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Abstract: - One of the main challenges facing European experts is organizing a dynamically functioning and 

efficient transportation sector. Efforts in this regard have been focused mainly on projects aimed at developing 

intelligent automotive transportation systems (IATS), which integrate information and communication 

technologies (ICT) into transport infrastructures and vehicles (Car-to-Car, Network on Wheels, FleetNet, 

COM2REACT, CARTALK2000, SAFE TUNNEL, CVIS, GST, WILLWARN, etc.). This work is multifaceted 

and contingent upon specific objectives. One of the most significant problems in developing and implementing 

new transport systems is striking the right economic balance between upgrading existing infrastructure and 

introducing innovative technologies, as embodied by the concept of the so-called Intelligent Automotive 

Cooperative Transport System (IACTS), which considers interactions both between vehicles themselves and 

between vehicles and communication infrastructure. In this case, urban transport management encompasses 

real-time monitoring of road conditions, along with implementing controls or influencing traffic flows based on 

gathered data to alleviate congestion, enhance safety, efficiency, eco-friendliness, etc. For these purposes, 

neural networks, characterized by rapid information processing and decision-making capabilities, are widely 

employed. Specifically, they can be utilized for predictive analyses of vehicle malfunctions, forming the 

foundation for relevant services. The goal of this study is to design a neural network for a preventive diagnostic 

system targeting the technical status of vehicles within an IACTS framework, thereby mitigating the impacts of 

vehicular breakdowns during road operations. 
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1  Introduction 
As a component of an IACTS, a vehicle must be 

equipped with communication capabilities for 

exchanging information with other vehicles and 

with the road infrastructure. This requires special 

equipment integrated into the onboard network for 

collecting local data that can be shared wirelessly 

between vehicles via the Internet. The same 

information can be instantly transmitted to the 

central communication hub (system).  

The personal component can be embodied in 

mobile consumer devices such as smartphones and 

navigation systems, capable of running various 

IACTS applications. These devices are typically 

intended to assist individuals in their activities and 

utilize suitable hardware. Additionally, they can 

support IACTS applications that rely on interaction 

with other road users or infrastructure, such as 

providing information for visually impaired persons. 

The broad scope of the application extends to 

server-based solutions as well. 

From an architectural perspective, personal 

embedded devices or those connected via 

technologies like Bluetooth should be regarded as 

part of the vehicle's equipment. Such devices can 

provide supplementary information either generated 

internally within the system (like navigation data or 

vehicle technical status) or sourced externally via 

communication means. Additionally, the car can 

directly employ communication channels through 

the connected personal devices, simultaneously 

utilizing its own internal hardware capabilities to 

display information to the driver. 

Principles for standardizing road information 

have not yet been fully developed. Most of the work 

has focused on standardizing communication 

between infrastructure and users (i.e., from the 

vehicle control center, I2V). An important step in 
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this direction was the decisions based on "vehicle-

to-vehicle" (V2V), "vehicle-to-infrastructure" (V2I), 

and "vehicle-to-everything" (V2X) interconnections, 

aiming not only at improving the efficiency of the 

transport system itself but also enhancing safety for 

all road users. This approach could be implemented 

in a communication system that provides high-

quality and reliable alerts to drivers about both their 

own vehicle's condition and that of other vehicles 

involved in traffic. Clearly, a solution could be 

achieved by developing a service platform that 

includes a driver assistance system (intelligent 

monitoring of the technical state of the vehicle being 

used) in real time, [1], [2]. Despite being highly 

relevant, this issue remains complex and unresolved. 

Some researchers working in this field have 

focused on developing and utilizing motion sensors 

and traffic monitoring systems in large cities 

(including smart lighting for optimizing traffic, 

dedicated traffic information channels, near-real-

time traffic maps accessible through Google and 

NAVTEQ, and new generations of GPS navigators, 

etc.). 

However, the main challenge with this approach 

is that all these components and methodologies are 

not integrated, and therefore cannot provide 

comprehensive real-time information. A centralized 

database for intelligent traffic management on a 

large scale proves too slow to deliver results in real-

time. Additionally, GPS navigators (such as 

TomTom and Garmin) primarily feature one-way 

communication channels. Vehicles equipped with 

V2I, V2V, and V2X technologies are rare, and they 

cannot sufficiently populate the central 

communication station's database. 

The widespread availability of sensor data with 

high spatial and temporal resolution is expected to 

increase significantly due to rapidly falling prices 

[2], driven in part by their mass adoption. One 

method to address this challenge involves the 

extensive use of open data standards and 

standardized web services to structure and manage 

heterogeneous data.  

In this context, the primary issue lies in 

processing vast amounts of data from vehicle 

sensors in real time and integrating them into the 

control center software. The nomenclature of the 

hardware employed in IACTS is entirely determined 

by its concept and fundamental objectives. In this 

regard, the application of semantic-logical 

approaches, which inherently form the basis for 

developing artificial intelligence systems, can serve 

as a catalyst. 
 

 

2  Problem Formulation 
A key requirement for real-time motion control 

systems to generate meaningful contextual 

information from analyzed incoming data is its high 

quality.  

 

In this context, "quality" is defined by three criteria: 

1. Accuracy; 

2. Completeness; 

3. Timeliness. 

  

Traditionally, the parameter of "timeliness" has 

not received much attention, as analysis primarily 

focuses on processing static data with low temporal 

deviations. With the emergence of various real-time 

data sources (such as cameras, GPS sensors, mobile 

phones, traffic light controllers, etc.) and the 

development of new paradigms for real-time sensor 

applications (situational awareness), the timeliness 

of databases is rapidly gaining significance. 

Therefore, a mechanism must be developed to 

integrate sensor measurements and other real-time 

data, combining different data sources obtained 

through standard interfaces.  

The choice of hardware for the Intelligent 

Automated Traffic System (IATS) is entirely driven 

by its design and core objectives. Semantic-logical 

approaches, which form the foundation for 

developing AI-based systems, can act as a catalyst.  

Road traffic density continues to rise. It’s 

reasonable to expect that traffic volumes may soon 

reach levels where even minor obstacles (like small 

accidents or repairs) could lead to significant 

congestion. Such situations result in wasted time 

and resources, reduce traffic flow efficiency, and 

exacerbate environmental issues. In big cities, traffic 

jams significantly increase exhaust gas 

concentrations, making this problem particularly 

urgent. Hence, implementing new technologies to 

optimize traffic management is becoming 

increasingly critical.  

One way to enhance the performance of 

heterogeneous distributed networks, which 

constitute the mathematical model of IACTS, is to 

implement real-time traffic flow management based 

on up-to-date data regarding vehicles' technical 

conditions. This allows for dynamic reconfiguration 

of the transportation network during emergencies 

(activating backup routes or rerouting), [3], [4], [5]. 

Regardless, addressing this challenge requires the 

establishment of a preventive diagnostic system for 

vehicles, linked to the development of methods for 

predicting stages and causes of faults in critical 

components. This approach is also integral to the 

concept of the "smart" car. The evolution of 
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artificial intelligence in vehicles relies on the 

construction of suitable neural networks, 

characterized by their network structures.  

 To enhance the efficiency of heterogeneous 

distributed networks, which form the mathematical 

model of IACTS, real-time traffic flow management 

can be implemented based on current data about 

vehicles’ technical states. This enables dynamic 

reconfiguration of the transport network during 

emergencies, such as activating backup routes or 

rerouting, [2], [6]. Solving this problem necessitates 

the development of a preventive vehicle diagnostics 

system, aimed at identifying stages and causes of 

faults in critical components. This approach aligns 

with the concept of the "smart" car. Vehicle 

artificial intelligence relies on the creation of 

appropriate neural networks, characterized by their 

network structures.  

 The primary advantage of such networks is the 

high speed of information processing and decision-

making. That's why neural networks are utilized to 

process data in real time and predict failures. The 

main technical limitation of using neural networks is 

the reliance on statistical data, whose study and 

acquisition require considerable effort and 

resources.  

 Improving vehicle operational safety is a high-

priority task not just for today but also for the near 

future. While the level of vehicle safety is 

improving daily, issues related to accounting for 

external conditions (including the human factor) and 

the status of transport control systems (subsystems, 

components) that influence the occurrence of 

hazardous situations remain largely unaddressed. It 

is challenging to overstate the importance of vehicle 

safety settings achievable solely through the use of 

modern electronic diagnostic and control tools.  

 Recently, significant efforts have been directed 

towards broadening the application scope of 

experimental research methods. Typically, an 

experimental model is developed based on 

operational data, allowing for the inclusion of nearly 

all significant factors and providing a more 

comprehensive representation of the essential 

interconnections among the vehicle's subsystems 

that impact the final outcome.  

  Understanding the mechanisms underlying the 

vehicle's states is primarily tied to clarifying and 

determining which properties, to what extent, and in 

what manner affect this system. Initially, it is crucial 

to define its structure and properties using models of 

varying complexity. This method of specifying an 

abstract system proves effective when studying the 

system's properties becomes challenging due to the 

intricate nature of the data. It can be represented 

through information models. By compiling such 

models, an information database for the vehicle's 

neural network can be established. 

 Systematization of methods (mathematical, 

experimental, economic, etc.), based on the analysis 

of the reliability of engineering products, which are 

typically complex technical systems, could provide 

certain assistance in these activities. The main areas 

of such research can be identified as follows: 

 Study of failures in elements of a complex 

technical system and the reasons behind their 

occurrence; 

 Establishment of connections between elements 

within a complex technical system; 

 Development of methods for analyzing complex 

technical systems at both global and local levels; 

 Examination of conflicting (e.g., from a 

manufacturability standpoint) recommendations 

and achieving compromises when refining the 

general model. 
  

Generally, the mathematical approach is applied 

in two ways: for formulating and solving the general 

problem of reliability analysis in complex systems, 

and for addressing specific local issues (e.g., 

analyzing the stress state of a component). It can be 

argued that the mathematical formulation of the 

problem of studying complex system reliability 

inherently includes information about potential 

outcomes and the selection of an optimal strategy. 

Simultaneously, it should be acknowledged that the 

role of mathematical theories in achieving results 

might not be overstated. The strength of these 

approaches lies in the development of a search 

strategy that can yield successful outcomes. 

  

The decision-making process can be formulated as 

the following sequence of steps: 

 Selection of decision criteria and verification 

of their consistency; 

 Development of information models 

representing the entire neural network of a 

complex system (element selection, connection 

assignment); 

 Selection (or development) of effective 

methods for analyzing the resulting model. 

  

Initially, statistical methods were used to predict 

vehicle failures and calculate the optimal operating 

mode, but they failed to deliver highly accurate 

analysis results, [7], [8]. Numerous studies on 

reliability issues assume that operating time follows 

an exponential distribution. Under this assumption, 

the expected pattern of future item failures remains 

unchanged as long as the product is in service. This 
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invariant property (prior usage does not affect 

subsequent operability) strictly defines the 

boundaries of the distribution's applicability. 

Consequently, for elements subject to irreversible 

physical and chemical aging processes during 

operation, this invariant property does not hold. 

Interestingly, some works suggest that a complex 

system composed of multiple elements with non-

exponential failure-free operation time distributions 

can be approximated as a system with exponentially 

distributed operating time, [2]. 

 Substantial advancements have been made by 

employing adaptive neural networks in vehicle 

reliability studies. Typically, the failure distribution 

function and root causes are a priori unknown, 

reducing the accuracy of predictions and 

necessitating the processing of vast amounts of 

statistical data (Big Data). From this perspective, an 

intelligent preventive diagnostics system should 

incorporate a machine learning algorithm based on 

continuous monitoring of critical parameter values, 

which are signals received from sensors installed in 

the vehicle as intelligent agents (IA), [9], [10]. 

 

 

3  Problem Solution 
A modern car, comprising complex composite 

systems, represents a fusion of precision mechanics, 

electronics, and computer programs. Furthermore, to 

monitor the technical condition parameters of 

critical components, multiple sensors (IA) are 

typically used, with their information arriving in the 

form of complementary time-series data. 

 The goal of a vehicle's preventive diagnostics 

system is to monitor the technical state of individual 

vehicles and subsequently optimize the overall 

functioning of the transport system, which involves: 

 Monitoring the technical condition parameters 

of a vehicle; 

 Detecting a failure (malfunction) in a vehicle 

(component, assembly, equipment, etc.) at 

early stages, identifying the causes of the 

failure and its potential consequences; 

 Developing a minimal set of measures to 

maintain the transport system's functionality 

at an acceptable level (e.g., issuing a 

preemptive signal to the driver to reroute or 

switch lanes). 
  

The block diagram for the sequential solution 

development of a vehicle's preventive diagnostics 

system is depicted in Figure 1. 

 

 

 

 
Fig. 1: Block diagram for the sequential solution 

development of a vehicle's preventive diagnostics 

system 

 

The most important diagnostic functions in terms of 

the significance of the results obtained are: 

 Identification of specific defects (failures) in 

elements and units, i.e. detection of a failure 

(malfunction) with the determination of the 

location and, if possible, the causes of the 

failure, which in turn allows not only correcting 

the current situation but also recording the 

failure for gathering statistics; 

 Monitoring the technical state of the vehicle 

allows prompt reception of summarized (or, if 

required, detailed) information on its condition 

and transmitting it to the central server (CS) for 

arranging coordinated actions by repair services 

that are adapted to the actual technical state of 

the vehicle; 

 Forecasting the technical state of equipment 

elements (units) and the progression of detected 

defects, enabling preventive measures to avoid 

potential failure of vehicle elements (units); 

 Forecasting the overall technical condition of 

the vehicle will enable the identification of 

trends and the significance of deviations in 

component parameters from their design 

specifications, allowing for proactive planning 

of maintenance activities. 

 

The forecasting system utilizes mathematical 

modeling, incorporating multiple control parameters 

and detailed information on the vehicle's technical 

state, such as bearing vibration. This approach 

involves developing a comprehensive database on 
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the vehicle, employing advanced mathematical 

tools, and dedicating considerable time to fine-

tuning the system to match the vehicle's actual 

characteristics across its entire spectrum of 

operating conditions.  

It is essential to acknowledge that mechanical 

faults do not arise suddenly during vehicle 

operation. Hence, preventive diagnostics should 

emphasize continuous monitoring of the operational 

readiness of vehicle components and early detection 

of impending failures. Methods for assessing the 

technical condition of vehicles using specialized 

algorithms involve a combination of the following 

fundamental events and indicators: 

 Directly measured diagnostic parameters 

exceeding established limit values; 

 Presence of an adverse trend in either directly 

measured or computed diagnostic parameters; 

 Simultaneous presence of an adverse trend in 

multiple diagnostic parameters, even though 

each individually remains within acceptable 

limits; 

 Spontaneous shutdowns occurring without the 

driver's command; 

 Data from the integrated diagnostic system; 

 Vehicle technical data, including records of 

inspections, certifications, and maintenance 

procedures. 

 

Although each case of emergency or pre-

emergency situations in complex technical systems 

requires individual consideration, the more accurate 

the anomaly identification process is, the earlier in 

time an impending failure can be determined. Thus, 

the preventive intelligent diagnostics system will 

have more time for network reconfiguration (such as 

activating backup resources or rerouting). 

The rate at which an emergency situation 

unfolds in monitored zones should dictate both the 

frequency of polling and the prioritization of 

equipment usage. As the rate of change in the 

observed parameter increases, so too should the 

priority assigned to servicing network devices. 

Simultaneously, it's imperative to adjust the polling 

frequency in direct proportion to the evolving 

dynamics of the monitored parameter. 

Applying identification methods to the analysis 

of time-series data from diverse sensors (IAs) 

produces markedly distinct error curves (ROCs). 

This variance stems from the fact that different 

emergencies may emerge, each detected and 

evaluated uniquely by different sensors. 

Consequently, constructing composite models that 

leverage sensor data from multiple monitoring 

servers is anticipated to boost performance and 

bolster the diagnostic system's overall stability. 

These models can be combined by aggregating 

event occurrence probabilities using formulas for 

joint probability calculations. 

While addressing emergencies or near-

emergency scenarios in intricate technical systems 

demands tailored approaches, enhanced accuracy in 

anomaly identification enables earlier detection of 

impending failures. This affords the preventive 

intelligent diagnostics system additional time to 

execute network reconfigurations, such as engaging 

backup resources or initiating rerouting protocols. 

Each network device will be assigned a unique 

probability density function for a specific metric, 

which will be updated as new data (from new 

operating modes or loads) emerges. In conjunction 

with retraining the algorithm for identifying 

emergency situations in complex technical systems, 

this approach embodies the principle of model 

adaptability. The proposed monitoring methodology 

emphasizes the necessity to develop a method for 

proactively identifying the technical condition of 

components in a complex system, based on the 

analysis of their time-series metrics. 

Consequently, the primary objective of this 

study is to optimize the monitoring procedure for 

vehicle components' functional states by enhancing 

the predictive capability to detect transitions from 

normal to pre-failure or failed states. This aims to 

mitigate or prevent emergency situations and 

enhance reliability by minimizing uncertainties in 

technical condition assessments. 

With this target setting, the subject of study can 

be the network monitoring subsystem, with its key 

component being the monitoring server, and the 

subjects of monitoring can be regarded as network 

devices (vehicles) operating within an intelligent 

transport cooperative system, characterized by 

operational, non-operational, and pre-failure 

technical states. 

The scientific task then is to develop a method 

for preventive identification of the status of network 

vehicles to enhance the efficiency of the monitoring 

procedure, ensuring reliable and accurate results 

through predictive analytics. 

 

The number of types of vehicle technical states is 

chosen considering the following factors: 

 Having a small number of vehicle technical 

states, prescribed as just two types (normal and 

abnormal), may hinder optimizing responses to 

technical malfunctions; 

 Conversely, having a large number of vehicle 

technical states can lead to blurred boundaries 
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between them, complicating the decision-

making algorithm. 

  

The decision-making process can be reduced to 

the following sequence of actions, [10], [11]: 

1. Selection and Verification of Decision 

Criteria: Ensuring the consistency of decision-

making criteria; 

2. Development of a Structural Model: Creating 

a structural or network model of a complex 

system, which includes selecting elements and 

assigning connections between them; 

3. Selection or Development of Analysis 

Methods: Choosing or developing effective 

methods for analyzing the resulting model. 

  

The software and hardware complex of the 

diagnostic system, as part of the central control 

system, should have the capacity to perform the 

following functions: 

 Data Collection: Automatically gathering data 

from monitored objects, with an option for 

manual input. 

 Database Maintenance: Maintaining a 

comprehensive database of monitored objects, 

including records of failures, maintenance 

activities, and repairs. 

 Operational Log Management: Keeping 

detailed logs of defects and events. 

 Condition Assessment: Evaluating the state of 

vehicles based on the technical conditions of 

their components. 

 Message Generation: Producing operational 

notifications and alerts. 

 Technical State Prediction: Forecasting future 

technical states of vehicles and estimating their 

remaining service life. 

 Real-time Diagnostics Utilization: Using real-

time diagnostic information to train the neural 

network, taking into account the 

responsibilities of individual drivers, and 

providing relevant notifications to both the 

responsible driver and others within their 

designated area. 

 

Thus, the most effective classification of the 

technical conditions of a vehicle and its components 

is as follows: 

 Good: Corresponding to the established 

standards of operation for the vehicle and its 

components. 

 Acceptable: There are deviations from the 

established standards of operation for the 

vehicle, but they remain within permissible 

value limits. 

 Dangerous: Subject to enhanced control and 

preventive measures, identified by the CS 

through analysis with a neural network of 

potential causes and consequences of 

breakdowns. In such cases, the obtained data 

are utilized by the neural network for self-

training. 

 Emergency: Indicates actual failure of the 

vehicle.  

 

This classification enables consideration of the 

criticality of a particular vehicle failure by 

introducing correction factors, which initially can be 

determined based on expert assessments. The 

correction factors are applied according to the 

failure classification as follows: 

 - extreme criticality k1;  

 - high criticality k2;  

 - moderate criticality k3;  

 - low criticality k4,  

 

In this context, 
 

0 ≤ kl pij(t) ≤ 1.                (1)
  

 

Here kl, i=1,N represent the correction 

coefficients, pij(t) i, j=1,N denote the expert-

estimated probabilities of subsystem i failing due to 

the failure of subsystem j at the exploitation time  t.  

Since both the failure probabilities of vehicle 

systems and the correction factors are initially 

chosen based on expert assessments, it's 

recommended to determine them by minimizing the 

function: 

min,)()(
1,

, 


tPtpk
N

ji

jiij                (2) 

 

where kij , i, j = 1,N are the correction coefficients, 

pij(t),  i, j = 1,N  represent the expert-estimated 

probabilities of failures for subsystem i due to 

failures in subsystem j at the exploitation time t, and 

P(t) is the expert-estimated probability of the 

vehicle’s failure at the exploitation time t. The 

system of constraints for the coefficients kij takes the 

form (1). 

It is important to highlight the significance of 

hardware (specifically installed sensors), as the 

more accurate the identification of a failure, the 

earlier it can be detected, allowing the preventive 

intelligent diagnostic system more time to 

reconfigure the network (e.g., reroute traffic). Here, 

it is essential to correlate the polling frequency of 

monitoring zones with the dynamics of failure 

progression, i.e., increasing the polling frequency 
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proportional to the rate at which the monitored 

parameter approaches a critical value. 

It is believed that the most suitable 

representation of the information model 

characterizing failures in a complex system is in the 

form of a neural network (network graph). In this 

case, the structure of the neural network should 

reflect the requirement that the resulting solutions 

consider variability associated with probability. 

Therefore, the following hypothesis can be proposed 

for the development of information models 

describing vehicle reliability: the behavior and 

technical state of a car as a complex technical 

system are determined by the structure of 

interactions among its component processes, which 

are inherently probabilistic or uncertain. 

The importance of this becomes clear when we 

remember that explaining the mechanisms behind 

the system's behavior and its states involves 

determining which properties, to what degree, and 

under what conditions a given system possesses. 

Initially, the structure and properties of the system 

are defined using sets of models that vary in their 

organization. The concept for forming the 

methodological framework for studying the 

reliability of complex systems is illustrated in 

Figure 2. 

Reliability analysis of IACTS elements can be 

conducted using a system approach. It should be 

emphasized that the conceptual foundation for 

applying this approach to reliability issues has not 

yet been fully established. However, having clear 

guidelines that validate certain decisions could 

substantially enhance the effectiveness of the 

method. 

To address this issue, a neural network, modeled 

as a hierarchical graph of failures, can be developed 

during the second stage. Each branch of the neural 

network represents the probabilities of failures of 

individual elements (such as systems, parts, etc.) 

that lead to the overall system becoming non-

operational, [3]; (Figure 3).  

In this network, vertex 1 represents the 

influence of either the driver or the environment on 

vehicle failure, while vertices 2 through N 

correspond to vehicle subsystems. The flow values 

along the respective paths (pi,j)  denote the 

probabilities of subsystem i failing due to the failure 

of subsystem j. Vertex B symbolizes the sink, and 

the flow values along paths (pi, B) indicate the 

probabilities of failure within the corresponding 

subsystem i.  

 
 

 

 Fig. 2: Conceptual framework for applying a 

system approach to analyzing the reliability of 

complex systems and their key components 

(subsystems) 

 

Each failure can be assigned a quantitative 

measure reflecting its contribution (weight) to the 

overall risk. Initially, parameter values are typically 

determined based on expert evaluations, implying 

subsequent use of a self-learning procedure for the 

developed neural network. Expert assessments can 

be provided by vehicle manufacturers or derived 

from established methodologies, [11], [12]. Given 

that the proposed system entails refining these 

estimates based on operational data from a statistical 

database of vehicle failures, relying primarily on 

manufacturer data is most advisable. 
 

 
Fig. 3: Neural net for vehicle failures (рij – 

probabilities of subsystem i failure due to  

subsystem j failure) 
 

A quantitative evaluation of the failure's 

contribution (weight) to the overall risk can be 

calculated for each failure. Initially, parameter 

values are commonly defined based on expert 

assessments, necessitating the subsequent 

application of a self-training procedure for the 
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constructed neural network. Certain connections 

might be missing because the corresponding 

probabilities are zero. 

 

It is evident that 

                  

,1)()(
1,

, 


tPtp
N

ji

ji

            

 

 

and the probabilities  

                




N

ji

jiijij tpktp
1,

exp

, )()(  

themselves are independent. Each node in the graph 

represents a subsystem, so further analysis is 

conducted using a systems approach, assuming that 

the sum 

                   

),()( ,

1,

,

, tptp ji

M

lk

lk

ji 


 

where )(,

, tp lk

ji   is the probability of failure of parts 

(components) in the corresponding vehicle 

subsystem. 

Thus, the proposed neural network has a 

hierarchical structure.  

 

All considered probabilities of vehicle failures 

(P(t), )(),( ,

,, tptp lk

jiji ) in the proposed neural 

network are generally functions of time.  

In many studies addressing reliability issues, it 

is assumed that the failure probability of a complex 

technical system follows an exponential distribution. 

This distribution describes exponential degradation, 

wherein the system progressively accumulates 

damage over time. It is believed that the anticipated 

pattern of product failures remains unchanged as 

long as the product continues operating. This 

property of invariance—whereby prior usage does 

not impact subsequent performance—strictly 

defines the boundaries of the distribution's 

applicability. 

Therefore, as an initial expert assessment, it is 

reasonable to assume that vehicle failures follow an 

exponential distribution, with parameters 

determined by the expert assessment method. This 

method also sets the flows (probabilistic parameters 

of the neural network) (Figure 3), which serve as the 

initial dataset for the self-training of the neural 

network. 

Identifying the technical condition based on 

time-series sensor readings may result in several 

errors due to potential discrepancies in how 

different sensors assess specific deviations. 

Additionally, this necessitates creating a database of 

vehicle failures during the system's self-training 

phase to determine the actual characteristics of the 

vehicle across its full range of operating modes 

(adapting the system to the vehicle). 

 

The neural network operates as follows: 

 When the technical condition of the system 

(part) is deemed "acceptable" based on sensor 

readings, the polling frequency increases; 

 If an unfavorable trend in sensor readings is 

detected or the technical condition of the 

system (part) is classified as "dangerous," a 

request is sent to the CS to analyze the 

impending breakdown using a neural network. 

This analysis identifies both the potential 

causes and consequences of the failure. The 

remaining lifespan of the faulty component 

(part) is then calculated. If it approaches the 

critical threshold, a command is issued to 

redirect the vehicle to the outer lane. The 

collected failure data is utilized to fine-tune the 

parameter λ of the exponential distribution 

(Figure 4). 

 

 
Fig. 4: Expert function of vehicle failure distribution 

(          ) and failure distribution function obtained 

after self-training of the predictive maintenance 

system (         )  

 

To fully implement a preventive maintenance 

system for monitoring the technical condition of 

vehicles within the IACTS, it is clear that we need 

to focus on utilizing artificial intelligence 

 

 

4  Conclusion 
The volume of road traffic is continuously 

increasing due to the rising number of vehicles and 

growth in trade activity. As a result, it's easy to 

foresee a scenario where traffic congestion reaches 

levels at which even minor obstacles like damages 

or repairs could trigger significant gridlocks. This 

not only wastes time and money but also severely 

impacts the efficiency of freight transport while 
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exacerbating environmental issues. This problem 

becomes particularly acute in densely populated 

urban areas as traffic jams multiply the 

concentration of exhaust fumes. Hence, 

implementing advanced technologies capable of 

streamlining traffic flow through prompt responses 

to vehicle malfunctions has become imperative. 

The advent of computer-controlled automotive 

systems has spurred the development and 

widespread adoption of sophisticated fault-detection 

electronics. The next logical step involves 

integrating these systems into Intelligent Automated 

Control and Transportation Systems (IACTS), 

enabling proactive monitoring of the technical 

condition of vehicles in road traffic. 

The aforementioned approaches are extensively 

utilized, notably in the concept of establishing a 

Global Diagnostic Network, designed to integrate 

various diagnostic solutions worldwide (e.g., USA). 

These programs coalesce into a system that 

continually evolves under the supervision of 

intelligent diagnostics. Data collected by the system 

undergo processing, and subsequently, textual 

reports detailing the vehicle's condition, identified 

defects and prognostic indicators are conveyed to 

the user. The open architecture of the Global 

Diagnostic Network permits adaptation to emerging 

challenges by assimilating external information. 

Beyond diagnosis, the primary objective of the 

Global Diagnostic Network encompasses 

prevention. Thus, it holds the potential to evolve 

into a key component within the broader ecosystem 

of mobile network operator services. In the medium 

term, once statistical insights from deploying the 

Global Diagnostic Network become available, the 

insurance sector might emerge as another driving 

force behind this transformation. 

One of the contemporary challenges is 

developing methods to warn about the stages and 

causes of defects in critical components of vehicles 

operating within the IACTS. Addressing this 

challenge includes incorporating these methods into 

the concept of an "intelligent" car. The evolution of 

artificial intelligence for vehicles relies on the 

establishment of neural networks. 

The primary advantage of these networks lies in 

their rapid processing of information and swift 

decision-making capabilities. Consequently, neural 

networks are employed to handle data in real time 

and utilize it for predicting failures. However, a 

significant technical constraint in applying neural 

networks is the reliance on statistical data, whose 

analysis necessitates considerable resources. 

Although the level of vehicle operational safety 

is improving daily, issues concerning the 

consideration of external factors (including the 

human element) and the behavior of transportation 

control systems (subsystems, parts) that contribute 

to hazardous situations remain largely unaddressed 

to date. 
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