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Abstract: – The joint processing of optical imagery and signals from an onboard fluxgate magnetometer for 
landmine detection is described in this paper. The basic sensors carried by unmanned aerial vehicles (UAV) 
enable remote landmine detection, improving the safety of demining. The general methodology for processing 
both optical and magnetometric data is described. Modern machine learning (ML) and deep learning (DL) 
techniques are engaged for landmine detection; in particular, optical images are analyzed by a convolutional 
neural network (CNN), while statistical anomalies are extracted from magnetometer signals. Data integration is 
performed at the optical and magnetometric detection results level using the Bayesian probabilistic rule. The 
combination of an optical camera and a magnetometer provides significant reliability enhancement in unburied 
landmine detection. The proposed methodology will be quite useful for the humanitarian demining of a wide 
area, improving the reliability of data obtained by remote sensing methods, thus accelerating wide area 
exploration. 
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1  Introduction 
Currently, the problem of humanitarian demining is 
emerging acutely all over the world, but in Ukraine, 
it has acquired a terrifying scale. Traditional 
methods for landmine detection remain dangerous 
and insufficiently performant when applied to a 
wide area. 

Nowadays, innovative remote detection of 
explosive devices with UAVs is actively developing 
worldwide. On the other hand, the presently known 
methods for remote detection of landmines and 
other explosive objects using UAVs are not 
sufficiently reliable. Unfortunately, it must be 
conceded that there is no universal method for 
landmine detection with UAVs that would provide 
acceptable reliability. Nevertheless, the rapid 
development of optical and signal sensors, as well 
as data analysis methods, offers hope for the 
emergence of remote systems that will effectively 
meet the requirements of humanitarian demining in 
the foreseeable future. In the meantime, an 
acceptable solution to this problem may be to 
integrate the results of optical and magnetometric 
surveys with UAVs. 

The objective of this research is to develop a 
formalized model for integrating optical and 
magnetometric data in landmine detection using 
UAVs. 
 
 
2  State of the Art 
Landmine visual detection in color and infrared 
images acquired from UAVs remains an important 
tool for humanitarian demining. Multi- or 
hyperspectral centimeter-resolution imaging in the 
optical bands allows for the detection of identifying 
features of hidden objects' presence, such as dry 
grass among intact vegetation. Landmine detection 
based on temperature differences with the 
surrounding ground is widely used. Such differences 
can be extracted from images of mid-wave infrared 
(MWIR, 3-5 μm) or long-wave infrared (LWIR, 7-
14 μm). 

The scientific fundamentals of computer-aided 
landmine detection in optical images involve 
modern methods for pattern recognition using 
reference features or anomaly detection, [1]. The 
goal is typically to assess the probability of a 
landmine's presence at a specific point in the image 
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based on the multidimensional optical signal 
features from the corresponding area in the image 
that matches the size of the landmine, [2]. 
Landmines and other explosive objects on the land 
surface exhibit various identifying features, 
including specific spectral signatures [3], which can 
be detected in ultra-high spatial resolution optical 
images acquired from UAVs. 

Centimeter-resolution infrared imagery makes it 
possible to confidently detect landmines and 
unexploded ordnance by thermal contrast, [4]. Good 
detection accuracy is provided by specially trained 
artificial neural networks, [5]. 

Analysis of existing experience shows that in 
recent years, the involvement of unmanned aerial 
vehicles (UAVs) with lightweight non-optical 
sensors, such as magnetometers, metal detectors, 
and ground-penetrating radars (GPRs), can 
significantly increase the performance of landmine 
detection, [6]. The advantages include the ability to 
perform precision autonomous flight, multiple 
sensor installations, high productivity, significant 
cost reduction, and, most importantly, operator 
safety, [7]. A series of experiments have 
demonstrated a fairly high level of landmines and 
other explosive object detection using a UAV 
platform equipped with a magnetometer, [8]. 

GPR is one of the most efficient sensors for 
buried landmine detection. Modern GPRs are able to 
identify landmines by analyzing various patterns in 
the reflected radar signal, [9]. 

The combination of methods with different 
physical natures enhances the efficiency and 
reliability of detecting target objects, [10]. To fuse 
sensors of different physical natures for landmine 
detection, various methods can be applied, such as 
the Bayesian approach, Dempster-Shafer theory, 
rule-based fusion, voting, fuzzy logic, Kalman filter, 
and others, [11]. 
 
 
3   Methodology 
The general approach to landmine detection with 
UAVs involves mapping the study area separately 
with optical and magnetometric drones and then 
integrating the results obtained. Additionally, 
sensors of different physical natures are typically 
installed on different drones and require different 
flight and surveying modes. This approach does not 
require internal modification of landmine detection 
algorithms by various sensors, as a common data 
representation model ensures matching. In this 
study, the model used is a probabilistic map of the 
study area, partitioned according to a probability 
threshold into detected landmines and an empty 

background. The probability output is supported by 
multiple detection algorithms. The integration of 
data obtained by different methods is also carried 
out within the framework of a unified probabilistic 
model, such as a Bayesian one, [12]. 
 
3.1 Optical Detection 
Landmine detection in optical images is carried out 
using both traditional machine learning (ML) and 
deep learning (DL) methods. A pre-trained 
convolutional neural network (CNN) of YOLO [13] 
architecture, especially its version Ultralytics 
YOLOv8 [14], is used for landmine detection in 
visible imagery (Figure 1), [15], [16], [17], [18], 
[19], while statistical anomaly extraction within the 
circular scanning window is utilized for landmine 
detection in thermal imagery (Figure 2).  
 

 
Fig. 1: Detected uncovered landmines in the optical 
image by CNN 
 

   
a                                      b 

Fig. 2: Detected buried landmines in thermal image: 
a – input LWIR image, b – probability distribution 
with threshold masks 
 

Knowing the required resolution of optical 
imaging from a UAV, it is possible to plan a drone 
flight mission for mapping an assigned area. 
 
3.2  Magnetometric Detection 
A magnetometer is a trace instrument, but it is 
possible to project the zone of its sensitivity (where 
a landmine can be detected) into the land surface. 
The magnetometer’s sensitivity zone radius r (see 
Figure 3) will be determined by the landmine’s 
magnetic field magnitude M, the background 
magnetic noise μ, and the law of the 
magnetometer’s signal decreasing with a distance 
S(r), [20], [21], [22], [23]. 
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In response to a quadratically decreasing of the 
magnetometer’s signal with a distance 
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where ψ is the signal-to-noise ratio value required 
for reliable detection. 
 

 
Fig. 3: On the determination of the magnetometer’s 
sensitivity zone radius 
 

Having the magnetometer’s sensitivity zone 
radius, it is possible to determine the flight 
parameters of the magnetometric drone for 
continuous coverage of the entire study area with 
magnetometer footprints, [24], [25], [26], [27]. 
Inside each footprint, it is possible to calculate the 
probability of a landmine occurrence by anomaly 
statistical detection when the magnetometer signal 
exceeds the background, [28]. 
 
3.3  Integration 
The integration of the two maps obtained for 
landmine detection probability – as the results of 
optical po and magnetic pm surveys – can be 
performed quite easily. Spatial integration consists 
of the union/intersection of spatial segments that 
exceed a predefined probability threshold. Within 
the intersection segment, the Bayesian probability 
summation [29] is utilized: 
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Here, p∑ is the resultant probability. 

Within the non-overlapping extents of 
segments, the probability remains preserved (Figure 
4). 

As a result of optical and magnetometric data 
integration, a single joint map of the landmine 
detection probability is derived. 

 
Fig. 4: Probabilities summation within overlapping 
segments 
 

 

4   Demonstration 
In this section, some illustrations are provided for 
two major types of landmines – antitank and 
antipersonnel - and both contain enough magnetic 
metal to make magnetometer detection reasonable.  
 
4.1  Antitank Mines 
The most anticipated candidate for fused optical and 
magnetic detection is the antitank landmine, which 
was represented in our research with various types 
of TM series: TM-62M, TM-62P, and TM-72.  
 

 
(a) 

 
(b) 

 
(c) 

Fig. 5: Antitank landmines of TM-62 series: 
a) TM-62M perfectly detected by YOLO on the test 
site; b) TM-62M hidden in vegetation in the field;   
c) TM-62P3 (plastic casing) detected on the test site 
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There is a growing trend in the use of robotic 
platforms for the installation of this type of mine. 
Therefore, the probability of installation on the 
surface remains high, making both optical and 
magnetic detection methods relevant. One of the 
challenges is the presence of similar antitank plastic 
mines of the TM 62P series, while another challenge 
is the appearance of fake mines made from the 
cheapest materials. 
 

 
(a) 

 
(b) 

 
(c)  

 
(d) 

Fig. 6: Steps of processing magnetometric data for 
TM-62M 
a) raw data; b) noise removed, trend from external 
influence present; c) trend removed; d) probability 
(threshold 0.9) 

Currently, no tools represent the results of 
magnetic detection "out of the box" in such a user-
friendly way as modern computer vision tools based 
on RGB imagery do. Magnetometric data is subject 
to processing and requires some operator skills. 

Let’s consider the case of Figure 5(a) – ideal 
conditions of the test site, where the optical 
detection shows a confidence of 99% (for the sake 
of simplicity, we will treat confidence returned by 
CNN and probability as synonyms), and magnetic 
detection shows near 95% (Figure 6(d)). So, 
according to formula (2), the resulting probability is 
close to 1, which is just what is expected in ideal 
conditions. 
 

999.0
)95.01()99.01(95.099.0

95.099.0





p  

 
For a more complex scenario like Figure 4(b), 

where the mine is partially hidden and optical 
detection indicates very low confidence, we will 
assume that magnetic detection yields the same 
result as it did on the test site – 95%. The 
calculation will be as follows: 
 

44.0
)95.01()04.01(95.004.0
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
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In such cases, we need to keep the threshold 

low, which may increase the false alarm rate. 
However, the fusion of probabilities still makes 
sense. 

Finally, let’s consider the case of a plastic mine. 
Magnetic detection gives zero probability, so 
probability fusion makes no sense. The same 
situation is observed in the case of a buried TM-
62M landmine. Optical detection gives zero 
confidence, while magnetic detection can still be 
more than 90% accurate. In such a case, optical 
detection can be done using indirect signs, but it is 
reasonable to use a CNN trained on a different 
dataset, or even some other method of image 
analysis based on anomaly detection, so the total 
configuration of the research will be different. 

 
4.2  Antipersonnel Landmines 
Another type of landmine, the antipersonnel 
MON100, optical detection on Figure 7, magnetic 
detection on Figure 8, is even more illustrative for 
the fusion method of detection because this type of 
antipersonnel mine is installed manually and, in 
most cases, concealed. Therefore, perfect optical 
detection is less likely than for the TM series. 
Additionally, due to its shape, more training data is 
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required to provide appropriate detection by CNN. 
The MON100 exhibits variability in forms in 
photos, so more data is needed for the training 
dataset. 
 

 
Fig. 7: Antipersonnel MON100 detection:  
mistakenly detected as TM mine because of its 
round shape and mistakenly detected as very similar 
MON200 

 
Currently, the detection of MON100 and 

MON200 is less confident than that of the TM 
series. Combining MON100 and similar MON200 
into a single class may be reasonable. Using the 
MON series as an example, we can demonstrate that 
the optimal dataset structure for optical landmine 
detection is still the subject of active research. 

 

 
(a) 

 
(b) 

Fig. 8: Magnetic detection of MON100 
a) after trend removal b) probability of detection 

 
So, we can take optical detection confidence 

near 0.7, and magnetic detection probability near 
0.97. From the formula, we will get: 

96.0
)97.01()7.01(97.07.0

97.07.0





p  

 
That is a rather satisfactory probability. 

 
Antipersonnel landmine MON200 (Figure 9) is 

a more massive modification of MON100. 
 

 
(a) 

 
(b) 

Fig. 9: Antipersonnel MON 200 detection:  a) after 
trend removal and b) probability of detection 

 
 

995.0
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97.086.0

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One more antitank landmine of the TM series - 

TM72 (Figure 10). 
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(a) 

 
(b) 

Fig. 10: Antitank TM72, a) optical detection and b) 
probability distribution acquired from magnetometer 
data: 

999.0
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
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One more antipersonnel landmine MON90 

(Figure 11). 
 

 
(a) 

 
(b) 

Fig. 11: Antipersonnel MON90: 
a) optical detection, b) probability distribution 

from magnetometer data 
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5   Discussion 
In the approach demonstrated, an assumption was 
made that the confidence returned by CNN is of the 
same nature as the probability obtained by statistical 
anomaly detection done for magnetic detection. 
More theoretical explanation is needed to prove this 
concept or find an alternative way to calculate 
probability based on deep learning methods.  

The two methods of detection chosen for 
demonstration are obviously at different levels of 
complexity and stages of development. Computer 
vision has rapidly advanced in recent years, 
significantly advancing methods of optical detection 
compared to those using magnetometers or ground-
penetrating radar. There is potential for broader use 
of deep learning in magnetic detection. Further 
investigation is needed to prove the concept of not 
only detecting magnetic anomalies but also 
detecting magnetic signatures of different 
landmines. New tools are also required to simplify 
the preprocessing stage for magnetometric data. 

 
 

6   Conclusion 
As a result of the study, a general methodology of 
optical and magnetometric data integration for 
landmine detection with UAVs is proposed. This 
methodology ensures a unified probabilistic model 
for landmine detection using sensors of different 
physical natures, accompanied by the Bayesian 
summation of partial probabilities obtained. The 
output of the UAV-acquired data processing is a 
map of the landmine detection fused probability 
over the study area. The provided examples of 
landmine detection using optical and magnetometric 
data integration demonstrate an accuracy that is 
acceptable for practical applications. 

The proposed methodology is flexible and 
universal, and it can be easily extended to other 
types of UAV onboard sensors, such as thermal 
infrared cameras or GPRs (ground penetrating 
radars). 

Future research should be directed towards 
improving the recognition architecture, for example, 
using FSOD (few-shot object detection) [30], as 
well as refining the model for the integration of 
landmine detection outputs. 
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