
Transactions of the Royal Society A,
Vol. 366, 2008, pp. 4647–4664. DOI:
10.1098/rsta.2008.0169
[2] D. M. Wolock, G. J. McCabe Jr., G. D.
Tasker and M. E. Moss, Effects of climate
change on water resources in the Delaware River
basin, Journal of the American Water Resources
Association, Vol. 29, 1993, pp. 475–486. DOI:
10.1111/j.1752-1688.1993.tb03225.x
[3] S. B. Bruns, Z. Csereklyei and D. I. Stern,
A multicointegration model of global
climate change, Journal of Econometrics,
Vol. 214, No. 1, 2020, pp. 175–197. DOI:
10.1016/j.jeconom.2019.05.010
[4] M. Lefebvre and F. Bensalma, Modeling and
forecasting river flows by means of filtered
Poisson processes, Applied Mathematical
Modelling, Vol. 39, No. 1, 2015, pp. 230–243.
DOI: 10.1016/j.apm.2014.05.027 Appl. Math.
Model.
[5] G. Weiss, Shot noise models for the generation
of synthetic streamflow data, Water Resources
Research, Vol. 13, 1977, pp. 101–108. DOI:
10.1029/WR013i001p00101
[6] B. A. Bodo and T. E. Unny, Modèles linéaires
stochastiques théoriques pour la réponse des
petits bassins, Revue des sciences de l’eau
/ Journal of Water Science, Vol. 3, 1990,
pp. 151–182. DOI: 10.7202/705069ar
[7] A. Lawrance and N. Kottegoda, Stochastic
modelling of riverflow time series, Journal of
the Royal Statistical Society. Series A, Vol. 140,
1977, pp. 1–47. DOI: 10.2307/2344516
[8] J. Kelman, A stochastic model for
daily streamflow, Journal of Hydrology,
Vol. 47, 1980, pp. 235–249. DOI:
10.1016/0022-1694(80)90095-5
[9] R. W. Koch, A stochastic streamflow model
based on physical principles, Water Resources
Research, Vol. 21, 1985, pp. 545–553. DOI:
10.1029/WR021i004p00545
[10] F. Konecny, On the shot-noise streamflow
model and its applications, Stochastic
Hydrology and Hydraulics, Vol. 6, No. 4,
1992, pp. 289–303. DOI: 10.1007/BF01581622
[11] F. Murrone, F. Rossi and P. Claps,
Conceptually-based shot noise modeling of
streamflows at short time interval, Stochastic
Hydrology and Hydraulics, Vol. 11, No. 6,
1997, pp. 483–510. DOI: 10.1007/BF02428430
[12] M. L. Kavvas and J. W. Delleur, A
statistical analysis of the daily streamflow
hydrograph, Journal of Hydrology,
Vol. 71, No. 3, 1984, pp. 253–275. DOI:
10.1016/0022-1694(84)90100-8
[13] Y. Yin, Y. Li and W. Bulleit, Stochastic
modeling of snow loads using a filtered Poisson
process, Journal of Cold Regions Engineering,
Vol. 25, No. 1, 2011, pp. 16–36. DOI:
10.1061/(ASCE)CR.1943-5495.0000021
[14] M. Lefebvre, Modelling and forecasting
temperature and precipitation in Italy, Atti
della Accademia Peloritana dei Pericolanti
- Classe di Scienze Fisiche, Matematiche e
Naturali, Vol. 97, No. 2, A2, 2019, 9 pages.
DOI: 10.1478/AAPP.972A2
[15] A. Avilés, R. Célleri, A. Solera and J. Paredes,
Probabilistic forecasting of drought events using
Markov chain- and Bayesian network-based
models: A case study of an Andean regulated
river basin, Water, Vol. 8, No. 2, 2016, 16 pages.
DOI: 10.3390/w8020037
[16] J. E. Caskey Jr., A Markov chain model for
the probability of precipitation occurrence in
intervals of various length, Monthly Weather
Review, Vol. 91, 1963, pp. 298–301. DOI:
10.1175/1520-0493(1963)091<0298:AMCMF
T>2.3.CO;2
[17] M. Drton, C. Marzban, P. Guttorp and
J. T. Schaefer, A Markov chain model of
tornadic activity, Monthly Weather Review,
Vol. 131, 2003, pp. 2941–2953. DOI:
10.1175/1520-0493(2003)131<2941:AMCMO
T>2.0.CO;2
[18] J. H. Matis, T. Birkett and D. Boudreaux,
An application of the Markov chain
approach to forecasting cotton yields
from surveys, Agricultural Systems,
Vol. 29, No. 4, 1989, pp. 357–370. DOI:
10.1016/0308-521X(89)90097-8
References:
[1] R. Knutti, Should we believe model predictions
of future climate change?, Philosophical
WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT
DOI: 10.37394/232015.2024.20.69