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Abstract: - Airborne particles affect the health of the population. As particles decrease in size, they can 
penetrate deeper into the respiratory system, reaching the terminal bronchioles and alveoli. Particles as small as 
0.1 µm in diameter may translocate into the bloodstream, potentially impacting various organs. Additionally, 
the smaller the particle size, the longer they remain suspended in the air, thereby increasing their deleterious 
damages. The aim of this work is to study the size distribution of airborne particles emitted from anthropogenic 
sources of air pollution, with a special emphasis on estimating the distribution of micro and nanoparticles 
considered the most harmful to health. The Bidimensional Empirical Mode Decomposition (BEMD) algorithm 
was used on micrographs of the particles obtained by Scanning Electron Microscopy (SEM). BEMD is a 
current empirical computational tool applied to image analysis that allows extracting non-linear heterogeneous 
oscillations of brightness. We studied ROFA (Residual Oil Fly Ash) from industrial sources and DEP (Diesel 
Exhaust Particles) from vehicular emissions as airborne particles. After collecting the particles on filters, 
micrographs were taken using SEM at different magnifications to which the BEMD algorithm was applied. 
Particle size and asymmetry distributions were obtained for each mode, allowing the identification of the most 
deleterious particles. The methodology employed herein is relatively simple and effective for inferring the 
impact of airborne particulate matter on health and the environment. 
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1  Introduction 
Proper characterization of bidimensional structures 
significantly impacts applications, leading to better 
decisions in assessing pollution consequences.  
Multiscale methods and algorithms, such as 
Bidimensional Empirical Mode Decomposition 
(BEMD), are continuously evolving. Their 
optimization allows for simpler, more accurate, and 
precise representation of information. Empirical 
Mode Decomposition (EMD), introduced by     

Huang et al. in 1989 [1] for one-dimensional 
analysis, is effective for non-stationary and 
nonlinear time series. In 2003, [2], extended EMD 
to BEMD for image texture analysis, leading to 
ongoing advancements in BEMD, [3]. The BEMD 
algorithm is a computational tool that enables the 
extraction of nonlinear, heterogeneous brightness 
oscillations from an image. This study focuses on 
analyzing multimodal images and their 
decomposition using BEMD, applied to Scanning 
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Electron Microscopy images of airborne urban dust 
particles.  

Air pollution is a mixture of gasses and 
suspended Particulate Matter (PM) from both 
anthropogenic sources [4] and natural events [5]. 
Urban environments are significantly impacted by 
airborne dust particles, which pose risks to human 
health, environmental quality, and urban 
infrastructure. Epidemiological investigations reveal 
a correlation between elevated concentrations of PM 
from different sources and heightened rates of 
morbidity and mortality associated with 
cardiopulmonary diseases, as well as an increased 
incidence of lung cancer, [6], [7], [8]. In 2009, the 
World Health Organization [9] (WHO, 2009) 
declared that air pollution was responsible for 8% of 
lung cancer and 5% of deaths from cardiopulmonary 
causes in the world. Furthermore, in 2013, the 
International Agency for Research on Cancer 
(IARC) classified MP as carcinogenic to humans, 
[10].   

In this context, several in vitro and in vivo 
experimental studies have provided conclusive 
evidence regarding the direct genotoxic effects of 
airborne PM resulting from its physicochemical 
characteristics, as well as the indirect genotoxicity 
observed in response to PM-induced inflammation, 
[11], [12]. Specifically, concerning the subjects 
discussed in this article, various authors have 
consistently demonstrated and continue to elucidate 
the detrimental impacts of anthropogenic particulate 
matter derived from urban and industrial sources, 
such as diesel exhaust particulate matter (DEP) and 
Residual Oil Fly Ash (ROFA), on human health, 
[13], [14], [15], [16], [17], [18]. 

The atmosphere, whether in urban or remote 
areas, contains significant concentrations of aerosol 
particles sometimes as high as 107-108 cm-3. The 
diameters of these particles span over four orders of 
magnitude, from a few nanometers to around 
100μm. To appreciate this wide size range, one just 
needs to consider that the mass of a 10μm diameter 
particle is equivalent to the mass of one billion 10-
nm particles. Combustion generated particles, such 
as those from automobiles, power generation, and 
woodburning, can be as small as a few nanometers 
and as large as 1μm. Windblown dust, pollens, plant 
fragments, and seasalt are generally larger than 
1μm. Material produced in the atmosphere by 
photochemical processes is found mainly in 
particles smaller than 1μm. The size of these 

particles affects both their lifetime in the 
atmosphere and their physical and chemical 
properties. It is therefore necessary to develop 
methods to mathematically characterize particle size 
distributions, [19].  

The topic concerning the number size 
distribution of particles in the range 1-1000 nm is 
presently under active investigation in current 
research, e.g. various advanced particle size 
magnifiers were developed in the last ten decades, 
[20], [21]. SEM and image processing have been 
effectively employed in prior studies to assess the 
morphology, particle size, and particle size 
distribution of airborne hardwood sanding dust, 
[22].  

The aim of this work is to study the size 
distribution of airborne particles emitted by 
anthropogenic sources of pollution, with a special 
emphasis on estimating the distribution of micro- 
and nanoparticles, which are considered the most 
harmful to health.  
 

 

2  Problem Formulation 
To achieve the precision needed for obtaining air 
particle size distribution and morphological 
characteristics, advanced techniques such as 
Scanning Electron Microscopy (SEM) and 
Bidimensional Empirical Mode Decomposition 
(BEMD) are used in the initial stage. SEM allows 
for high-resolution imaging and BEMD offers a 
refined approach to decompose complex structures 
into simpler components.  

Secondly, another challenge lies in accurately 
characterizing the size and morphology of airborne 
urban dust particles to better understand their health 
impacts. To this end, we need adequate 
characterization for the location, size and 
morphology of particles.  

 
 

3  Materials and Methods 
 
3.1  Particle Sources 
Herein, we employed particles from two different 
sources: Residual Oil Fly Ash (ROFA) and Diesel 
Exhaust Particles (DEP). 
 Residual Oil Fly Ash (ROFA) collected from 

the Mystic Power Plant, CT, USA, was 
employed as a recognized surrogate ambient 
particulate matter and was kindly provided by J. 
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Godleski (Harvard School of Public Health, 
Boston, MA, USA). 

 Diesel exhaust particles (DEP) (SRM2975) 
were purchased from the US National Institute 
of Standards and Technology.    

 
3.2  Scanning Electron Microscopy 
Average particle size (APS), size distribution, and 
morphology of both types of particulate matter, 
ROFA and DEP, were studied using SEM (Quanta 
250 FEISEM, Pantelimon, Romania) coupled to a 
(ThermoFisher) energy-dispersive X-ray 
spectroscopy (EDX) detector for chemical 
composition analysis. For this purpose, the PM 
particles were attached to a double-sided carbon 
conductive tape, and loose powder was eliminated 
using a N2 gun to avoid the release of particles 
inside the microscope chamber when starting the 
vacuum pump or ventilation; the samples were 
analyzed after coating them with gold by direct 
current sputtering. Images were obtained using a 
high-efficiency in-lens detector to achieve clear 
topographic images in high vacuum mode at an 
acceleration voltage of 4kV-10kV. 
 
3.3 Algorithm for Particle Characterization    
Once the image (matrix) has been decomposed 
following, [23] into Bidimensional Implicit Mode 
Functions (BIMFs), the particles or structure 
elements can be identified by locating the local 
maximum values within each of these matrices. 
Subsequently, for every detected particle, its size is 
determined by assessing the local minimum values 
along the horizontal (H) and vertical (V) direction 
from each local maximum. This process yields four 
values, denoted clockwise as r1, r2. r3, and r4. Note 
that, since the particles are randomly oriented, these 
values are of statistical nature. The particle diameter 
(d) and asymmetry (A) are defined as:  

 
d=2 max{r1,r2,r3,r4}                  (1) 

                                              (2) 

where   
dH=r2+r4,    dV=r1+r3       (3) 

 
The flowchart of the proposed algorithm that 

determines and computes particle sizes and 
asymmetries is presented in Figure 1.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

Fig. 1: Flowchart of the proposed algorithm 
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After applying the algorithm, we proceed to 
obtain the histogram of the particle sizes for each 
mode.  

Each histogram is fitted by a statistical 
distribution that is selected according to qqplot 
(quantile-quantile plot) that is a graphical method 
for comparing two probability distributions by 
plotting their quantiles against each other. 

In the next section, the algorithm is applied to 
two examples: ROFA and DEP images. 
 
 
4  Results and Discussion  
PM sizes, air particles are conventionally classified 
as coarse (PM10), fine (PM2.5), and ultrafine 
(PM0.1) particles, corresponding to their 
aerodynamic diameters being lower than 10μm, 
2.5μm, and 100nm, respectively.  Lower diameters 
imply higher deleterious impact on public health. 
We show for ROFA and DEP one original SEM 
image and significant BIMFs images obtained by 
BEMD in Figure 2 and Figure 3.  

Then we select the significant modes for each 
case and obtain the histogram for particle sizes for 
these modes. Significant modes are those where the 
smallest details correspond to individual particles 
rather than boundaries. In the higher modes, 
associated with larger structures, enough particles 
should be detected to obtain a representative 
distribution.  After evaluating various distribution 
types for fitting the histogram for particle sizes, 
Generalized Extreme Values (GEV) distribution 
was selected for both examples, due to its superior 
performance according to the qqplot. The fitting 
parameters for GEV distribution are:  

: Shape parameter (type of tail behavior),   
: Scale parameter (spread or dispersion),  
: Location parameter (central value).  

 Section 4.1 is concerned with ROFA particles. 
Section 4.2 is concerned with DEP particles. 
 

4.1  Example 1: Application to ROFA 
By comparing the original ROFA image in Figure 2, 
it can be observed that BIMF1 and BIMF2 primarily 
correspond to particle boundaries, while BIMF3 and 
BIMF4 display structures resembling particles of 
varying sizes. In contrast, BIMF5 presents a more 
diffuse image with fewer particles. For this reason, 
only Modes 3 and 4 are considered significant. 
 Figure 4 shows a histogram of the particle size 
distribution along with the fitted GEV distribution 

for the ROFA significant modes. The estimated 
GEV parameters are also included in Figure 4 while 
the confidence intervals are in Table 1. As expected, 
Mode 3 identified a significant number of the 
smallest particles. This is highlighted by the location 
parameter μ (GEV location parameter), which takes 
a value close to 8μm. Moreover, particle sizes in 
BIMF3 are more concentrated since the value of 
spread parameter (GEV parameter:) is smaller 
than BIMF4 and has a shorter tail (related to the 
GEV parameter ).  

There is not a clear relationship between the 
degree of asymmetry and the size of a particle. 
However, the plots of asymmetry versus diameter 
presented in Figure 5 suggest that the degree of 
asymmetry of the particles tends to increase with 
diameter in both Mode 3 and Mode 4. 

 
4.2  Example 2: Application to DEP  
In this example, Figure 3 suggests that modes 
BIMF2, BIMF3 and BIMF4 show structures related 
to particles having different sizes while BIMF5 
shows a more diffuse image with a lower quantity of 
particles. For this reason, in this case Modes 2, 3 
and 4 are considered for analysis.   
 In Figure 6 and Figure 7 are plotted the results 
obtained for particle sizes and asymmetries for DEP 
for each significant mode. 

In this case, GEV distribution showed a better 
performance for fitting the histogram. The estimated 
parameters for each Mode are included in Figure 6 
while the confidence intervals are in Table 2. 
 Modes 2 and 3 primarily identify ultrafine 
particles while Mode 4 captures fine particles.  It is 
confirmed that, as usual, both particle size and 
spread increase with the mode number.  

To analyze the degree of symmetry, we plotted 
asymmetry versus diameter in Figure 7, as it was 
done for ROFA (Figure 4). In DEP example, the 
points representing asymmetry versus size for each 
detected particle are more randomly dispersed. 

These findings are important because, as it was 
mentioned before, the smallest airborne particles 
significantly impact human health due to their 
ability to penetrate deep into the respiratory system 
and enter the bloodstream. Once inside the body, 
they can cause inflammation, oxidative stress, and 
cellular damage. Prolonged exposure to ultrafine 
particles has been linked to a range of adverse 
health effects, including respiratory and 
cardiovascular diseases, and even cancer. 
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a)  

b)  

c)  

 
d) 

 
 

e)  

f)  

Fig. 2: a) Original ROFA SEM image. b) -f) 
Successive BEMD Modes BIMF1–BIMF5 
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a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

f) 

 

Fig. 3: a) Original DEP SEM image. b)-f) 
Successive significant BEMD Modes IMF1–IMF5 
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Fig. 4: ROFA particles histogram and GEV fitting 
distribution for the diameters identified in 
significant Mode 3 (top) and Mode 4 (bottom) 
 

 

 

 
Fig. 5: ROFA particles asymmetries vs. diameters of 
the identified particles in significant Mode 3 (top) 
and Mode 4 (bottom) 

Table 1. Confidence Intervals for GEV fitting 
parameters (ROFA) 

 

 
 

 

 

 
Fig. 6: DEP particles histogram and GEV fitting 
distribution for the diameters identified in 
significant IMF: Mode 2 (top), Mode 3 (middle) and 
Mode 4 (bottom) 
 

Mode  :  
3 [0.031, 0.097] [6.145, 6.624] [7.754, 8.398] 
4 [0.0912 0.247] [12.06, 14.27] [13.04,15.875] 
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Table 2. Confidence Intervals for GEV fitting 
parameters (DEP) 

 
 

 

 

 
Fig. 7: DEP particles asymmetries versus diameters 
of the identified particles in Mode 2 (top), Mode 3 
(middle) and Mode 4 (bottom) 

 

5  Conclusion 
The Bidimensional Empirical Mode Decomposition 
(BEMD) allowed obtaining the multimodal 
distribution of airborne dust particle size from 
scanning electron micrographs. We proposed an 
algorithm that begins with BEMD. Once the 
component images are obtained, they are compared 
with the original image to identify the significant 
modes. In the applications presented in this work, 
these modes are associated with particles, with the 
consideration that enough particles are necessary for 
statistical size distribution analysis. The algorithm 
then identifies particles for each significant mode, 
calculates their sizes, and evaluates their 
asymmetry. This technique was applied to SEM 
micrographs of ROFA and DEP particles, providing 
valuable insights into the morphological features of 
these airborne particles. The ROFA samples, 
consisting mainly of microparticles, were 
distinguished by their irregular shapes and varying 
sizes, whereas the DEP samples comprised 
relatively more symmetric nanoparticles, reflecting 
their different sources and formation processes.  For 
each significant mode, histograms of particle size 
distribution were appropriately fitted with 
Generalized Extreme Value (GEV) distributions. 
This fitting process provided a robust statistical 
framework to describe the particle populations, 
highlighting the prevalence of certain size ranges 
and the variability within the samples. 

While further analysis is needed to gather robust 
information for decision-making, the methodology 
employed herein is relatively simple and effective 
for inferring the impact of the different sources of 
airborne particulate matter on health and the 
environment. 
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Mode  :  
2 [-0.085, 0.054] [-0.10, -0.02] [ -0.152, 0.06] 
3 [0.074, 0.178] [0.197, 0.216] [ 0.42, 0.520] 
4 [0.268, 0.273] [0.591, 0.617] [ 1.22, 1.36] 
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