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Abstract— We consider a third-order ordinary differential operator with summable coefficients. The 

absolute and uniform convergence of the orthogonal expansion of a function from the class   in the 

eigenfunctionsof this operator is studied and the rate of uniform convergence of these expansions on is 

estimated.  
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1. Introduction 

T is well known that any function in the domain of a self-

adjoint ordinary differential operator can be expanded in a 

uniformly convergent series in the eigenfunctions of this 

operator [1. p. 90]. For functions that do not belong to the 

domain of self-adjoing Strum-Liouville operator, the problems 

of absolute and uniform convergence have been studied in [2-

5] in [2,3] the Strum-Liouville operator 

( ) , (0,1)Lu u q x u x G     ,  

with two point self-adjoint boundary conditions (the 

coefficients in the boundary conditions are real) was 

considered, and under the condition 1( ) ( )q x L G , the 

absolute and uniform convergence on the interval G  of the 

expansions of functions 
1

1( ) ( ) 1 2,f x W G p    

(0) (1) 0f f  , in orthonormal eigenfunctions of this 

operator was proved. 

The operator L  with a real potential 1( ) ( )q x L G  

independent of the specific boundary conditions (in particular, 

self-adjoint boundary conditions with complex coefficients are 

also allowed) was consider in [4, 5]. The results obtained in 

[2-5] were generalized in [6] and [7] (for the one-dimensional 

Şchrödinger operator). 

On the interval (0,1)G  , consider the differential operator 

(3) (2) (1)

1 2 3( ) ( ) ( ) ,Lu u p x u p x u p x u          (1) 

with  coefficients 

1 2 1( ) ( ), ( ) ( ), 2,3lp x L G p x L G l   . 

In the present paper, we study the problems of absolute and 

uniform convergence of expansions of functions of the class 
1

1 ( )W G  in the eigenfunctions of a third-order differential 

operator (1) (see [8], [9]). Sufficient conditions for the 

absolute and uniform convergence of these expansions are 

obtained, and the rate of uniform convergence is estimated. 

This study are based on Ilins spectral method [10]. 

By ( )D G  we denote the class of functions absolutely 

continuous together with their derivatives up to the second 

order, inclusively, on the segment [0,1]G  . 

An eigenfunctions of  the operator L  corresponding to the 

eigenvalue   is understood as any function not identically 

equal to zero ( ) ( )u x D G  and satisfying (almost 

everywhere in G ) the equation (see [10]) 

0Lu u  . 

We say that a function ( )f x  belongs to 

1( ), 1pW G p   , if ( )f x  is absolutely continuous on 

G  and ( )f x  belongs to ( )pL G . The norm of the function 

1( ) ( )pf x W G  is given by the equality  

1 ( )pW G p p
f f f   , 

where 
( )pp L G

   . 

Assume that 1{ ( )}k ku x 

  is the complete system of 

eigenfunctions of the operator L  ortonormal in 2 ( )L G . By 

1{ }k k 

  we denote the corresponding system of eigenvalues. 

Moreover, we assume that Re 0k  . Parallel with the 

spectral parameter k , we consider a parameter  : 

1/3

1/3

( ) for 0,

( ) for 0.

k m k

k

k m k

i I

i I

 


 

  
 


 

We now introduce a partial sum of the orthogonal expansion 

of the function 
1

1( ) ( )f x W G  in the system 1{ ( )}k ku x 

 : 

I 
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( , ) ( ), 0
k

k kx f f u x

 

 


  , 

where  

( , ) ( ) ( )k k k

G

f f u f x u x dx   , 

and the difference 

( , ) ( ) ( , )R x f f x x f   . 

In the present paper, we prove the following statements: 

Theorem 1. Suppose that 
1

1 2( ) ( ), ( ) ( ),pf x W G p x L G   

1( ) ( ), 2,3lp x L G l   and following conditions are satisfied: 

(2)

1| ( ) ( ) | ( ) ,

0 2, 1;

k k

k

f x u x C f u

 




  
               (2) 

1 1

1

2

( , ) .
k

k f k


 



                                   (3) 

Then the spectral expansion of the function ( )f x  in the 

system 1{ ( )}k ku x 

  absolutely and uniformly converges on 

the segment [0,1]G   and the following estimate is true: 

1

2 2
1 1[0,1] 2

( , ) ( )
C

R C C f p f

  





    


 

1 1 1

1 1 11
[ ]

1

1 1 1

(1 ) ( , ) ( , )

(1 )

k

p k f k f

p f



  




  





 
    

 

  


 

1 2

1 1
2

( ) ,

8 ,

r

r

r

f f p 

 


 





  






               (4) 

where 1( , )g   is the integral modulus of continuity of the 

function 1( ) ( )g x L G , and the constant C  is independent 

of  ( )f x . 

Corollary 1. If the function 
1

1( ) ( )f x W G  in the Theorem 1 

satisfies the conditions (0) (1) 0f f  , then condition (2) 

is necessarily satisfied (with the constant 1( ) 0C f  ), its 

spectral expansion in the system 1{ ( )}k ku x 

  converges 

absolutely and uniformly on the segment [0,1]G  , and the 

following estimate holds: 

[0,1]

1

1 1 12
1 1 12

[ ]

( , )

const ( , ) ( , )

C

k

R

p f f k f k





   


  



  

  
    

  


 

1 2

1 11 1 1 1
2

(1 ) 1 2 ,

8 .

r

r

r

p p p f 

 


 



 
     

  




 

Corollary 2. If the function in the Theorem 1 satisfies the 

relations  

(0) (1) 0f f   

and  

1( ) ( ), 0 1f x H G     , ( 1 ( )H G
 

is the Nikolski class), then conditions (2) and (3) are 

necessarily satisfied, its spectral expansion converges 

absolutely and uniformly on the segment [0,1]G  , and the 

following estimate holds: 

[0,1]

1

2
1 2 1

( , )

const , 8

C
R

p f f v



  




  

 
   

 

, 

where 

11 1
( , )f f f

       . 

Theorem 2. Suppose that  

1

1

1 2

1

( ) ( ),

( ) ( ),

( ) ( ), 2,3;l

f x W G

p x L G

p x L G l





 

 

conditions (2), (3) and  

1 1

1 1

2

( , )
k

k p f k


 



                          (5) 

are satisfied. Then the spectral expansion of the function 

( )f x  in the system 1{ ( )}k ku x 

   absolutely and uniformly 

converges on [0,1]G   and the following estimate is true: 

 2

1[0,1]
( , ) ( )

C
R C C f 

       

1 1 1 1 1 1

1 1 1 1 1 1

[ ] [ ]

( , ) ( , ) ( , ) ( , )
k k

k p f k k f k p f f
 

     
 

     

 


     


   

1 1 2

1 11 1 1 1 1
2

( ) ( ) ,

8 .

r

r

r

p f f p f f f p  

 


  





      





   (6) 

Corollary 3. If the function 
1

1( ) ( )f x W G  in the Theorem 2 
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satisfies the relations (0) (1) 0f f   and 

1

1 1

( ) ( ), 0 1,

( ), 0 1

f x H G

p f H G









   

  
, 

then condition (2) and (3) are necessarily satisfied, its spectral 

expansion converges absolutely and uniformly on the segment 

[0,1]G  , and the following estimate holds: 

 
[0,1]

11 1

( , )

const , 8

C
R

f p f v



     

  

  
 

where constant is independent of the function ( )f x . 

 

2. Some auxiliary lemmas  

To prove the results, we must estimate the Fourier 

coefficients kf  of the function 
1

1( ) ( )f x W G . To this end, 

we use representation of the eigenfunction ( )ku x . Let as 

introduce  

2
1 2

2
0

1
(0) ( ) (0)

3

r r r

j jk k j

rk

x x i u 


   



   ; 

3
1 (3 )

2
1

1
( , ) ( ) ( ),

3

1

r l

k l j

ek

u p u

i

    


 






 


, 

where  

1

2

3

1,

exp( / 3),

exp( / 3).

i

i



 

 

 

 



 

Lemma1. (see [8,9]). If 0k  , then the following 

representation is valid for the eigenfunction 
)(xuk : 

( )

2

3 3

1

( )

( ) (0)exp( ) ( ) exp( (1 ))

l l

k k

l l

j j j k j k k

j

u t

i x i t i B i t



     



 





      

2
1

1 0

( ) ( , )exp( ( ))

t

l l

j k j k

j

i M u i t d     



      

1

1

3( ) ( , )exp( ( ))l l

j k k

t

i M u i t d                  (7) 

for Im 0k   and  

( )

3

2 2 2

1, 2

( )

( ) (0)exp( ) ( ) exp( (1 ))

l l

k k

l l

j j j k k k

j j

u t

i x i t i B i t



     



 

 



    

 

3
1

1, 2 0

( ) ( , )exp( ( ))

t

l l

j k j k

j j

i M u i t d     

 

      

1

1

2 2( ) ( , )exp( ( ))l l

k k

t

i M u i t d                 (8) 

for Im 0k   and. Moreover, 

3 3 3

1

3 3

0

(0)exp( )

( , )exp( ( 1))

k

k k

B x i

M u i d

 

     

   

  
, 

2 2 2

1

2 2

0

(0)exp( )

( , )exp( ( 1))

k

k k

B x i

M u i d

 

     

  

 
, 

the coefficients in relations (7) and (8) satisfy the 

inequalities: 

1 2
| (0) | ; | (0) |k j kx C u C x C u 


    

for  

2 32,3; | | ; | |k k k kj B C u B C u 

 
    where 

C  is a constant. 

Lemma 2. Suppose that the function 
1

1( ) ( )f x W G  and 

the system 1{ ( )}k ku x 

  satisfy condition (2). Then the Fourier 

coefficients kf  satisfy the inequalities ( 8 )k  : 

3

1

1 1 1

1 11 1

| | { ( )

(1 )[ ( , ) ]

k k

k k k

f C C f

p f f



   



  

 

    
 

 
3

2 2

1
2

1 2 (2)

1| ( , ) |

r

k k r k

r

k k k

f f p u

C p f u

 

 

 

 


 


  






;       (9) 

3 1 1

1 1 1 11

1 1

1 1 1

| | { ( ) (1 )[ ( , )

( , )

k k k k

k k

f C C f p p f

f p f

   

  

  

 

   

  
 

 
3

1 2 2

11 1 1 1
2

] r

k k k r k

r

f f f p f p u    

 



     


 ; (9`) 

where C  is a a constant independent of  ( )f x . 

Proof. Since the eigenfunction ( )ku x  is a solution of the 

equation k k kLu u  , we represent the Fourier coefficient 
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kf  of 0k   to the form 

1

3
1 (3) 1 (3 )

1

( , ) ( , )

( , ) ( , )

k k k k

r

k k k r k

r

f f u f Lu

f u f p u



 



  



   

   
 

3
1 (3) 1 (2) 1 (3 )

1

2

( , ) ( , ) ( , )r

k k k k k r

r

f u f p u f p u     



     . (10) 

By virtue of the estimate (see [11]) 

 

1

1 ,

1, 0,2

s
p

s

k k p
u const u

p s






 

 

 ,                 (11) 

we obtain the following estimate of the third term of the 

right-hand side in (10): 

3 3
1 (3 ) 3 (3 )

1
2 2

( , )r r

k r k r k

r r

f p u f p u    

 
 

  

 

3
3 3

1
2

3
2 2

1
2

.

r

k r k k

r

r

k k k r

r

const f p u

const f u p

 

 

 

 


 

 


 
  

 






       (12) 

Integrating the first term on the right-hand side of equality 

(10) by parts and using condition (2), we get 

1
1 3 1 (2)

0

1

1 (2)

0

| | | ( , ) | | | ( ) ( )

| | ( ) ( )

k k k k

k k

f u f t u t

f t u t

 



 



 

 
  

 3 3 (2)

1( ) ,k k k kC f u f u  


  .             (13) 

We now estimate the expression 
3 2|( , )|k kf u   on the 

right-hand side of inequality (13). For that we use formulas (7) 

and (8) subject to the sign of Im k . For definiteness consider 

the case Im 0k   and apply relation (8) with 2l . 

   3 (2) 1 2 (2)

3
1 2

1, 2

, ,

( (0)( ) exp( ))

k k k k

k j j j k

j j

f u f u

f x i i t

  

   

  

 

 

  

 
 

1 2

2 2 2( ) ( ,exp( (1 ))k k kB i f i t          

3
1

1, 2 0

( , ( , )exp( ( )) )

t

k k j k

j j

f M u i t d     

 

    

1

1

2( , ( , )exp( ( )) )k k k

t

f M u i t d         .(14) 

Estimate each term in this equality.  Obviously  

2

2

( , (0)( ) exp( ) )

(0)( ) ( ,exp( )), 1,3

j j j k

j j j k

f x i i t

x i f i t j

  

  





 

 
. 

Taking into account the inequality  

| (0) | , 1,3j kx const u j


  ,     (15) 

That follows from estimation (11), and using the estimation 

(see [12], [13]) 

 

1

0

1 1

1 1

( ) exp( )

( , ) , 1,3

j k

k k

f t i t dt

const f f j

 

   

 

   


 

we have 

 

2

1 1

1 1

( , (0)( ) exp( ) )

( , ) , 1,3

j j j k

k k k

f x i i t

const f f u j

  

  



 



 

   
.(16) 

Apply the estimation 2| |k kconst u 


  in the second 

term of equality (14). As a result we have  

 

2

2 2 2

1 1

1 1

( ) ( ,exp( (1 )) )

( , )

k k

k k k

B iw f i t

const f f u

 

  



 



  

  
.     (17) 

The third and fourth terms in equality (14) are estimated by 

the same scheme. Therefore we estimate the third term. For 

that we use the representation 

3
(2)

12 2
2

1 1
( , ) ( ) ( ) ( )

3 3
k k r

rk k

M u p u p   
  

    . 

(3 ) ( )r

ku 
 and the inequality 

3
(3 )

2
2

3
1 2

2

1
( )

3

( )

r

r k

rk

r

k r k k

r

p u

const p u




  





 






 
  

 




. 

Then we have 

3
1

1, 2 0

( , ( , )exp( ( )) )

t

k k j k

j j

f M u i t d     

 

      

3
(2)

13
1, 2 0

1
( , ( ) ( )exp( ( )) )

3

t

k j k

j jk

f p u i t d     
  

      

3
2

2 1 1
2

r

r k k

rk

const
p f u








 
  

 
 .           (18) 
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After changing the integration order in the first term, we get 

that it doesn`t exceed the quantity 
1 13

1

1, 2 0

( ) ( ) exp( ( )) ,

1,3

j k k

j jk

const
p f t i t dt d u

j



    
 

 

  



       (19) 

Taking into account the following chain of inequalities (see 

[5], [6]) 

 

1

1 1

1 1

( ) exp( ( ))

( , )

j k

k k

f t i t dt

const g g



 

  

   

   

  


 

 1 1 1

1 1 1
( , )k k kconst f f f            

 1 1

1 1
( , ) , 1,3k kconst f f j       , 

where 

( ) for 0 1
( ) [0,1],

0 for 1 1,

f z z
g z

z


 




    
 

  
 

we prove that expression (19) is bounded from above by the 

quantity  

 1 1

1 11 1
( , )k k k

k

const
p f f u  



 


  . 

Consequently, the left side of (18) doesn`t exceed the 

quantity 

 1 1

1 11 1

3
2

2 1
2

( , )

.

k k k

k

r

r k k

rk

const
p f f u

const
p f u

  





 








  

 
 

Hence and from estimations (16), (17) and relation (14) we 

get 



3 (2)

1 1

1 11 1

| ( , ) |

(1 )[ ( , ) ]

k k

k k

k

f u

const
p f f



  




 

 

    
 

3
1 2

1 1
2

r

k r k k

r

f p u  





 


           (20) 

Estimate now the term 
1 2

1( , )k kf p u 
 in equality (10). 

Obviously  

2 2

1 13

1 1
( , ) ( , )k k

k k

f p u p f u
 

 .      (21) 

By estimations (12), (13), (20) and equality (21) from 

equality (10) we get inequality (9).  

Since the function 1( ) ( )p x f x  belongs to the class 

1( )L G , we can apply estimation (20) with substitution of 

1p f  for f  . As a result, we have  



2 2

1 13

1 1

1 1 1 11 1

1 1
( , ) ( , )

(1 )[ ( , ) ]

k k

k k

k k

k

f p u p f u

const
p p f p f

 

  


 

 

   

 

3
1 2

1 1 1
2

r

k r k k

r

p f p u  





 


              (22) 

Consequently, by estimations (12), (13), (20) and (22) from 

equality (10) we have 

 3 1 1 1

1 1 1 1 11
( ) (1 )[ ( , ) ( , )k k k k kf const C f p f p f              

 
3

1 1 2 2

1 11 1 1 1 1
2

] r

k k k k r k

r

f p f f f p f p u      

 



      




The case Im 0k   is considered in the same way. The lemma 

2 is proved. 

Lemma 3. (see [11]) Assume that 

1 2 1( ) ( ), ( ) ( ), 2,3lp x L G p x L G l   . Then for the 

orthonormal system of eigenfunctions 1{ ( )}k ku x 

  and the 

sequence 1{ }k k 

 , the following estimates are true: 

1

1 for any 0
k

C
  


  

                    (23) 

2
(1 ) for any 0

k

ku C
  

 


 

   .         (24) 

Lemma 4. (see [14]). If the conditions of Lemma 3 a 

satisfies, then 
2 (2)

1{ ( )} , 0k k k ku x  

   

is a Bessel system, i.e., for any function 2( ) ( )f x L G , 

the following inequality a true: 

1/2

2 (2) 2

2
0

| ( , )|
k

r

k kf u const f


 



 
 

 
 .    (25) 

Lemma 5. Suppose that the conditions of Lemma 3 are 

satisfied. Then the following estimate hold for the system 

1{ ( )}k ku x 

  for any 2   

2(1 ) ( ), 0
k

k ku C

 

   




  ,        (26) 

where ( )C   is positive constant. 

Proof. Take a positive integer 
0n . By the estimates (23) and 

(24), using the Abel transformation, we obtain the chain of 

inequalities 
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0 0

2 2(1 ) (1 )

[ ] [ ] [ ]k k

k k k k

n n

u u 

     

    

 
     

    

 

0

0

[ ]
2 2(1 )

[ ] 1

[ ] 1
2 (1 ) (1 )

[ ] 1

( 1)

k

k

n

k k

n n n

n

k

n n n

n u u

u n n




 


 

 


 

 
   

 
   


   

 
  

 

 
    

 

 

 

 
0

2 (1 )

0

1 [ ] 1

2 (1 )

1 [ ]

[ ]

[ ]

k

k

k

n

k

u n

u



 



 





 


   

 


 

 
   
 

 
  
 




 

0[ ] 1

1
[ ]

(1 ) (1 )
( 1)

( ( 1))

n

n

n
const n

n n

 




 




 
  


  

(1 )

0 0

(1 )

( [ ]) ( [ ] 1)

[ ] (1 [ ])

const n n

const





 

 

 

 

    

  
 

(1 )

[ ]

(1 ) ( ) [ ] ( )
n

const n C  



   


   



 
    

 
 , 

whence, since the number 
0n  is arbitrary, we obtain the 

estimate (26). 

Lemma 6. Assume that 

1 2 1( ) ( ), ( ) ( ), 2,3lp x L G p x L G l   ; 

and a 1( ) ( )g x L G  function satisfies condition 

1 1

1

2

( , )
k

k g k


 



   .                      (27) 

Then the estimate  

21 1

1

1 1 1

1 1

[ ]

( , )

( , ) ( , )

k

k k k

k

u g

C g k g k

 



  

  

 





  





 
  

 




          (28) 

holds, where 8   and C  is a positive constant 

independent of   and the function ( )f x  

Proof. Take a positive integer m . By the estimate, (24) 

using the Abel transformation, we obtain the chain of 

inequalities 

21 1

1

[ ]

[ ]
21 1

1

[ ] 1

( , )

( , )

k

k

k k k

m

m

k

n n n

u g

n g n u

  



 

  



 


  

 
 


   



  
  

  



 
 

[ ] 1
2 1 1 1 1

1 1

[ ] 1 1

[ ( , ) ( 1) ( , ( 1) )]
k

m

k

n n

u n g n n g n


 

 
  

   


   

 
     

 
 

 

2 1 1

1

1 [ ] 1

([ ] ) ( , ([ ] ) )
k

k

m

u m g m
 

  


 


   

 
    
 



[ ] 1
2 1 1 1 1

1 1

1 [ ] [ ]

[ ] ( ,[ ] ) ( 1)[ ( , )
k

m

k

n

u g C n n g n


  

   
 

   


  

 
    
 
 

 

1 1

1

1 1

1

( 1) ( , ( 1) )]

([ ] ) ([ ] ) ( , ([ ] ) )

n g n

C m m g m



   

 

 

   

    
 

1 1

1

[ ] 1
1 1 1 1

1 1 1

[ ]

[ ] [ ] ( ,[ ] )

( , ) ( ,[ ] ) ( , ([ ] ) )
m

n

C g

C n g n g g m




   

    

 

 
   



 

 
     

 


1 1

1 1( ,([ ] ) ) ( ,[ ] )C g m C g                     

[ ] 1
1 1 1 1

1 1 1

[ ]

( , ) ( ,[ ] ) ( , ([ ] ) )
m

n

C n g n g g m




    
 

   



 
    

 
  

Since the number m  is arbitrary, this together with 

inequality (27), implies the estimate (28). 

 

3. Proof of the results 

We the uniform convergence of the series 

1

| | | ( )|k k

k

f u x




  on the segment [0,1]G  . To this end, we 

represent this series as  

1

0 8 8

| | | ( )|

| || ( )| | || ( )|
k k

k k

k

k k k k

f u x

f u x f u x
   





  



 



 
.           (29) 

To estimate the first sum on the right-hands side in (28), we 

apply the estimate (24) in Lemma 3 and inquality 

1
| |k kf f u


 . As a result we have 
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1 1(1 8 )C f const f   . 

To estimate the second sum in (29), we use the estimate (9) 

in Lemma 2: 

8
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1 1 1
8

| || ( )|
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k

k
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3
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1 1
2 8
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1

8
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k
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r

k k k k

f f p u
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Since 2 ( )p f L G  and 
2 (2)

0{ ( )}
kk ku x 

  is a Bessel 

system (see Lemma 4), we apply Bessel inequality (25), 

Lemma 5 and Lemma 6. As a result we get  

 2

1 1 1
8

| || ( )| ( )(8 ) (1 )
k

k kf u x const C f p

 

 



   

 

1 1 1 1

1 1 11 1
[8 ]

( , ) ( , (8 ) ) (1 )[8 ]
n

n f n f f p


   


   



 
       

 


 

3
1 1/2

11 1 2
2

( ) [8 ] [8 ]r

r

r

f f p p f  





    




. 

Thus, the series (29) convergence uniformly on the segment 

[0,1]G  . Therefore, the expansion 
1

( )k k

k

f u x




  converges 

absolutely and uniformly on this interval. By the completeness 

of the system 1{ ( )}k ku x 

  in 2 ( )L G  and the absolute 

continuity of the function ( )f x , we have the identity 

1

( ) ( )k k

k

f x f u x x G




                 (30) 

The prove the estimate (4) we use lemma 2, 4, 5 and 6. 
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1
[0,1]

, ,

( ) ( )
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n
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13
1 2

11 2
2

r

r

r

p p f 







  


 . 

The proof of Theorem 1 is complete. 

Proof of the Theorem 2. We prove the uniform convergence 

of the series 
8

| ( ) |
k

k kf u x
 

  on the segment [0,1]G  . 

To estimate this series, we use the estimate (9`) in Lemma 2: 

8
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k

k
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. 

Since 1 2 1( ) ( )p f L G L G  , we apply Lemmas 5 and 6. 

As a result we have  
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 . 

Thus, the expansion 
1

( )k k

k

f u x




  converges absolutely and 

uniformly on G . From the completeness of the system 

1{ ( )}k ku x 

   2 ( )L G  the given expansion uniformly 

converges exactly to the function. Consequently, the identity 

(30) is true. 

Estimate now difference ( , )R x f . for that we use equality 

(30), Lemmas 2, 5 and 6. 
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. 

The estimation (6) is proved. The proof of Theorem 2 is 

complete. 

Corollary 2 follows from the definition of norm, on the 

space 1 ( )H G
 and Theorem 1 with regard to the inequality 

1
f f


 , which holds for any function 

1

1( ) ( )f x W G , satisfying the relations (0) (1) 0f f  . 

Indeed, if (0) (1) 0f f   and 1( ) ( )f x H G  , then we 

have 1( ) 0C f  , and the following chain of inequalities is 

satisfied ( 8 )  . 
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