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Abstract: Here we consider several approaches for constructing approximations of a function by the polynomial
and the trigonometric splines of the fifth order. We compare the approximations to the left, the right and the mid-
dle minimal polynomial splines, the approximations to the left, the right and the middle minimal trigonometrical
splines, the approximations to the left, the middle polynomial integro-differential splines, and the approximation
to the left, the right and the middle trigonometrical integro-differential splines. The quadrature formulas are repre-
sented. The results of some calculations are done.
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1 Introduction

Nowadays, there are many different splines for solv-
ing different problems [1–10]. B-splines, conic
splines, cubic polynomial and nonpolynomial splines,
and box spline functions can be used for interpolation
or approximation of scattered data, simulation of the
heart waveform, plotting surfaces and etc.

Minimal splines are intended for the approxima-
tion and interpolation functions. If we know the val-
ues of the functions in grid nodes we can construct the
approximation on every net interval separately. In the
next sections we compare the results of the approxi-
mations to the minimal splines (see [11]), to the poly-
nomial integro-differential splines, and to the non-
polynomial integro-differential splines (see [12]) of
the fifth order. Polynomial integro-differential splines
were first used by Kireev V.I. [13].

In general, construction of solutions of delay dif-
ferential equations is much more complicated than the
construction of solutions of ordinary differential equa-
tions [14–21]. We have the Cauchy problem for a nu-
merical solution on each interval. The solution on the
interval requires the solution from the previous inter-
val. Some necessary values may be missing among
the calculated values, but they may be obtained by
interpolating [20]. Interpolation should use the posi-
tions of the discontinuities of the derivatives. The ap-
plication splines of the fifth order for the delay prob-
lem is presented in the last section. We need to use

the values of the function only in the given interval so
we use the approximations with the left and the right
basic splines.

2 Splines of the fifth order

We consider the grid of equidistant nodes with the
step h

a = x0 < x1 < . . . < xn = b.

Let the function u(x) be such that u ∈ C5([a, b]). We
have to use the interpolation nodes only on the inter-
val [a, b]. Therefore we can use polynomial boundary-
minimal splines (see [11]). Right boundary-minimal
splines are used on the left side on [a, b] and left
boundary-minimal splines are used on the right side
on the interval.

We denote by ũ(x) an approximation by the poly-
nomial minimal splines:

ũ(x) =
∑
k

u(xk)ωk(x), x ∈ [xk, xk+1],

an approximation by the trigonometric minimal
splines:

ũ(x) =
∑
k

u(xk)wk(x), x ∈ [xk, xk+1],

an approximation by the polynomial integro-
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differential splines:

ũ(x) =
∑
k

xk+i1∫
xk−i2

u(t) dt ω<−i2,i1>
k (x), x ∈ (xk, xk+1),

an approximation by the trigonometric integro-
differential splines:

ũ(x) =
∑
k

xk+i1∫
xk−i2

u(t) dt w<−i2,i1>
k (x), x ∈ (xk, xk+1),

where i1, i2 are integer numbers, ωk(x), wk(x),
ω<−i2, +i1>
k (x), w<−i2, i1>

k (x) we determine from
the system:

ũ(x) = u(x), u(x) = φi(x), i = 1, 2, 3, 4, 5. (1)

Here φi(x), i = 1, 2, 3, 4, 5, is Chebyshev system on
[a, b], φi ∈ C5([x0, xn]).

In polynomial case we take φi(x) = xi−1, i =
1, 2, 3, 4, 5; in trigonometric case we take φ1(x) = 1,
φ2(x) = sin(x), φ3(x) = cos(x), φ4(x) = sin(2x),
φ5(x) = cos(2x).

3 Approximation by the middle poly-
nomial integro-differential splines

Let us take an approximation for u(x), x ∈
(xk, xk+1), in the form:

ũ(x) =

xk−1∫
xk−2

u(t)dt ω<−2,−1>
k (x)+

+

xk∫
xk−1

u(t)dt ω<−1,0>
k (x) +

xk+1∫
xk

u(t)dt ω<0,1>
k (x)+

+

xk+2∫
xk+1

u(t)dt ω<1,2>
k (x) +

xk+3∫
xk+2

u(t)dt ω<2,3>
k (x),

(2)
where ω<s,s+1>

k (x), s = −2, −1, 0, 1, 2, we find
from the system (1).

Let us take φi(x) = xi−1, i = 1, 2, 3, 4, 5. If we
put x = xk + th, t ∈ (0, 1), then we obtain:

ω<−2,−1>
k (xk + th) =

5t4 − 6 + 15t2 + 10t− 20t3

120h
,

(3)

ω<−1,0>
k (xk+th) =

10t4 − 27− 15t2 + 75t− 30t3

60h
,

(4)

ω<0,1>
k (xk + th) =

30t3 − 47 + 60t2 − 15t4 − 75t

60h
,

(5)

ω<1,2>
k (xk + th) =

13− 45t2 + 10t4 + 5t− 10t3

60h
,

(6)

ω<2,3>
k (xk + th) =

5t4 + 4− 15t2

120h
. (7)

Let us take Ũ(x), x ∈ (a, b), such that Ũ(x) =
ũ(x), x ∈ (xj , xj+1), j = 2, 3, . . . , n− 3.

We put ∥f∥(xi,xi+1) = sup
x∈(xi,xi+1)

|f(x)|,

∥f∥ = ∥f∥X(a,b) = max
i

sup
x∈(xi,xi+1)

|f(x)|.

Theorem 1. Let function u(x) be such that u ∈
C5([a, b]). For approximation u(x), x ∈ (xk, xk+1)
by (2), (3)–(7) we have:

|ũ(x)− u(x)| ≤ K1h
5∥u(5)∥(xk−2,xk+3), (8)

R1 = ∥Ũ − u∥X(x2,xn−2) ≤ K1h
5∥u(5)∥X(x0,xn),

(9)
K1 = 0.028.

Proof. Inequality (8) follows from the relations
(3)–(7) and Taylor formula with the remainder term in
Lagrange form. Here the next inequalities were used:
|ω<−2,−1>

k (x)| ≤ 1/(20h), |ω<0,1>
k (x)| ≤ 1067

960h ,

|ω<−1,0>
k (x)| ≤ 9/(20h), |ω<1,2>

k (x)| ≤ 9/(20h),

|ω<2,3>
k (x)| ≤ 1/(20h).

Inequality (9) follows from (8).

4 Approximation by middle polyno-
mial minimal splines of Lagrange
type

Consider the case of the middle minimal splines. Let
us take an approximation for u ∈ C5([a, b]), x ∈
[xk, xk+1], in the form:

ũ(x) = u(xk−2) ωk−2(x) + u(xk−1) ωk−1(x)+

+u(xk) ωk(x) + u(xk+1) ωk+1(x)+ (10)

+u(xk+2) ωk+2(x),

where suppωj = [xj−2, xj+3], ωk+s, s = −2, −1, 0,
1, 2, we find from the system (1).

Let us take φi(x) = xi−1, i = 1, 2, 3, 4, 5.
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If we put x = xk + th, t ∈ [0, 1], then we have

ωk−2(xk + th) =
t(t− 1)(t− 2)(t+ 1)

24
, (11)

ωk−1(xk + th) =
−t(t− 1)(t− 2)(t+ 2)

6
, (12)

ωk(xk + th) =
(t− 1)(t− 2)(t+ 2)(t+ 1)

4
, (13)

ωk+1(xk + th) =
−t(t− 2)(t+ 2)(t+ 1)

6
, (14)

ωk+2(xk + th) =
t(t− 1)(t+ 2)(t+ 1)

24
. (15)

Theorem 2. Let function u be such that u ∈
C5([a, b]). For approximation u(x), x ∈ [xk, xk+1]
by (10), (11)–(15) we have:

|ũ(x)− u(x)| ≤ K2h
5∥u(5)∥[xk−2,xk+2], (16)

R2 = ∥Ũ − u∥[x2,xn−2] ≤ K2h
5∥u(5)∥[x0,xn], (17)

K2 = 0.012.
Proof. Inequality (16) follows from the inequal-

ity:

|ũ(x)− u(x)|[xk,xk+1] ≤
1

5!
max

[xk−2,xk+2]
|u(5)(x)|×

× max
[xk,xk+1]

|(x− xk−2)(x− xk−1)×

×(x− xk)(x− xk+1)(x− xk+2)|.

Inequality (17) follows from (16).

Table 1 shows the actual errors of approximation
of the functions. Here R<P>

M is the actual error of ap-
proximation by the splines (2), (3)–(7), RP

M is the ac-
tual error of approximation by the splines (10), (11)–
(15) on (−1, 1) when h = 0.1. Calculations were
done in Maple, Digits=15.

Table 1. Actual errors of approximations by the
splines (2), (3)–(7), and by the splines (10), (11)–(15).

u(x) R<P>
M RP

M

1/(1 + 25x2) 0.0167 0.0124
sin(x) 0.166 · 10−6 0.118 · 10−6

sin(3x) 0.393 · 10−4 0.284 · 10−4

x5 0.20 · 10−4 0.142 · 10−4

Figure 1 shows the error of approximation of the
function 1/(1+25x2) by the middle minimal polyno-
mial middle splines (10), (11)–(15).

–0.01

–0.005

0.005

–1 –0.5 0.5 1

Figure 1: Plot of the error of approximation
u(x) = 1/(1+25x2) by the middle polynomial spline

(10), (11)–(15)

4.1 Quadrature formula

From the approximation by the minimal polynomial
middle splines (10), (11)–(15) on [xk, xk+1] we re-
ceive:∫ xk+1

xk

ũ(t)dt = h
(

11
720u(xk−2)− 37

360u(xk−1)+

+19
30u(xk) +

173
360u(xk+1)− 19

720u(xk+2)
)
. (18)

Now in (2) we can use (18). We have:∫ xk+1

xk

u(t)dt =

∫ xk+1

xk

ũ(t)dt+ r,

where r = 0 if u(x) = xi−1, i = 1, 2, 3, 4, 5.

4.2 Left polynomial splines

For x ∈ [xk, xk+1] we take ũ(x) in the form:

ũ(x) = u(xk−3) ωk−3(x) + u(xk−2) ωk−2(x)+

+u(xk−1) ωk−1(x) + u(xk) ωk(x)+ (19)

+u(xk+1) ωk+1(x),

where suppωj = [xj−1, xj+4], ωk+s(x), s = −3,
−2, −1, 0, 1, we find from the system (1).

Let us take φi(x) = xi−1, i = 1, 2, 3, 4, 5.
If we put x = xk + th, t ∈ [0, 1], then we have:

ωk+1(xk + th) =
t(t+ 1)(t+ 2)(t+ 3)

24
, (20)

ωk(xk + th) =
−(t2 − 1)(t+ 2)(t+ 3)

6
, (21)

ωk−1(xk + th) =
t(t− 1)(t+ 2)(t+ 3)

4
, (22)

ωk−2(xk + th) =
−t(t+ 3)(t2 − 1)

6
, (23)
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ωk−3(xk + th) =
t(t2 − 1)(t+ 2)

24
. (24)

Let us take Ũ(x), x ∈ (a, b), such that Ũ(x) =
ũ(x), x ∈ (xj , xj+1), j = 3, 4, . . . , n− 1.

Theorem 3. Let function u(x) be such that u ∈
C5([a, b]). For approximation u(x), x ∈ [xk, xk+1]
by (19), (20)–(24) we have the estimation:

|ũ(x)− u(x)| ≤ K2h
5∥u(5)∥[xk−3,xk+1], (25)

R2 = ∥Ũ − u∥[x3,xn] ≤ K2h
5∥u(5)∥[x0,xn], (26)

where K2 = 0.0303.
Proof. The inequality (25) follows from the next

relation:

|ũ(x)− u(x)|[xk,xk+1] ≤
1

5!
max

[xk−3,xk+1]
|u(5)(x)|×

× max
[xk,xk+1]

|(x− xk−3)(x− xk−2)×

×(x− xk−1)(x− xk)(x− xk+1)|.

Inequality (26) follows from (25).

Figure 2 shows the error of approximation of the
function 1/(1 + 25x2) by the left polynomial splines
(19), (20)–(24).
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Figure 2: Plot of the error of approximation
u(x) = 1/(1 + 25x2) by the left polynomial spline

(19), (20)–(24)

4.3 Quadrature formula

From the approximation by the minimal polynomial
left splines (19), (20)–(24) on [xk, xk+1] we receive
the next formula:∫ xk+1

xk

ũ(t)dt = h
(
− 19

720u(xk−3) +
53
360u(xk−2)−

−11
30u(xk−1) +

323
360u(xk) +

251
720u(xk+1)

)
. (27)

Now in (2) we can use (27). We have:∫ xk+1

xk

u(t)dt =

∫ xk+1

xk

ũ(t)dt+ r,

where r = 0 if u(x) = xi−1, i = 1, 2, 3, 4, 5.

4.4 Right polynomial splines

For x ∈ [xk, xk+1] we take ũ(x) in the form:

ũ(x) = u(xk) ωk(x) + u(xk+1) ωk+1(x)+

+u(xk+2) ωk+2(x) + u(xk+3) ωk+3(x)+ (28)

+u(xk+4) ωk+4(x),

where suppωj = [xj−4, xj+1], ωk+s(x), s = 1, 2, 3,
4, 5, we find from the system (1) for φi(x) = xi−1,
i = 1, 2, 3, 4, 5.

If we put x = xk + th, t ∈ [0, 1], then we have:

ωk(xk + th) =
(t− 4)(t− 3)(t− 2)(t− 1)

24
, (29)

ωk+1(xk + th) =
−t(t− 2)(t− 3)(t− 4)

6
, (30)

ωk+2(xk + th) =
t(t− 1)(t− 3)(t− 4)

4
, (31)

ωk+3(xk + th) =
−t(t− 1)(t− 2)(t− 4)

6
, (32)

ωk+4(xk + th) =
t(t− 1)(t− 2)(t− 3)

24
. (33)

Let us take Ũ(x), x ∈ (a, b), such that Ũ(x) =
ũ(x), x ∈ (xj , xj+1), j = 0, 1, . . . , n− 5.

Theorem 4. Let function u(x) be such that u ∈
C5([a, b]). For approximation u, x ∈ [xk, xk+1] by
(28), (29)–(33) we have

|ũ(x)− u(x)| ≤ K2h
5∥u(5)∥[xk,xk+4], (34)

R2 = ∥Ũ − u∥[x0,xn−4] ≤ K2h
5∥u(5)∥[x0,xn], (35)

K2 = 0.0303.
Proof. Inequality (34) follows from the relation:

|ũ(x)− u(x)|[xk,xk+1] ≤
1

5!
max

[xk,xk+4]
|u(5)(x)|×

× max
[xk,xk+1]

|(x− xk)(x− xk+1)×

×(x− xk+2)(x− xk+3)(x− xk+4)|.

Inequality (35) follows from (34).
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Table 2 shows the actual errors of approximation
by the left and right splines. Here RP

L is the actual
error of approximation by the splines (19), (20)–(24),
and RP

R is the actual error of approximation by the
splines (28), (29)–(33) on (−1, 1) when h = 0.1. Cal-
culations were done in Maple, Digits=15.

Table 2. The actual errors of approximations by
the left splines (19), (20)–(24) and the actual errors of
approximations by the right splines (28), (29)–(33).

u(x) RP
L RP

R

1/(1 + 25x2) 0.0337 0.0337
sin(x) 0.302 · 10−6 0.302 · 10−6

sin(3x) 0.724 · 10−4 0.724 · 10−4

x5 0.363 · 10−4 0.363 · 10−4

Figure 3 shows the error of approximation of the
function 1/(1+25x2) by the right polynomial splines
(28), (29)–(33).
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Figure 3: Plot of the error of approximation
u(x) = 1/(1 + 25x2) by the right polynomial splines

(28), (29)–(33)

4.5 Quadrature formula

From the approximation by the minimal polynomial
right splines (28), (29)–(33) on [xk, xk+1] we receive:∫ xk+1

xk

ũ(t)dt = h
(
251
720u(xk) +

323
360u(xk+1)−

−11
30u(xk+2) +

53
360u(xk+3)− 19

720u(xk+4)
)
. (36)

Now in (2) we can use (36). We have:∫ xk+1

xk

u(t)dt =

∫ xk+1

xk

ũ(t)dt+ r,

where r = 0 if u(x) = xi−1, i = 1, 2, 3, 4, 5.

5 Middle trigonometrical splines

Let us take an approximation for u ∈ C5([a, b]), x ∈
[xk, xk+1], in the form:

ũ(x) = u(xk−2) wk−2(x) + u(xk−1) wk−1(x)+

+u(xk) wk(x) + u(xk+1) wk+1(x)+ (37)

+u(xk+2) wk+2(x),

where suppwj = [xj−2, xj+3], wk+s, s = −2, −1, 0,
1, 2, we find from the system (1), where φ1(x) = 1,
φ2(x) = sin(x), φ3(x) = cos(x), φ4(x) = sin(2x),
φ5(x) = cos(2x).

If we put x = xk + th, x ∈ [xk, xk+1], t ∈ [0, 1],
then:

wk−2(xk+th) =
S1

sin(h/2) sin(h) sin(3h/2) sin(2h)
,

(38)
S1 = sin

(
th+h
2

)
sin

(
th
2

)
sin

(
h−th
2

)
sin

(
h− th

2

)
,

wk−1(xk + th) = − S2

sin2(h/2) sin(h) sin(3h/2)
,

(39)
S2 = sin

(
th
2 + h

)
sin

(
th
2

)
sin

(
h−th
2

)
sin

(
h− th

2

)
,

wk(xk + th) =
S3

sin2(h) sin2(h/2)
, (40)

S3 = sin
(
th
2 +h

)
sin

(
th+h
2

)
sin

(
h−th
2

)
sin

(
h− th

2

)
,

wk+1(xk+ th) =
S4

sin(3h/2) sin(h) sin2(h/2)
, (41)

S4 = sin
(
th
2 + h

)
sin

(
th+h
2

)
sin

(
th
2

)
sin

(
h− th

2

)
,

wk+2(xk+th) =
S5

sin(2h) sin(3h/2) sin(h) sin(h/2)
,

(42)
S5 = sin

(
th
2 + h

)
sin

(
th+h
2

)
sin

(
th
2

)
sin

(
th−h
2

)
.

It can be shown that for the polynomial basic
splines ωs(x) (10) and trigonometrical basic splines
wj(x) (37) the next relation is fulfilled wj(xk+ th) =
ωj(xk + th) +O(h2), j = k − 2, k − 1, . . . , k + 2.

Figure 4 shows the error of approximation of the
function 1/(1 + 25x2) by the trigonometrical splines
(37), (38)–(42).

Theorem 5. The error of the approximation by
the splines (37), (38)–(42) is the next:

|ũ(x)− u(x)| ≤ Kh5∥4u′ + 5u′′′ + uV ∥[xk−2,xk+2],
(43)

where x ∈ [xk, xk+1], K = 0.1.
Proof. The function u(x) on [xk, xk+1] can be

written in the form (see [12]) u(x) = 2
3

∫ x
xk
(4u′(τ)+
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Figure 4: Plot of the error of approximation 1/(1 +
25x2) by the trigonometrical splines (37), (38)–(42).

5u′′′(τ)+uV (τ)) sin4(x/2−τ/2)dτ+c1+c2 sin(x)+
c3 cos(x)+c4 sin(2x)+c5 cos(2x), where ci, i = 1, 2,
3, 4, 5 are arbitrary constants. We have: |wk−2(x)| ≤
0.08, |wk−1(x)| ≤ 0.21, |wk(x)| ≤ 1, |wk+1(x)| ≤ 1,
|wk+2(x)| ≤ 0.08. Using the method from [12] we
obtain (43).

5.1 Left trigonometrical splines

For x ∈ [xk, xk+1] we take ũ(x) in the form:

ũ(x) = u(xk−3) wk−3(x) + u(xk−2) wk−2(x)+

+u(xk−1) wk−1(x) + u(xk) wk(x)+ (44)

+u(xk+1) wk+1(x),

where suppωj = [xj−1, xj+4], wk+s(x), s = −3,
−2, −1, 0, 1, we find from the system (1).

Let us take φ1(x) = 1, φ2(x) = sin(x), φ3(x) =
cos(x), φ4(x) = sin(2x), φ5(x) = cos(2x).

If we put x = xk + th, t ∈ [0, 1], then we have:

wk+1(xk + th) = Tk+1/T1, (45)

Tk+1 = sin
(
th+3h

2

)
sin

(
th
2 + h

)
sin

(
th+h
2

)
sin

(
th
2

)
,

T1 = sin(2h) sin
(
3h
2

)
sin(h) sin

(
h
2

)
,

wk(xk + th) = Tk/T2, (46)

Tk = sin
(
th+3h

2

)
sin

(
th
2 + h

)
sin

(
th+h
2

)
sin

(
h−th
2

)
,

T2 = sin
(
3h
2

)
sin(h) sin2

(
h
2

)
,

wk−1(xk + th) = Tk−1/T3, (47)

Tk−1 = sin
(
th+3h

2

)
sin

(
th
2 + h

)
sin

(
th
2

)
sin

(
th−h
2

)
,

T3 = sin2(h) sin2
(
h
2

)
,

wk−2(xk + th) = Tk−2/T4, (48)

Tk−2 = sin
(
th+3h

2

)
sin

(
th+h
2

)
sin

(
th
2

)
sin

(
h−th
2

)
,

T4 = sin2
(
h
2

)
sin(h) sin

(
3h
2

)
,

wk−3(xk + th) = Tk−3/T5, (49)

Tk−3 = sin
(
th
2 + h

)
sin

(
th+h
2

)
sin

(
th
2

)
sin

(
th−h
2

)
,

T5 = sin
(
h
2

)
sin(h) sin

(
3h
2

)
sin(2h).

Theorem 6. The error of the approximation by
the splines (44), (45)–(49) is the next:

|ũ(x)− u(x)| ≤ Kh5∥4u′ + 5u′′′ + uV ∥[xk−3,xk+1],
(50)

where x ∈ [xk, xk+1], K = 0.5.
Proof is similar to that done in the proof of

Theorem 5. Here the next inequalities were used:
|wk−3(x)| ≤ 0.12, |wk−2(x)| ≤ 0.22, |wk−1(x)| ≤
0.36, |wk(x)| ≤ 1, |wk+1(x)| ≤ 1.06.

5.2 Right trigonometrical splines

For x ∈ [xk, xk+1] we take ũ(x) in the form:

ũ(x) = u(xk) wk(x) + u(xk+1) wk+1(x)+

+u(xk+2) wk+2(x) + u(xk+3) wk+3(x)+ (51)

+u(xk+4) wk+4(x),

where suppwj = [xj−4, xj+1], wk+s, s = 0, 1, 2, 3,
4, we find from the system (1).

Let us take φ1(x) = 1, φ2(x) = sin(x), φ3(x) =
cos(x), φ4(x) = sin(2x), φ5(x) = cos(2x).

If we put x = xk + th, t ∈ [0, 1], then we have:

wk(xk + th) = TR
k /T0R, (52)

TR
k = sin

(
th
2 − 2h

)
sin

(
th−3h

2

)
sin

(
th
2 − h

)
sin

(
th−h
2

)
,

T0R = sin(2h) sin(3h/2) sin(h) sin(h/2),

wk+1(xk + th) = TR
k+1/T1R, (53)

TR
k+1 = sin

(
th
2 − 2h

)
sin

(
th−3h

2

)
sin

(
h− th

2

)
sin

(
th
2

)
,

T1R = sin(3h/2) sin(h) sin2(h/2),

wk+2(xk + th) = TR
k+2/T2R, (54)

TR
k+3 = sin

(
th
2 − 2h

)
sin

(
th−3h

2

)
sin

(
th−h
2

)
sin

(
th
2

)
,

T2R = sin2(h) sin2(h/2),

wk+3(xk + th) = TR
k+3/T3R, (55)

TR
k+3 = sin

(
th
2 − 2h

)
sin

(
h− th

2

)
sin

(
th−h
2

)
sin

(
th
2

)
,

T3R = sin2(h/2) sin(h) sin(h/2),

wk+4(xk + th) = TR
k+4/T4R, (56)

TR
k+4 = sin

(
th−3h

2

)
sin

(
th
2 − h

)
sin

(
th−h
2

)
sin

(
th
2

)
,

T4R = sin(h/2) sin(h) sin(3h/2) sin(2h).
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Theorem 7. The error of the approximation by
the splines (51), (52)–(56) is the next:

|ũ(x)− u(x)| ≤ Kh5∥4u′ + 5u′′′ + uV ∥[xk,xk+4],

where x ∈ (xk, xk+1), K = 2.
Proof is similar to that done in the proof of The-

orem 5. Here the next inequalities were used:
|wk(x)| ≤ 1, |wk+1(x)| ≤ 1.1, |wk+2(x)| ≤

0.36, |wk+3(x)| ≤ 0.22, |wk+4(x)| ≤ 0.12.
Table 3 shows the actual errors of approximation

by the left and right trigonometrical splines. RT
L is

the actual error of approximation by the splines (44),
(45)–(49). RT

R is the actual error of approximation by
the splines (51), (52)–(56) on (−1, 1) when h = 0.1.
Calculations were done in Maple, Digits=15.

Table 3. Actual errors of approximations by the
left splines (44), (45)–(49), and by the right splines
(51), (52)–(56).

u(x) RT
L RT

R

1/(1 + 25x2) 0.0333 0.0333
sin(x) 0.0 0.0
sin(3x) 0.358 · 10−4 0.358 · 10−4

x5 0.15 · 10−3 0.15 · 10−3

Table 4 shows the actual and theoretical errors of
approximation by the middle trigonometrical splines.
RT

M is the actual error of approximation by the splines
(37), (38)–(42). RT

M is the theoretical error of ap-
proximation by the splines (37), (38)–(42) on (−1, 1)
when h = 0.1. Calculations were done in Maple, Dig-
its=15.

Table 4. Actual errors of approximations by the
middle splines (37), (38)–(42), and theoretical errors
of approximation by the middle splines (37), (38)–
(42).

u(x) RT
M RT

M

1/(1 + 25x2) 0.0123 0.918
sin(x) 0.0 0.0
sin(3x) 0.141 · 10−4 0.36 · 10−3

x5 0.517 · 10−4 0.13 · 10−2

6 Approximation by polynomial
integro-differential splines in spe-
cial form

Let us take for x ∈ (xj , xj+1):

ũ(x) = J1ω
<0,2>
j (x)+

+J2ω
<−1,1>
j (x) + J3ω

<−2,1>
j (x)+

+J4ω
<−3,1>
j (x) + J5ω

<−4,1>
j (x), (57)

where

J1 =

∫ xj+2

xj

u(t)dt, J2 =

∫ xj+1

xj−1

u(t)dt, (58)

J3 =

∫ xj+1

xj−2

u(t)dt, J4 =

∫ xj+1

xj−3

u(t)dt, (59)

J5 =

∫ xj+1

xj−4

u(t)dt. (60)

From ũ(x) = u(x), u = xi−1, i = 1, 2, 3,
4, 5, we find ω<0,2>

j (x), ω<−1,1>
j (x), ω<−2,1>

j (x),
ω<−3,1>
j (x), ω<−4,1>

j (x).
So we have for x = xj + th, t ∈ (0, 1),

ω<0,2>
j (xj + th) =

30t+ 75t2 + 36t3 + 5t4 − 26

384h
,

(61)

ω<−1,1>
j (xj+th) =

182t− 33t2 − 76t3 − 15t4 + 62

96h
,

(62)

ω<−2,1>
j (xj+th)=

6− 898t− 69t2 + 356t3 + 85t4

384h
,

(63)

ω<−3,1>
j (xj+th)=

57t2 − 25t4 + 186t− 84t3 − 14

192h
,

(64)

ω<−4,1>
j (xj+th)=

55t4− 310t− 135t2+ 140t3+ 34

1920h
.

(65)

Theorem 8. Suppose the function u(x) be such
that u ∈ C5([x0, xn]), ũ(x) is given by (57)–(65).
Then for x ∈ (xj , xj+1) we have:

|ũ(x)− u(x)| ≤ K5h
5∥u(5)∥(xj−4,xj+2), (66)

K5 = 0.1625.

Proof. We have from (61)–(65):

|ω<0,2>
j (x)| ≤ 120/(384h) = 0.3125/h,

|ω<−1,1>
j (x)| ≤ 143.5734/(96h) ≈ 1.4956/h,

|ω<−2,1>
j (x)| ≤ 544.40331/(384h) ≈ 1.4178/h,

|ω<−3,1>
j (x)| ≤ 122.04525/(192h) ≈ 0.6357/h,

|ω<−4,1>
j (x)| ≤ 217.5077/(1920h) ≈ 0.1133/h.

Representing u(x) by the Taylor formula one obtains
(66).

Let us take Ũ(x), x ∈ (a, b), such that Ũ(x) =
ũ(x), x ∈ (xj , xj+1), j = 4, 5, . . . , n− 3.
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Theorem 9. Suppose the hypothesis of the Theo-
rem 3 is fulfilled. Then:

R = ∥Ũ − u∥(x4,xn−2) ≤ Kh5∥u(5)∥(a,b), (67)

K = 0.1625.

Proof. Inequality (67) follows from the relation (66).

Table 5 shows the errors of approximation of
functions by the splines (57)–(65) on (−1, 1) when
h = 0.1. The calculations of the actual error R<P>

were done in Maple, Digits=15.

Table 5. The errors of approximation of functions
by the splines (57)–(65)

N u(x) R<P>

1 1/(1 + 25x2) 0.08097
2 sin(x) 0.145 · 10−5

3 sin(3x) 0.344 · 10−3

4 x5 0.175 · 10−3

Figure 5 shows the errors of approximation of
the function 1/(1 + 25x2) by the polynomial integro-
differential splines (57)–(65) on (−1, 1), h = 0.1.

–0.06

–0.04

–0.02
0

0.02

0.04

0.06

0.08

–1 –0.5 0.5 1

Figure 5: Plot of the error of approximation of the
function 1/(1 + 25x2) by the polynomial integro-

differential splines (57)–(65).

7 Trigonometric integro-differential
splines

Let us take for x ∈ (xj , xj+1):

ũ(x) =

xj−1∫
xj−2

u(t)dt w<−2,−1>
j (x)+

+

xj∫
xj−1

u(t)dt w<−1,0>
j (x) +

xj+1∫
xj

u(t)dt w<0,1>
j (x)+

+

xj+2∫
xj+1

u(t)dt w<1,2>
j (x) +

xj+3∫
xj+2

u(t)dt w<2,3>
j (x),

(68)
where w<−2,−1>

j (x), w<−1,0>
j (x), w<0,1>

j (x),
w<1,2>
j (x), w<2,3>

j (x) we find from ũ(x) = φi(x),
φ1(x) = 1, φ2(x) = sin(x), φ3(x) = cos(x),
φ4(x) = sin(2x), φ5(x) = cos(2x).

So we have for x = xj + th, t ∈ (0, 1):

w<−2,−1>
j (xj + th) =

(
2 sin 3h(t−1)

2 sin h(t+1)
2 +

2(2 cos(h) + 1) sin h(t+1)
2 sin h(1−t)

2

)
×

× (2 sin(2h)− sin(h)− h cos(h)(2 cos(h)− 1))−1 ,
(69)

w<−1,0>
j (xj + th) =

(
sin(h) + 2 sin h

2 cos
4th−h

2 −

−4 cos(2h) sin h(t−1)
2 cos h(t+1)

2 +

+2 sin(th− 2h) cos(h)
)
×

×
(
8 cos3(h) + 2h sin(2h) cos(h)− 7 cos2(h)−

−4 cos(h)− h sin(h) + 3
)−1

, (70)

w<0,1>
j (xj+th) =

(
cos(3h)+cos(h)+1+cos(2th)−

−2(cos(h) + 1)(2 cos(h)− 1) cos(th)
)
×

×
(
2h cos(h) cos(2h)− 2 sin(2h) cos(h)−

−1
2 sin(2h) + h+ 2 sin(h)

)−1
, (71)

w<1,2>
j (xj+th) =

(
4 cos(2h) sin h(t+1)

2 cos h(t−1)
2 −

−2 sin h(2t−1)
2 cos h(2t+1)

2 + sin(h+ 2th)−

−2 sin(2h+ th) cos(h)
)
×

×
(
cos(4h)− 2 cos(3h) + 4 cos(2h)− 2 cos3(h)−

− cos2(h) + 2h sin(2h) cos(h)− h sin(h)
)−1

, (72)

w<2,3>
j (xj + th) =

(
4 cos(h) cos(th+ h

2 ) cos
h
2−

− cos(h+ 2th)− cos(h)(2 cos(h) + 1)
)
×

×
(
sin(2h) cos(h)+sin(h)−2h cos2(h)−h cos(h)

)−1
.

(73)

WSEAS TRANSACTIONS on ADVANCES in ENGINEERING EDUCATION I. G. Burova, T. O. Evdokimova

E-ISSN: 2224-3410 131 Volume 12, 2015



If we don’t know the value of the integrals we
can use quadrature formula. For example, from
trigonometrical splines (37), (38)–(42) we obtain
xj+1∫
xj

u(t)dt = u(xj−2)J−2+u(xj−1)J−1+u(xj)J0+

u(xj+1)J1 + u(xj+2)J2,
where

J−2 =
(
8 sin2(h)(cos(h)− cos(2h)) cos(h)

)−1×

× (−2 sin(2h) + sin(h) + h cos(h)(2 cos(h) + 1)) ,

J−1 =
(
4 sin2(h)(cos(h)− cos(2h))

)−1×

×
(
sin(2h)

(
1
2 + 4 cos(h)

)
−

−3 sin(h)− h(cos(h) + 1)(4 cos2(h)− 1)
)
,

J0 =
(
4 sin2(h)(1− cos(h))

)−1×

×(2 sin(h) + 2h cos(h) cos(2h)+

+h− sin(2h) (1/2 + 2 cos(h))),

J1 = 1/(2 cos4(h)−cos3(h)−3 cos2(h)+cos(h)+1)×

(8 sin(h) cos3(h)−3 sin(h) cos(h)−2 sin(h) cos2(h)+

3 sin(h)−4h cos3(h)+h−4h cos2(h)+h cos(h))/4),

J2 =
(
8 sin2(h)(cos(h)− cos(2h)) cos(h)

)−1×(
2h cos2(h) + h cos(h)− sin(2h) cos(h)− sin(h)

)
.

It can be easily shown that between polyno-
mial and trigonometric integro-differential splines
the next relation is fulfilled w<s,s+1>

j (xj + th) =

ω<s,s+1>
j (xj + th) +O(h2).

Table 6 shows the errors of approximation of
functions by splines (68)–(73) on (−1, 1) when h =
0.1. The calculations of the actual error R<T>

M were
done in Maple, Digits=15.

Table 6. The errors of approximation of functions
by splines (68)–(73)

N u(x) R<T>
M

1 1/(1 + 25x2) 0.0165
2 sin(x) 0.
3 sin(3x) 0.197 · 10−4

4 x5 0.6927 · 10−4

Theorem 10. The error of the approximation by
the splines (51), (52)–(56) is the next:

|ũ(x)− u(x)| ≤ Kh5∥4u′ + 5u′′′ + uV ∥(xk−2,xk+3),
(74)

where x ∈ (xk, xk+1), K = 0.2.

Proof is similar to that done in the proof of The-
orem 5. Here the next inequalities were used:

|w<−2,−1>
j (x)| ≤ 0.05/h, |w<−1,0>

j (x)| ≤
0.45/h, |w<0,1>

j (x)| ≤ 1.12/h, |w<1,2>
j (x)| ≤

0.45/h, |w<2,3>
j (x)| ≤ 0.05/h.

8 Right integro-differential trigono-
metric splines

On the left side of [a, b] the best approximation gives
us the right basic splines. In each (xk, xk+1), k =
0, 1, 2, 3, . . . , n − 5 the approximation for u(x) are
presented in the form:

ũ(x) =

xk+1∫
xk

u(t)dt w<0,1>
k (x)+

+

xk+2∫
xk+1

u(t)dt w<1,2>
k (x) +

xk+3∫
xk+2

u(t)dt w<2,3>
k (x)+

+

xk+4∫
xk+3

u(t)dt w<3,4>
k (x) +

xk+5∫
xk+4

u(t)dt w<4,5>
k (x),

(75)

where w<s,s+1>
k (x), s = 0, 1, 2, 3, 4, are determined

from the conditions φ1(x) = 1, φ2(x) = sin(x),
φ3(x) = cos(x), φ4(x) = sin(2x), φ5(x) = cos(2x).

If we put x = xk + th, t ∈ (0, 1), then we have

w<0,1>
k (xk + th) = −G<0,1>

1 G<0,1>
2 , (76)

where

G<0,1>
1 =

(
8h sin3(h) cos(h)(2 cos(h) + 1)×

×(cos(h)− 1)
)−1

,

G<0,1>
2 =

(
1
2 sin(2h)(2 cos(h) + 1)−

−2h(cos(h) + 1) cos(h)(4 cos2(h)− 1) cos(th− h)+

+2h sin(2h) sin(2th) + 4h(cos(h) + 1)×

× cos2(h) cos(th) + h(2 cos(4h)− 1) cos(2th− 2h)
)
,

w<1,2>
k (xk + th) = −G<1,2>

1 G<1,2>
2 , (77)
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where

G<1,2>
1 =

(
4h sin2(h)(2 cos(h) + 1)(cos(h)− 1)2

)−1
,

G<1,2>
2 =

(
sin2(h)(4 cos2(h)− 1)−

−h((2 cos(h) + 1)(2 cos(4h) + 1) + 2 cos(2h))×
×(sin(2th− h)− sin(2th))− h sin(h)×

×(8 cos2(h) cos(2h)+2 cos(h)+1) cos(th−h)+

+h(sin(4h) + sin(2h) + sin(h)) cos(th)−

−2h sin(h)(2 cos(4h) + 2 cos(2h) + 1) cos(2th)
)
,

w<2,3>
k (xk + th) = −1 + cos(h)

4h sin5(h)
G<2,3>

1 , (78)

where

G<2,3>
1 =

(
2h(cos(2h) + cos(h))

(
sin(2h) sin(th)+

+cos(th− h
2 )

(
cos

(
h
2

)
− 2 sin

(
3h
2

)
sin(h)

))
−

−1
2 sin(4h)− sin(h)− h

(
4 cos(2h) sin(h) sin(2th)+

+
(
1− 4 sin(3h) sin(h)

)
cos(2th− h)

))
,

w<3,4>
k (xk + th) = −G<3,4>

1 G<3,4>
2 , (79)

where

G<3,4>
1 =

(
4h sin2(h)(2 cos(h) + 1)(cos(h)− 1)2

)−1
,

G<3,4>
2 =

(
sin2(h)(4 cos2(h)− 1)−

−h sin(th)
(
cos(h)(2 cos(2h) + 1) + cos(2h)

)
−

−h sin(th− h)
(
cos(4h) + cos(3h) + 2 cos2(h)

)
−

−2h sin(4h) cos(2th)+2h
(
4 cos2(h) cos(2h)+

+cos(4h)+4 cos(h) cos(2h)
)
sin

(
h
2

)
cos

(
2th− h

2

))
,

w<4,5>
k (xk + th) = −G<4,5>

2 /G<4,5>
1 . (80)

where
G<4,5>

1 =8h sin3(h) cos(h)(2 cos(h)+1)(cos(h)−1),
G<4,5>

2 =1
2 sin(2h)(2 cos(h) + 1)−2h(cos(h) + 1)×

× cos(h) cos(th− 2h) + h cos(2th− 4h).
Theorem 11. The error of the approximation by

the splines (75), (76)–(80) is the next

|ũ(x)− u(x)| ≤ Kh5∥4u′ + 5u′′′ + uV ∥(xk,xk+5),
(81)

where x ∈ (xk, xk+1), K = 2.
Proof. The function u(x) on (xk, xk+1) can be

written in the form (see [12]):

u(x)= 2
3

x∫
xk

(
4u′(τ)+5u′′′(τ)+uV (τ)

)
sin4

(
x−τ
2

)
dτ+

c1 + c2 sin(x) + c3 cos(x) + c4 sin(2x) + c5 cos(2x),
where ci, i = 1, 2, 3, 4, 5, are arbitrary constants.

Here the next inequalities were used:
|w<0,1>

j (x)| ≤ 2.29/h, |w<1,2>
j (x)| ≤ 2.72/h,

|w<2,3>
j (x)| ≤ 2.29/h, |w<3,4>

j (x)| ≤ 1.05/h,
|w<4,5>

j (x)| ≤ 0.2/h.
Using the method from [12]) we obtain from (75),

(76)–(80), (81).
Let Ũ(x), x ∈ (a, b), be such that ũk(x) Ũ(x) =

ũk(x), x ∈ (xk, xk+1), k = 0, 1, . . . , n− 5.
Theorem 12. For the error of approximation by

trigonometric splines (75), (76)–(80) we have the next
relation:

∥Ũ − u∥(x0,xn−4) ≤ Kh5∥4u′ + 5u′′′ + uV ∥(x0,xn),

K = 2.
Proof. The proof follows from (81).
Table 7 shows the theoretical (R<T>

R ) and the ac-
tual (R<T>

R ) errors of approximation by the splines
(75), (76)–(80), they were found in Maple Digits =
25 with h = 0.1.

Table 7.
N u(x) R<T>

R R<T>
R

1 1
(1+25x2)

0.116 6.226

2 sin(x) 0.865 · 10−19 0
3 sin(3x) 0.19641 · 10−3 0.24 · 10−2

4 x5 0.8764 · 10−3 0.88 · 10−2

8.1 Trigonometric quadrature

Sometimes, if the values of the integrals are unknown,
the next trigonometric quadrature may be useful.

From (44), (45)–(49) we obtain:∫ xk+1

xk

u(t)dt = u(xk)J0 + u(xk+1)J1+

+u(xk+2)J2 + u(xk+3)J3 + u(xk+4)J4 + r,

where:
J0 = Q01/Q02,

Q01 = h cos(h) − 4 sin(2h) cos(h)(sin(h)2 +
cos(h)) + 2 sin(2h) + sin(h) + 2h cos2(h),
Q02 = 8(cos(h)− cos(2h)) cos(h) sin2(h),

J1 = Q11/Q12,

Q11 = h + 2 sin(2h) sin2(h) + sin(4h) cos(h) +
sin(h)(cos(h) + 1) + h cos(h)(1 − 4 cos(h) −
4 cos2(h)),
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Q12 = 4(cos(h)− cos(2h)) sin2(h),

J2 = −Q21/Q22,

Q21 = −h − 3 sin(h) cos(h) + 4 sin(h) cos3(h) +
2 sin(h)− 4h cos3(h) + 2h cos(h),
Q22 = 4(cos3(h)− cos2(h)− cos(h) + 1),

J3 = Q31/Q32, J4 = −Q41/Q42,

Q31 = (sin(h)−h)(cos(3h)+4 cos(h)+cos(2h))−
h(2 cos2(h)− 2 cos(h)),
Q32 = 4(cos(h)− cos(2h)) sin2(h), Q41 =
2 sin(h) cos2(h)− h cos(h)− 2h cos2(h) + sin(h),
Q42 = 8(cos(h)− cos(2h)) cos(h) sin2(h).

This formula such that r = 0, if u = 1, sin(x),
cos(x), sin(2x), cos(2x).

9 Left integro-differential trigono-
metric splines

On the right side of [a, b] the best approximation gives
us the left basic splines. In each interval (xk, xk+1),
k = 0, 1, . . . , 4 the approximation for u(x) is pre-
sented in the form:

ũ(x) =

xk−3∫
xk−4

u(t)dt w<−4,−3>
k (x)+

+

xk−2∫
xk−3

u(t)dtw<−3,−2>
k (x)+

xk−1∫
xk−2

u(t)dtw<−2,−1>
k (x)+

+

xk∫
xk−1

u(t)dtw<−1,0>
k (x) +

xk+1∫
xk

u(t)dtw<0,1>
k (x),

(82)

where w<s,s+1>
k (x), s = 0, 1, . . . , 4, are determined

from the conditions from ũ(x) = φi(x), φ1 = 1,
φ2 = sin(x), φ3 = cos(x), φ4 = sin(2x), φ5 =
cos(2x). If we put x = xk + th, t ∈ (0, 1), then we
have:

w<−4,−3>
k (xk + th) = −P<−4,−3>

2 /P<−4,−3>
1 ,

(83)
where:
P<−4,−3>
1 = 4h sin(2h) sin2(h)(2 cos(h) + 1)×

×(cos(h)− 1),

P<−4,−3>
2 = −2h(cos(h) + 1) cos(h) cos(th+ h) +

1
2 sin(2h)(2 cos(h) + 1) + h cos(2h+ 2th),

w<−3,−2>
k (xk + th) = −P<−3,−2>

2 /P<−3,−2>
1 ,

(84)

where:
P<−3,−2>
1 = 4h sin2(h)(2 cos(h) + 1)(cos(h)− 1)2,

P<−3,−2>
2 =h sin(h) cos(th)−2h sin(2h) cos(2th)+

sin2(h)(4 cos(h)2 − 1) + h(2 cos(2h) + 2 cos(h) +
1)

(
2 sin

(
h
2

)
cos

(
2th+ h

2

)
− sin(h) cos(th+ h)

)
,

w<−2,−1>
k (xk + th) = −P<−2,−1>

2 /P<−2,−1>
1 ,

(85)
where:
P<−2,−1>
1 = 4h sin3(h)(cos(h)− 1),

P<−2,−1>
2 = −4h cos

(
3h
2

)
cos2

(
h
2

)
cos

(
th+ 3h

2

)
+

2h cos(2h) cos(2th + h) + 1
2 sin(4h) + sin(h) −

h cos(2th− h),

w<−1,0>
k (xk + th) = −P<−1,0>

2 /P<−1,0>
1 , (86)

where:
P<−1,0>
1 = 4h sin3(h)(1− cos(h))(2 cos(h) + 1),

P<−1,0>
2 = 2h

(
− sin(h)(2 cos(2h) + 1) sin(2th) +

(2 cos(2h)(2 cos(h)−1)−1) cos
(
2th+ h

2

)
cos

(
h
2

)
+

(cos(h)+1)
(
sin(2h) sin(th)−cos(th+2h) cos(2h)−

cos
(
3h
2

)
cos

(
th− h

2

)))
+ sin(h)(4 cos2(h) − 1)×

×(cos(h)+1),

w<0,1>
k (xk + th) = −P<0,1>

2 /P<0,1>
1 , (87)

where:
P<0,1>
1 =8h sin3(h) cos(h)(2 cos(h)+1)(cos(h)−1),

P<0,1>
2 = −2h(cos(h) + 1) cos(h) cos(th + 2h) +

h cos(4h+ 2th) + 1
2 sin(2h)(2 cos(h) + 1).

Theorem 13. The error of the approximation by
the splines (82), (83)–(87) is the next:

|ũ(x)− u(x)| ≤ Kh5∥4u′ + 5u′′′ + uV ∥(xk−4,xk+1),
(88)

where x ∈ (xk, xk+1), K = 2.12.
Proof is similar the proof of Theorem 11. Here

the next inequalities were used:
|w<−4,−3>

k (x)| ≤ 0.2/h, |w<−3,−2>
k (x)| ≤

1.05/h, |w<−2,−1>
k (x)| ≤ 2.29/h, |w<−1,0>

k (x)| ≤
2.72/h, |w<0,1>

k (x)| ≤ 2.29/h.
Let Ũ(x), x ∈ (a, b), be such that ũk(x) Ũ(x) =

ũk(x), x ∈ (xk, xk+1), k = 4, 5, . . . , n− 1.
Theorem 14. For the error of approximation by

trigonometric splines (82), (83)–(87) we have the next
relation:

∥Ũ − u∥(x4,xn) ≤ Kh5∥4u′ + 5u′′′ + uV ∥(x0,xn),

K = 2.12.
Proof follows from (88).
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Table 8 shows the theoretical (R<T>
L ) and ac-

tual (R<T>
L ) errors of approximation of functions by

trigonometric splines (82), (83)–(87), calculated in
Maple for Digits = 25 and h = 0.01.

Table 8.
N f(x) R<T>

L R<T>
L

1 1
1+25x2 0.11096 6.599

2 sin(x) 0.351 · 10−19 0
3 sin(3x) 0.18757 · 10−3 0.2544 · 10−2

4 x5 0.8373 · 10−3 0.9328 · 10−2

We can use the next formula if the values of the
integrals are unknown. From (51), (52)–(56) we ob-
tain:∫ xk+1

xk

u(t)dt ≈ u(xk−3)J−3 + u(xk−2)J−2+

+u(xk−1)J−1 + u(xk)J0 + u(xk+1)J1,

where:

J−3 = −Q−31/Q−32, J−2 = Q−21/Q−22,

Q−31 = 2 sin(h) cos2(h) + sin(h) − 2h cos(h)2 −
h cos(h),
Q−42 = 8 sin2(h)2(cos(h)− cos(2h)) cos(h),
Q−21 = 2 sin(2h) cos2(h) + (sin(h)− 2h)(cos(h) +
cos(2h))− h cos(3h)− h,
Q−22 = 4 sin2(h)(cos(h)− cos(2h)),

J−1 = −Q−11/Q−12, J0 = Q01/Q02,

Q−11 = (sin(h)−h)(cos(3h)+1)+sin(h)−h cos(h),
Q−12 = 4 sin2(h)(1− cos(h)), Q01 =
sin(4h) cos(h) − (sin(h) + h) cos(3h) − h +
2
(
sin

(
3h
2

)
− 2h cos

(
3h
2

))
cos

(
h
2

)
Q02 = 4 sin2(h)(cos(h)− cos(2h)),

J1 = Q11/Q12,

Q−11 = sin(h) − 2 sin(h) sin2(2h) − sin(4h) +
2h cos2(h) + h cos(h),
Q12 = 8 sin2(h)(cos(h)− cos(2h)) cos(h).

10 Application for solving delay
equation

We consider the delay differential equations:

y′ = −y(t− 1) for t ≥ 1, (89)

with constant history y(t) = 1, 0 ≤ t ≤ 1.
The solution of equation (89) is such that y′ be-

comes discontinuous at x = 1, y′′ becomes discontin-
uous at x = 2, and so on.

Here, for solving this problem we apply ap-
proximation methods with the minimal trigonomet-
ric splines and the polynomial integro-differential
splines.

Figures 6 and 7 show the errors of solution of the
delay problem (89) when h = 0.1.
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Figure 6: Plot of the error of solution of the delay
problem (89) by trigonometric left and right splines.
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Figure 7: Plot of the error of solution of the delay
problem (89) by polynomial splines (57) –(65)

11 Conclusion
Polynomial and nonpolynomial minimal and integro-
differential splines are useful for solving different ap-
proximation problems. The results represented in the
tables shows that the constants in the estimations of
the errors of approximation represented in the theo-
rems can be diminished. Here, these constants were
calculated using the Taylor theorem with the remain-
der term in Lagrange form.

Further more, we are going to minimize the con-
stants taking the remainder term of the Taylor theorem
in another form, and to find a way for minimizing the
constants in the estimations of the errors of approxi-
mation for nonpolynomial splines.
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