left\|u_{k}\right\|_{\infty}^{2} \omega_{1}\left(g, \mu_{k}^{-1}\right) \leq \\
\leq C\left\{\omega_{1}\left(g, \mu^{-1}\right)+\sum_{k=[\mu]}^{\infty} k^{-1} \omega_{1}\left(g, k^{-1}\right)\right\} \tag{28}
\end{gather*}
$$

holds, where $\mu \geq 8 \pi$ and C is a positive constant independent of μ and the function $f(x)$

Proof. Take a positive integer m. By the estimate, (24) using the Abel transformation, we obtain the chain of inequalities

$$
\begin{aligned}
& \sum_{\mu \leq \mu_{k} \geq[\mu]+m} \mu_{k}^{-1}\left\|u_{k}\right\|_{\infty}^{2} \omega_{1}\left(g, \mu_{k}^{-1}\right) \leq \\
& \leq \sum_{n=[\mu]}^{[\mu]+m} n^{-1} \omega_{1}\left(g, n^{-1}\right)\left\{\sum_{n \leq \mu_{k}<n+1}^{\infty}\left\|u_{k}\right\|_{\infty}^{2}\right\} \leq \\
& \leq \sum_{n=[\mu]}^{[\mu]+m-1}\left(\sum_{1 \leq \mu_{k}<n+1}^{\infty}\left\|u_{k}\right\|_{\infty}^{2}\right)\left[n^{-1} \omega_{1}\left(g, n^{-1}\right)-(n+1)^{-1} \omega_{1}\left(g,(n+1)^{-1}\right)\right]+ \\
& +\left(\sum_{1 \leq \mu_{k}<[\mu]+m-1}^{\infty}\left\|u_{k}\right\|_{\infty}^{2}\right)([\mu]+m)^{-1} \omega_{1}\left(g,([\mu]+m)^{-1}\right)+ \\
& +\left(\sum_{1 \leq \mu_{k} \leq[\mu]}^{\infty}\left\|u_{k}\right\|_{\infty}^{2}\right)[\mu]^{-1} \omega_{1}\left(g,[\mu]^{-1}\right) \leq C \sum_{n=[\mu]}^{[\mu]+m-1}(n+1)\left[n^{-1} \omega_{1}\left(g, n^{-1}\right)-\right. \\
& \left.-(n+1)^{-1} \omega_{1}\left(g,(n+1)^{-1}\right)\right]+ \\
& +C([\mu]+m)([\mu]+m)^{-1} \omega_{1}\left(g,([\mu]+m)^{-1}\right)+ \\
& +C[\mu][\mu]^{-1} \omega_{1}\left(g,[\mu]^{-1}\right) \leq \\
& \leq C\left\{\sum_{n=[\mu]}^{[\mu]+m-1} n^{-1} \omega_{1}\left(g, n^{-1}\right)+\omega_{1}\left(g,[\mu]^{-1}\right)-\omega_{1}\left(g,([\mu]+m)^{-1}\right)\right\}+ \\
& +C \omega_{1}\left(g,([\mu]+m)^{-1}\right)+C \omega_{1}\left(g,[\mu]^{-1}\right) \leq \\
& \leq C\left\{\sum_{n=[\mu]}^{[\mu]+m-1} n^{-1} \omega_{1}\left(g, n^{-1}\right)+\omega_{1}\left(g,[\mu]^{-1}\right)+\omega_{1}\left(g,([\mu]+m)^{-1}\right)\right\}
\end{aligned}
$$

Since the number m is arbitrary, this together with inequality (27), implies the estimate (28).

3. Proof of the results

We the uniform convergence of the series $\sum_{k=1}^{\infty}\left|f_{k}\right|\left|u_{k}(x)\right|$ on the segment $\bar{G}=[0,1]$. To this end, we represent this series as

$$
\begin{gather*}
\sum_{k=1}^{\infty}\left|f_{k} \| u_{k}(x)\right|= \tag{29}\\
=\sum_{0 \leq \mu_{k}<8 \pi}\left|f_{k}\left\|u_{k}(x)\left|+\sum_{\mu_{k} \geq 8 \pi}\right| f_{k}\right\| u_{k}(x)\right|
\end{gather*}
$$

To estimate the first sum on the right-hands side in (28), we apply the estimate (24) in Lemma 3 and inquality $\left|f_{k}\right| \leq\|f\|_{1}\left\|u_{k}\right\|_{\infty}$. As a result we have

$$
\begin{gathered}
\sum_{0 \leq \mu_{k}<8 \pi}\left|f_{k} \| u_{k}(x)\right| \leq \\
\sum_{0 \leq \mu_{k}<8 \pi}\left\|f_{1}\right\|\left\|u_{k}\right\|_{\infty}^{2}=\left\|f_{1}\right\| \sum_{0 \leq \mu_{k} \leq 8 \pi}\left\|u_{k}\right\|_{\infty}^{2}= \\
=C(1+8 \pi)\left\|f_{1}\right\| \leq \text { const }\left\|f_{1}\right\|
\end{gathered}
$$

To estimate the second sum in (29), we use the estimate (9) in Lemma 2:

$$
\begin{gathered}
\sum_{\mu_{k} \geq 8 \pi}^{\prime}\left|f_{k} \| u_{k}(x)\right| \leq \\
\leq \text { const }\left\{C_{1}(f) \sum_{\mu_{k} \geq 8 \pi} \mu_{k}^{\alpha-3}\left\|u_{k}\right\|_{\infty}^{2}+\left(1+\left\|p_{1}\right\|_{1}\right) \times\right. \\
\times \sum_{\mu_{k} \geq 8 \pi} \mu_{k}^{-1} \omega_{1}\left(f^{\prime}, \mu_{k}^{-1}\right)\left\|u_{k}\right\|_{\infty}^{2}+\left\|f^{\prime}\right\|_{1}\left(1+\left\|p_{1}\right\|_{1}\right) \sum_{\mu_{k} \geq 8 \pi} \mu_{k}^{-2}\left\|u_{k}\right\|_{\infty}^{2}+ \\
+\left(\left\|f^{\prime}\right\|_{1}+\|f\|_{\infty}\right) \sum_{r=2}^{3}\left\|p_{r}\right\|_{1}\left(\sum_{\mu_{k} \geq 8 \pi} \mu_{k}^{-r}\left\|u_{k}\right\|_{\infty}^{2}\right)+ \\
\left.+\sum_{\mu_{k} \geq 8 \pi} \mu_{k}^{-1}\left\|u_{k}\right\|_{\infty}^{2}\left|\left(\bar{p}_{1} f, \mu_{k}^{-2} u_{k}^{(2)}\right)\right|\right\}
\end{gathered}
$$

Since $\bar{p} f \in L_{2}(G)$ and $\left\{\mu_{k}^{-2} u_{k}^{(2)}(x)\right\}_{\mu_{k}>0}$ is a Bessel system (see Lemma 4), we apply Bessel inequality (25), Lemma 5 and Lemma 6. As a result we get

$$
\sum_{\mu_{k} \geq 8 \pi}\left|f_{k} \| u_{k}(x)\right| \leq \mathrm{const}\left\{C_{1}(f)(8 \pi)^{\alpha-2}+\left(1+\left\|p_{1}\right\|_{1}\right)\right.
$$

$$
\begin{gathered}
\left\|R_{v}(\cdot, f)\right\|_{C[0,1]}=\left\|f-\sigma_{v}(\cdot, f)\right\|_{C[0,1]}= \\
=\left\|\sum_{k=1}^{\infty} f_{k} u_{k}(\cdot)-\sum_{\mu_{k} \leq v} f_{k} u_{k}(\cdot)\right\|_{C[0,1]}= \\
=\left\|\sum_{\mu_{k}>v} f_{k} u_{k}(\cdot)\right\|_{C[0,1]} \leq \\
\leq \sum_{\mu_{k} \geq v}\left|f_{k}\right|\left\|u_{k}\right\|_{\infty} \leq \operatorname{const} \sum_{\mu_{k} \geq v}\left\{C_{1}(f) \mu_{k}^{\alpha-3}+\left(1+\left\|p_{1}\right\|_{1}\right) \cdot\right. \\
\left.\cdot \mu_{k}^{-1} \omega_{1}\left(f^{\prime}, \mu_{k}^{-1}\right)+\left\|f^{\prime}\right\|_{1}\left(1+\left\|p_{1}\right\|_{1}\right) \mu_{k}^{-2}+\left(\left\|f^{\prime}\right\|_{1}+\|f\|_{\infty}\right) \sum_{r=2}^{3}\left\|p_{r}\right\|_{1} \mu_{k}^{-r}\right\} \|_{u_{k} \|_{\infty}^{2}}+ \\
+c o n s t \sum_{\mu_{k} \geq v} \mu_{k}^{-1}\left\|u_{k}\right\|_{\infty}\left|\left(\bar{p}_{1} f, \mu_{k}^{-2} u_{k}^{(2)}\right)\right| \leq \\
\leq \operatorname{const}\left\{C_{1}(f) v^{\alpha-2}+\left(1+\left\|p_{1}\right\|_{1}\right) \cdot\right. \\
\cdot\left|\sum_{n=[v]}^{\infty} n^{-1} \omega_{1}\left(f^{\prime}, n^{-1}\right)+\omega_{1}\left(f^{\prime}, v^{-1}\right)\right|+ \\
+\left\|f^{\prime}\right\|_{1}\left(1+\left\|p_{1}\right\|_{1}\right) v^{-1}+\left(\left\|f^{\prime}\right\|_{1}+\|f\|_{\infty}\right) \cdot \\
\left.\cdot \sum_{r=2}^{3}\left\|p_{r}\right\|_{1} v^{1-r}+v^{-\frac{1}{2}}\left\|p_{1} f\right\|_{2}\right\}
\end{gathered}
$$

The proof of Theorem 1 is complete.
Proof of the Theorem 2. We prove the uniform convergence $\cdot\left\lfloor\sum_{n=[8 \pi]}^{\infty} n^{-1} \omega_{1}\left(f^{\prime}, n^{-1}\right)+\omega_{1}\left(f^{\prime},(8 \pi)^{-1}\right)\right\rfloor+\left\|f^{\prime}\right\|_{1}\left(1+\left\|p_{1}\right\|_{1}\right)[8 \pi]^{-1}+$ of the series $\sum_{\mu_{k} \geq 8 \pi}\left|f_{k}\left\|u_{k}(x)\right\|\right|$ on the segment $\bar{G}=[0,1]$. To estimate this series, we use the estimate ($9^{`}$) in Lemma 2:

$$
\left.+\left(\left\|f^{\prime}\right\|_{1}+\|f\|_{\infty}\right) \sum_{r=2}^{3}\left\|p_{r}\right\|_{1}[8 \pi]^{1-r}+\left\|p_{1} f\right\|_{2}[8 \pi]^{-1 / 2}\right\}<\infty
$$

Thus, the series (29) convergence uniformly on the segment $\bar{G}=[0,1]$. Therefore, the expansion $\sum_{k=1}^{\infty} f_{k} u_{k}(x)$ converges absolutely and uniformly on this interval. By the completeness of the system $\left\{u_{k}(x)\right\}_{k=1}^{\infty}$ in $L_{2}(G)$ and the absolute continuity of the function $f(x)$, we have the identity

$$
\begin{equation*}
f(x)=\sum_{k=1}^{\infty} f_{k} u_{k}(x) \quad x \in \bar{G} \tag{30}
\end{equation*}
$$

The prove the estimate (4) we use lemma 2, 4, 5 and 6.

$$
\begin{gathered}
\sum_{\mu_{k} \geq 8 \pi}\left|f_{k} \| u_{k}(x)\right| \leq \\
\leq \text { const }\left\{C_{1}(f) \sum_{\mu_{k} \geq 8 \pi} \mu_{k}^{\alpha-3}\left\|u_{k}\right\|_{\infty}^{2}+\left(1+\left\|p_{1}\right\|_{1}\right)\right. \\
\cdot \sum_{\mu_{k} \geq 8 \pi} \mu_{k}^{-1} \omega_{1}\left(\bar{p}_{1} f, \mu_{k}^{-1}\right)\left\|u_{k}\right\|_{\infty}^{2}+ \\
+\left(1+\left\|p_{1}\right\|_{1}\right) \sum_{\mu_{k} \geq 8 \pi} \mu_{k}^{-1} \omega_{1}\left(f^{\prime}, \mu_{k}^{-1}\right)\left\|u_{k}\right\|_{\infty}^{2}+ \\
+\left\|p_{1} f\right\|_{1}\left(1+\left\|p_{1}\right\|_{1}\right) \sum_{\mu_{k} \geq 8 \pi}^{\mu_{k}^{-2}\left\|u_{k}\right\|_{\infty}^{2}+\left\|f^{\prime}\right\|_{1}\left(1+\left\|p_{1}\right\|_{1}\right) \sum_{\mu_{k} \geq 8 \pi} \mu_{k}^{-2}\left\|u_{k}\right\|_{\infty}^{2}+} \\
\left.+\left(\left\|f^{\prime}\right\|_{1}+\|f\|_{\infty}+\left\|p_{1} f\right\|_{1}\right) \sum_{r=2}^{3}\left\|p_{r}\right\|_{1}\left(\sum_{\mu_{k} \geq 8 \pi} \mu_{k}^{-r}\left\|u_{k}\right\|_{\infty}^{2}\right)\right\}
\end{gathered}
$$

Since $\bar{p}_{1} f \in L_{2}(G) \subset L_{1}(G)$, we apply Lemmas 5 and 6 . As a result we have

$$
\begin{gathered}
\sum_{\mu_{k} \geq 8 \pi}\left|f_{k} \| u_{k}(x)\right| \leq \text { const }\left\{C_{1}(f)[8 \pi]^{\alpha-2}+\left(1+\left\|p_{1}\right\|_{1}\right)\right. \\
\cdot \mid \sum_{n=[8 \pi]}^{\infty} n^{-1} \omega_{1}\left(\bar{p}_{1} f, n^{-1}\right)+\omega_{1}\left(\bar{p}_{1} f,[8 \pi]^{-1}\right)+ \\
\left.\quad+\sum_{n=[8 \pi]}^{\infty} n^{-1} \omega_{1}\left(f^{\prime}, n^{-1}\right)+\omega_{1}\left(f^{\prime},[8 \pi]^{-1}\right)\right] \\
+\left\|p_{1} f\right\|_{1}\left(1+\left\|p_{1}\right\|_{1}\right)[8 \pi]^{-1}+ \\
\quad+\left\|f^{\prime}\right\|_{1}\left(1+\left\|p_{1}\right\|_{1}\right)[8 \pi]^{-1}+ \\
\left.+\left(\left\|f^{\prime}\right\|_{1}+\|f\|_{\infty}+\left\|p_{1} f\right\|_{1}\right) \sum_{r=2}^{3}\left\|p_{r}\right\|_{1}[8 \pi]^{1-r}\right\}<\infty
\end{gathered}
$$

Thus, the expansion $\sum_{k=1}^{\infty} f_{k} u_{k}(x)$ converges absolutely and uniformly on \bar{G}. From the completeness of the system $\left\{u_{k}(x)\right\}_{k=1}^{\infty} \quad L_{2}(G)$ the given expansion uniformly converges exactly to the function. Consequently, the identity (30) is true.

Estimate now difference $R_{v}(x, f)$. for that we use equality (30), Lemmas 2, 5 and 6.

$$
\begin{gathered}
\left\|R_{v}(\cdot, f)\right\|_{C[0,1]}=\left\|f-\sigma_{v}(\cdot, f)\right\|_{C[0,1]} \\
=\left\|\sum_{\mu_{k} \geq v} f_{k} u_{k}(\cdot)\right\|_{C[0,1]} \leq \\
\leq \sum_{\mu_{k} \geq v}\left|f_{k}\right|\left\|u_{k}\right\|_{\infty} \leq \\
\leq \text { const }\left\{C_{1}(f) \sum_{\mu_{k} \geq v} \mu_{k}^{\alpha-3}\left\|u_{k}\right\|_{\infty}^{2}+\left(1+\left\|p_{1}\right\|_{1}\right)\right. \\
+\left(1+\left\|p_{1}\right\|_{1}\right) \sum_{\mu_{k} \geq v} \mu_{k}^{-1} \omega_{1}\left(\bar{p}_{1} f, \mu_{k}^{-1}\right)\left\|u_{k}\right\|_{\infty}^{2}+\left\|p_{1} f\right\|_{1}\left(1+\left\|p_{1}\right\|_{1}\right) \sum_{\mu_{k} \geq v} \mu_{k}^{-2}\left\|u_{k}\right\|_{\infty}^{2}+ \\
+\left\|f^{\prime}\right\|_{1}\left(1+\left\|p_{1}\right\|_{1}\right) \sum_{\mu_{k} \geq v} \mu_{k}^{-2}\left\|u_{k}\right\|_{\infty}+ \\
+\left(\left\|f^{\prime}\right\|_{1}+\|f\|_{\infty}+\left\|p_{1} f\right\|_{1}\right) \sum_{r=2}^{3}\left\|p_{r}\right\|_{1}\left(\sum_{\mu_{k} \geq v} \mu_{k}^{-r}\left\|u_{k}\right\|_{\infty}^{2}\right) \leq \\
\leq \text { const }\left\{C_{1}(f) v^{\alpha-2}+\left(1+\left\|p_{1}\right\|_{1}\right)\right.
\end{gathered}
$$

$$
\begin{array}{r}
\qquad \sum_{k=[v]}^{\infty} k^{-1} \omega_{1}\left(\bar{p}_{1} f, k^{-1}\right)+\sum_{k=[v]}^{\infty} k^{-1} \omega_{1}\left(f^{\prime}, k^{-1}\right)+\omega_{1}\left(\bar{p}_{1} f, v^{-1}\right)+ \\
\left.\left.+\omega_{1}\left(f^{\prime}, v^{-1}\right)+v^{-1}\left(\left\|p_{1} f\right\|_{1}+\left\|f^{\prime}\right\|_{1}\right)\right]+\left(\left\|p_{1} f\right\|_{1}+\|f\|_{\infty}+\left\|f^{\prime}\right\|_{1}\right) \sum_{r=2}^{3} v^{2-r}\left\|p_{r}\right\|_{1}\right\}
\end{array}
$$

The estimation (6) is proved. The proof of Theorem 2 is complete.

Corollary 2 follows from the definition of norm, on the space $H_{1}^{\beta}(G)$ and Theorem 1 with regard to the inequality $\|f\|_{\infty} \leq\left\|f^{\prime}\right\|_{1}$, which holds for any function $f(x) \in W_{1}^{1}(G)$, satisfying the relations $f(0)=f(1)=0$. Indeed, if $f(0)=f(1)=0$ and $f^{\prime}(x) \in H_{1}^{\beta}(G)$, then we have $C_{1}(f)=0$, and the following chain of inequalities is satisfied $(\nu \geq 8 \pi)$.

$$
\begin{gathered}
C_{1}(f) v^{\alpha-2}+v^{-\frac{1}{2}}\left\|p_{1} f\right\|_{2}+\left(1+\left\|p_{1}\right\|_{1}\right) \times \\
\times\left[\sum_{k=[v]}^{\infty} k^{-1} \omega_{1}\left(f, k^{-1}\right)+\omega_{1}\left(f^{\prime}, v^{-1}\right)\right]+ \\
+\left(1+\left\|p_{1}\right\|_{1}\right)\left\|f^{\prime}\right\|_{1} v^{-1}+v^{-1}\left(\|f\|_{\infty}+\left\|f^{\prime}\right\|_{1}\right) \times \\
\times \sum_{r=2}^{3} v^{2-r}\left\|p_{r}\right\|_{1} \leq v^{-\frac{1}{2}}\left\|p_{1} f\right\|_{2}+ \\
\left.\left.+\left(1+\left\|p_{1}\right\|_{1}\right) \sup _{\delta>0}\left(\delta^{-\beta} \omega_{1}\left(f^{\prime}, \delta\right)\right) \mid \sum_{k=|v|}^{\infty} k^{-(1+\beta)}+v^{-\beta}\right]+v^{-1}\left\|f^{\prime}\right\|_{1}\right\}+ \\
+2 v^{-1}\left\|f^{\prime}\right\|_{1} \sum_{r=2}^{3} v^{2-r}\left\|p_{r}\right\|_{1} \leq v^{-\frac{1}{2}}\left\|p_{1} f\right\|_{2}+ \\
+ \text { const }\left\{\left\|f^{\prime}\right\|_{1}+\sup _{\delta>0}\left(\delta^{-\beta} \omega_{1}\left(f^{\prime}, \delta\right)\right)\right\}[v]^{-\beta} \leq \\
+v^{-\frac{1}{2}}\left\|p_{1} f\right\|_{2}+\text { const } v^{-\beta}\left\|f^{\prime}\right\|_{1}^{\beta} .
\end{gathered}
$$

Acknowledgment

This work was supported by the Science Development Foundation under the President of the Republic of Azerbaijan - Grant № EİF-ETL-2020-2(36)-16/08/1-M-08

References

[1] Il'in V.A. On the unconditional basicity of systems of eigen and adjoint functions of second order differential operator on a closed interval Doklady AN SSSR 1983 Vol. 273 No. 5 pp.1048-1053.
[2] Kerimov N.B. On the unconditional basicity of systems of eigen and adjoint functions of the fourth order differential operator Doklady AN SSSR 1986, Vol. 286 No. 4 pp.803808.
[3] Budaev V.D. The Bessel property and Riesz basicity of the system of root functions of differential operators 1,11 Differential Equations 1991, Vol. 27 No. 12 2033-2044 Vol. 28 No. 1 pp.23- 33.
[4] Lomov I.S. The Bessel inequality, Riesz theorem and unconditional basicity for root vectors of ordinary differential operators Vestnik Moskow 1992, No. 5 pp. 4252.
[5] Kurbanov V.M. On Hausedorff-Young inequality of root vector-functions of n-th order differential operator Differential Equations 1997, Vol. 33 No. 3 pp.356- 367.
[6] Kurbanov V.M. On distribution of eigen values and Bessel criterion of root functions of differential operator 1,11 Differential Equations, 2005, Vol. 41 No. 4 464-478 Vol. 41 No. 5 pp. 623-631
[7] Kurbanov V.M., Garaeva A.T. Absolute and uniform convergence of expansions in the root function of the Schrodinger operator with a matrix potential. Doklady Mathematics. 2013, vol. 87 № 3, p. 304-306.
[8] Kurbanov V.M. A theorem on equivalent bases for a differential operator Doklady RAN, 2006, Vol. 406 No. 7 pp.17-20
[9] Abbasova Yu. G., Kurbanov V.M. Convergence of the spectral decomposition of a function from the class $W_{p, m}^{1}(G), p>1$, in the vector eigenfunctions of a differential operator of the third order. Ukrainian, Mathematical Jornal, 2017, vol. 69, № 6, p. 839-856.
[10] Kritskov L.V. Bessel property of the system of root functions of a second-order singular operator on an interval Differential Equations 2018, Vol. 54 No. 8 pp. 1032-1048.
[11] [10] Kerimov N.R. Some properties of eigen and associate functions of ordinary differential operators Doklady AN SSSR, 1986, Vol. 291 No. 5 pp.1054-1055.
[12] Kurbanov V.M. Equiconvergence of biorthogonal expansions in root functions of differential operators: I, Differ. Equ., 35 (1999), № 12, p. 1619-1633.
[13] Kurbanov V.M. II, Differ. Equ., 36 (2000), № 3, p. 358376.
[14] Kurbanov V.M. On an analog of the Riesz theorem and the basis property of the system of root functions of a differential operator in $L_{p}:$ I, Differ. Equ., 49 (1), 2013, 7-19.

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0) (Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

