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Abstract: - Kalamata is a smart city located in southeastern Greece in the Mediterranean basin and it is the 
capital of the Messenia regional unit. It is known for the famous Protected Designation of Origin (PDO) 
Kalamata olive oil produced mainly from the Koroneiki olive variety. The PDO Kalamata olive oil, established 
by Council regulation (EC) No 510/2006, owes its quality and special characteristics to the geographical 
environment, olive tree variety, and human factor. The PDO Kalamata olive oil is produced exclusively in the 
regional unit of Messenia, being the main profit of local farmers. However, soil chemical composition, 
microclimates, and agronomic factors are changed within the Messenia spatial area leading to differentiation of 
PDO Kalamata olive oil characteristic. In this paper, we use statistical machine learning algorithms to 
determine the geographical origin of Kalamata olive oil at PDO level based on synchronous 
excitation−emission fluorescence spectroscopy of olive oils. Evaluations of the statistical models are promising 
for differentiating the origin of  PDO Kalamata olive oil with high values of prediction accuracy thus enabling 
companies that process and bottle kalamata olive oil to choose olive oil from a specific region of Messenia that 
fulfills certain characteristics. Concretely, the current research effort focuses on a specific olive oil variety 
within a limited geographic region. Intuitively, future research should also focus on validation of the proposed 
methodology to other olive oil varieties and production areas. 
 
Key-Words: - PDO Kalamata olive oil, synchronous emission-excitation, fluorescence spectroscopy, statistical 

machine learning, data fusion, data visualization, multiclass classification, model evaluation. 
  

 
1  Introduction 
Smart agriculture is the dimension of the smart city 
concept aiming to define methods of efficient 
geographic cultivation in rural areas, [1]. The 
cropping of plants useful for cities’ citizens is the 
main area of interest for smart farming, [2]. 
Specifically, in the area of olive oil farmers in the 
Messenia region of Greece produce the protected 
designation of origin (PDO) extra virgin olive oil 
with the name Kalamata olive oil in the rural areas 
of the smart city Kalamata the Koroneiki olive 
variety is almost exclusively cultivated which 
produces the extra virgin olive oil with organoleptic 
properties, [3], [4]. Such areas provide farmers the 
capability to gain more income since specific olive 

oil microclimates affect the quality of the selected 
variety, [5].  

To protect olive oil quality and prevent its 
adulteration, global governmental agencies like the 
European Commission, International Olive Council, 
Codex Alimentarius, etc have developed standards 
to regulate olive oil by establishing a set of physical, 
chemical, and organoleptic characteristics, [6]. The 
traditional chemical methods to ensure olive oil 
quality are focused on the identification and 
quantification of pre-defined compounds or classes 
of compounds of olive oil according to the 
regulations of the above-mentioned global 
governmental agencies. These methods are time-
consuming and demand expensive apparatus. The 
same for the detection of olive oil adulteration 
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although these methods fail to detect the 
adulteration from certain adulterants. 

  In recent years the non-targeted analysis has 
attracted much attention. This approach focuses on 
screening the olive oil without any prior knowledge 
of chemical composition. In this approach, we used 
analytical techniques that produce a signal which is 
affected by all the compounds (i.e., metabolites) 
present in olive oil. These methods shorten the 
analysis process but a vast number of data sources 
are required to perform data analytics based on 
statistical machine learning algorithms, [7]. 

To assess the quality of gathered olive oil there is 
a need to incorporate specific Internet of Things 
(IoT) devices, [8]. A device that is commonly used 
for such a process is fluorescence spectroscopy, 
which is calibrated accordingly to perform 
differences of excitation and emission radiation to 
the olive oil sample, [9]. Concretely, fluorescence 
spectrometry has been used extensively in the past 
years due to its efficient precision in recognizing 
chemical components of olive oil samples thus 
exploiting its overall quality, [10]. Specifically, 
adopted technology can access input data from olive 
oil sample sources to measure optimally the 
chemical ingredients of a given olive oil sample as 
well as to be able to discriminate the olive oil 
quality categories as well as its origin, [11]. 
Intuitively, fluorescence spectra technology can 
detect in high effectiveness adulteration of olive oil 
with other lower-quality oils, such as sunflower oil 
or soybean oil, [12]. Collecting samples from 
different geographical origins enables the generation 
of different data sources, [13]. Exploited data can be 
visualized and analyzed by statistical machine 
learning algorithms. Intuitively, the application of 
statistical classifiers enables the classification of 
olive oil samples into certain categories able to 
differentiate the quality of each sample, [14]. 

In this paper, we input synchronous emission-
excitation fluorescence spectra of PDO Kalamata 
olive oils of different local geographic origins from 
Messenia to observe the resulting data sources. DPO 
Kalamata olive oils were from the areas of (1) Aris, 
(2) Thouria, (3) Verga, (4) Arfara, and (5) 
Meligalas. Subsequently, we input such data sets to 
certain statistical machine learning algorithms to 
assess which of them has optimal results to 
recognize the different local cultivations. Adopted 
statistical learning algorithms are evaluated with 
certain evaluation methods and metrics to observe 
an optimal classification of input olive oil samples. 
The outcome of the research effort is to be able to 
characterize the specific origin of each PDO 
Kalamata olive oil (within the Messenia region) thus 

companies that process and bottlebottle Kalamata 
olive oil can choose olive oil from specific regions 
of Messenia that fulfils superior characteristics.  

The rest of the paper is organized as follows. In 
Section 2 it is presented the prior work in the 
research effort area. Section 3 defines the adopted 
data model. In Section 4 evaluation parameters are 
defined. In Section 5 experiments are performed and 
results are observed. Section 6 discusses the 
strengths and the weaknesses of the proposed 
research effort, while Section 7 concludes the paper 
and proposes future work. 
 

 

2  Prior Work 
Extra virgin and virgin olive oil have recently 
attracted consumer interest because of their quality, 
and its potential health benefits derived from their 
consumption. The high price of extra virgin olive oil 
and its reputation makes olive oil a target for 
fraudsters. Significant research has been performed 
in the literature in the area of olive oils’ analysis, 
classification, authentication, origin, and 
adulteration.  Spectroscopic techniques such as 
ultraviolet-visible (i.e., UV–Vis) absorption [15], 
[16], fluorescence spectroscopy [17], Raman 
spectroscopy [18], mass spectrometry [19], nuclear 
magnetic resonance [20] and FT-NIR [21] have 
been proposed to classify and detect adulteration 
and origin of olive oil. Classification based on 
statistical machine learning is used to compare 
virgin olive oil quality in [22]. Fluorescence 
spectroscopy is used along with principal 
component technology and factorial discriminant 
analysis for monitoring and classifying certain 
virgin olive oil varieties. Raman spectroscopy is 
incorporated in [23], to identify olive oil quality 
using classification techniques. Intuitively, the 
adopted method used a one-dimensional 
convolutional deep-learning neural network to 
observe optimal classification results. Portable 
Raman spectroscopy is used in [24], to provide 
quality assessment and control of several olive oil 
varieties. Subsequently, the proposed method 
adequately covers the cases of adulterated 
compound low-quality oils within the virgin olive 
oil. 

Classification and authentication techniques are 
incorporated in [25], to distinguish the origins of 
virgin olive oil. Specifically, it is proposed an 
authentication process is proposed to analyze 
volatile olive oil compounds and chemometrics to 
assess the quality of certain olive oil varieties within 
a local geographic area. Statistical machine learning 
algorithms are incorporated in [26], to classify 
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specific olive oil varieties. Concretely, the adopted 
method uses discrimination techniques to input 
machine learning algorithms with spectroscopic data 
thus achieving effective prediction accuracy of olive 
oil behavior by exploiting fusion emission and 
absorption. Fluorescence spectroscopy is 
incorporated in, [27], to classify the high quality of 
olive oil. Intuitively, the proposed method assesses a 
certain thermal oxidation technique, which exploits 
the potentiality of an Ultra Violet (UV) fluorescence 
spectroscopy system to perform specific imaging 
classification of extra virgin olive oil varieties. 

A time series classification algorithm is 
incorporated in [28], which can distinguish several 
virgin olive oil varieties. Subsequently, a statistical 
transformation of the generated input data sources is 
performed on each virgin olive oil variety to assess 
the ensemble classification schema thus observing 
optimal values of the prediction accuracy evaluation 
metric. A multivariate classification analysis is 
incorporated in [29], which can distinguish extra 
virgin olive oils. Concretely, the adopted method is 
based on Fourier Transform Infrared Spectroscopy 
(FTIR) along with multivariate analysis to classify 
virgin olive oils’ geographic origins, which come 
from several producing countries. Adulterated olive 
oil, in [30], can be discriminated with the 
incorporation of Attenuated Total Reflection (ATR) 
and FTIR spectroscopy technologies. Intuitively, the 
proposed methods are capable of distinguishing pure 
samples of virgin olive oil from different oil blends 
by exploiting the potentiality of partial least squares 
discriminant analysis (PLS-DA) applied to given 
olive oil compounds. 

Methods and applications for distinguishing 
several extra virgin olive oils’ local geographic 
origins are proposed in the literature, [31]. 
Specifically, the classification of olive oil 
geographic origins is based on certain chemometric 
data sources. Such chemometric data are generated 
from several olive oils compounds, which input the 
fluorescence spectroscopy decision-making models 
to achieve optimal prediction accuracy. 
Synchronous scanning of chemometric data sources 
produced by significantly detailed fluorescence 
spectroscopy measurements is also supported in 
certain research efforts, [32]. Such knowledge is 
then exploited by specific statistical classification 
learning models, which can distinguish several 
varieties of edible extra virgin olive oils. Edible 
olive oils' premium quality is assessed in the 
literature, [33]. Concretely, such ability is achieved 
by the incorporation of synchronous fluorescence 
spectroscopy, which can differentiate the 

quantification of tocopherols from the input olive oil 
compounds.  

Geographic origins of olive oil varieties, [34], 
are feasible due to the incorporation of chemometric 
analysis. Specifically, such advanced analytical 
methodology, which is applied to data sources can 
predict olive oil’s registered designation with 
optimal precision taking into consideration 
synchronous excitation and emission of 
fluorescence spectra values. Rapid spectroscopic 
methods (Vis–NIR and FT-MIR) along with PLS 
analysis were applied to study thermal stress of 
virgin olive oils, [35]. Concretely, due to the 
manipulation of generated data sources to certain 
statistical learning models, which can evaluate 
optimally spectroscopic and chemometric 
technologies. Pattern recognition is also 
incorporated in extra virgin olive oil varieties 
classification, [36]. Intuitively, near-infrared 
spectrometry provides the technical methodology to 
assess the strengths of screening methods, which are 
then used to authenticate extra virgin olive oils from 
near local geographic origins. Shelf-Life olive oil 
varieties are monitored and then classified to certain 
geographic origins, [37]. Subsequently, IoT sensors 
and actuators technology is exploited to enhance 
fluorescence spectroscopy characteristics thus being 
able to correctly assess the multiclass classification 
process, which is based on certain statistical 
learning models.  

There are many research approaches that deal 
with the origins of olive oil based on statistical 
machine learning. Promising efforts incorporate 
generated data from several chemometric 
technologies. However, data manipulation requires 
improvement to distinguish data interconnections, 
which can provide efficient results. In this research 
effort, fluorescence spectroscopy is exploited by 
applying enhanced data preprocessing. Such 
optimized data sources are then used by a statistical 
machine learning algorithm to perform multiclass 
classification to distinguish between certain local 
cultivations’ origins of the Koroneiki olive oil 
variety in the smart city of Kalamata, which is 
located in the Messenia region, Greece. 
 

 

3  Data Model 
Data provided to perform analytics are synchronous 
emission-excitation fluorescence spectra. These 
spectra were recorded on a Perkin Elmer LS55 
spectrofluorometer using solution 1% w/v olive oil 
in n-hexane, where Δλ (i.e., the difference between 
excitation and emission wavelength) was adjusted to 
30 nm, [38]. The excitation and emission slit were 
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tuned to 4 nm. The scan rate was 50nm/min. Each 
olive oil sample was measured triplicate using the 
new freshly prepared solution. Each measurement of 
an olive oil sample was statistically handled as a 
different sample of the same origin.  

Such data have a certain structure. Specifically, 
observed data sources are collected from PDO 
Kalamata olive oil produced in a variety of local 
areas in the rural areas of the smart city of Kalamata 
in the Messenia region, Greece. Concretely, there 
are collected data from 29 olive oil samples from 
the local cultivation areas of (1) Aris, (2) Thouria, 
(3) Verga, (4) Arfara, and (5) Meligalas. Intuitively, 
local cultivation areas are classified into the 
following 5 classes, namely: (1) Aris: Class 1, (2) 
Thouria; Class 2, (3) Verga: Class 3, (4) Arfara: 
Class 4, and (5) Meligalas: Class 5. Subsequently, 
the distribution of collected data samples per class 
are as follows: (1) 2 samples from Aris, (2) 2 
samples from Thouria, (3) 7 samples from Verga, 
(4) 15 samples from Arfara, and (5) 3 samples from 
Meligalas. 
 
3.1 Data Structure 
Synchronous emission-excitation fluorescence 
spectra are composed of two-dimensional 
coordinates, i.e., (𝑥, 𝑦𝑖), where 𝑖 ∈ [1, 5] is the 
identifier of each olive oil class, where: 𝑖 = 1 refers 
to Aris, 𝑖 = 2 refers to Thouria , 𝑖 = 3 refers to 
Verga, 𝑖 = 4 refers to Arfara, and 𝑖 = 5 refers to 
Meligalas local geographic origins. Concretely, 𝑥 
dimension depicts the emission wavelength 
measured in nanometers (i.e., 𝑛𝑚) for all sample 
classes while 𝑦𝑖 dimension depicts 
photoluminescence intensity, which is an arbitrary 
net number based on internal calibration of the 
spectrofluorometer device for each of the 𝑖 data 
sample classes. 
 
3.1.1 Visualizing Initial Data Samples 

Intuitively, according to the initial data sample 
measurements, assigned specific values for 𝑥 
dimension in the initial interval such as: 𝑥 ∈
[250, 700] for all data sample classes (i.e., the 5 
classes of local cultivation origins). Subsequently, 
initial data samples are averaged according to 
𝑦𝑖 , ∀𝑖 ∈ [1, 5] values based on each olive oil class. 
Such average is performed to be able to provide a 
simple and easily understandable visualization 
based on initial data samples for each of the 5 
classes. Concretely, averaged values in 𝑦𝑖 dimension 
is varying according to the examined olive oil data 
sample classes, as follows: (1) in case of Aris 𝑦1 has 
initial values in the interval, 𝑦1 ∈ [0.24, 752.28], 

(2) in case of Thouria 𝑦2 has initial values in the 
interval, 𝑦2 ∈ [0.08, 964.05], (3) in case of Verga 
𝑦3 has initial values in the interval, 𝑦3 ∈
[0.06, 554.82], (4) in case of Arfara 𝑦4 has initial 
values in the interval, 𝑦4 ∈ [0.54, 440.79], and (5) 
in case of Meligalas 𝑦5 has initial values in the 
interval, 𝑦5 ∈ [0.07, 154.92]. Figure 1, visualizes 
the initial data samples (i.e., synchronous 
photoluminescence spectra) per certain class of 
olive oil geographic origin. It can be observed that 
classes are not easily distinguished from each other 
based on initial data measurements. This should be 
treated accordingly with the data fusion process to 
have a clearer view of how classes could be more 
easily distinguished. 
 

 
Fig. 1: Initial data (i.e., synchronous emission-
excitation fluorescence spectra) are assigned to a 
specific class of certain local origin of PDO 
Kalamata olive oil. Observed spectra were recorded 
at Δλ = 30 
 
3.2 Data Fusion 
Data fusion is a widely adopted method used in 
machine learning literature in case there is a need to 
understand in depth the inherent complexity of 
initial data sources. Concretely, the data fusion 
process is applied to experimental input data sources 
to visualize the statistical qualitative trends of the 
data provided, thus being able to incorporate 
efficient machine learning algorithms to observe 
optimal results. Intuitively, initial data samples are 
transformed according to a specific data fusion 
process to remove outliers and missing values that 
occurred during the initial measurement process 
performed by the fluorescence spectroscopy device. 
Specifically, such a data fusion process can provide 
easily distinguished classes between each other in 
contrast to the initial data due to the adopted 
transformation. Intuitively, 𝑥 dimension values of 
each data sample are transformed into 𝑠𝑘 interval 
values. Such intervals form the predictive attributes, 
which will input the statistical learning classifier to 
predict the correct class of olive oil origin. 
Concretely, 𝑘 ∈ [1, 5] is the assigned identifier of 
each transformed wavelength interval (i.e., 
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predictive attribute) of the olive oil components. 
Subsequently, for 𝑠𝑘, ∀𝑘 ∈ [1, 5] it holds that in 
case of: 𝑘 = 1 refers to 𝑠1 ∈ [250, 350] that is 
assigned to the predictive attribute of ‘tocopherols’, 
𝑘 = 2 refers to 𝑠2 ∈ [351, 425] that is assigned to 
the predictive attribute of ‘phenolic compounds’, 
𝑘 = 3 refers to 𝑠3 ∈ [426, 525] that is assigned to 
the predictive attribute of ‘oxidation products of 
triglycerides’, 𝑘 = 4 refers to 𝑠4 ∈ [526, 600] that 
is assigned to the predictive attribute of ‘oxidation 
products of tocopherols’, and 𝑘 = 5 refers to 𝑠5 ∈
[601, 700] that is assigned to the defined predictive 
attribute of ‘chlorophylls’, components. 

Subsequently, measured values in 𝑦𝑖 dimension 
have an arbitrary initial distribution according to the 
examined olive oil data sample class as produced by 
the synchronous photoluminescence spectra. Such 
values are transformed into 𝑡𝑘

𝑖  aggregated values for 
each olive oil class origin, 𝑖, and each assigned 
identifier, 𝑘, to each transformed wavelength 
interval, 𝑠𝑘, (i.e., a certain predictive attribute) 
according to specific olive oil measured compounds 
of local geographic origin. Concretely, it holds that 
𝑡𝑘

𝑖  is a transformed average value that is assigned to 
each fused predictive attribute (i.e., 𝑠𝑘) of a certain 
data sample class. There are specific 𝑡𝑘

𝑖  fused values 
given certain data instances of the initial data 
observed by the 29 olive oil samples (i.e., class 
values) from different local reas for each of the 𝑠𝑘 
interval values, (i.e., predictive attributes). 

 

 
Fig. 2: Fused data (i.e., based on initial synchronous 
emission-excitation fluorescence spectra) are 
assigned to a specific class of certain local origin of 
PDO Kalamata olive oil. Observed spectra were 
recorded at Δλ = 30 
 
3.2.1 Visualizing Fused Data Samples 

Intuitively, according to the fused data sample 
measurements, for certain 𝛥𝜆 = 30, is assigned 
specific values for the 𝑠𝑘 interval values (i.e., 
predictive attributes) according to 𝑘 ∈ [1, 5] for the 
fused data sample classes (i.e., the 5 classes of 
origins). Subsequently, fused data samples are 
averaged according to 𝑡𝑘

𝑖 , ∀𝑖, 𝑘 ∈ [1, 5] values for 

each olive oil class. Such average is performed to be 
able to provide a simple and easily understandable 
visualization based on fused data samples for each 
of the 5 classes. Concretely, averaged fused values 
in 𝑡𝑘

𝑖   (i.e., predictive attributes’ value range) is 
varying according to the examined olive oil data 
sample classes, as follows: (1) in case of Aris 𝑡𝑘

𝑖 , 𝑖 =
1, ∀𝑘 ∈ [1, 5] has observed fused data values of: 
𝑡𝑘

1 = [206.15, 10.25, 5.61, 3.23, 41.99], (2) in case 
of Thouria, 𝑡𝑘

𝑖 , 𝑖 = 2, ∀𝑘 ∈ [1, 5]  has certain fused 
values, 𝑡𝑘

2 = [317.04, 9.19, 4.25, 1.12, 45.77], (3) 
in case of Verga 𝑡𝑘

𝑖 , 𝑖 = 3, ∀𝑘 ∈ [1, 5]  has fused 
values, 𝑡𝑘

3 = [173.89, 10.31, 3.78, 0.68, 34.88], (4) 
in case of Arfara 𝑡𝑘

𝑖 , 𝑖 = 4, ∀𝑘 ∈ [1, 5]  has fused 
values, 𝑡𝑘

4 = [125.07, 9.78, 5.17, 1.86, 59.63], and 
(5) in case of Meligalas 𝑡𝑘

𝑖 , 𝑖 = 5, ∀𝑘 ∈ [1, 5]  has 
fused values, 𝑡𝑘

5 = [52.41, 7.93, 3.14, 0.79, 48.06], 
Figure 2, visualizes the fused data samples per 
certain class of olive oil origin. It can be observed 
that classes are now more easily distinguished from 
each other based on fused data measurements. This 
is the reason for treating initial data samples with a 
data fusion process to have a clearer view of how 
classes could be more easily distinguished. 
 
 
4 Evaluation Parameters 
Assessing the performance of the adopted statistical 
machine learning algorithm, certain valuation 
methods and evaluation metrics should be 
incorporated to perform specific experiments and 
observe derived results. 

 
4.1 Evaluation Method 
To evaluate a statistical machine learning algorithm 
there are used certain evaluation methods. Authors 
adopt one of the widely used evaluation methods, 
due to its simplicity and optimum results, which is 
10-fold cross-validation, [39]. Specifically, such an 
evaluation method divides the input dataset into 10 
equal sized parts and then in a certain loop 
incorporates the first 9 parts to train the statistical 
learning classification algorithm and the remaining 
1 to test the classifier. This process is repeated until 
all the parts are used for training and testing. The 
proposed evaluation method is adopted in the 
machine learning methodology since it provides 
effective results based on certain input data able to 
explain the observed data source’s predictive 
analytics behavior. 
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Table 1. Confusion matrix 

 

4.2 Evaluation Metrics 
Given the evaluation method, which is proposed to 
support the experimental setup there is a need to 
adopt specific evaluation metrics. Such metrics are: 
(1) prediction accuracy, (2) correctly classified 
instances, and (3) confusion matrix that can assess 
the efficiency of a statistical classification 
algorithm. 
  
4.2.1 Prediction Accuracy 

The effectiveness of the adopted statistical learning 
algorithm is assessed by incorporating prediction 
accuracy evaluation metric, 𝑎 ∈ [0, 1], which is 
defined in the following mathematical equation, (1): 

𝑎 =
𝑡𝑟𝑝𝑜𝑠+𝑡𝑟𝑛𝑒𝑔

𝑡𝑟𝑝𝑜𝑠+𝑓𝑙𝑝𝑜𝑠+𝑡𝑟𝑛𝑒𝑔+𝑓𝑙𝑛𝑒𝑔
         (1) 

 
Where, 𝑡𝑟𝑝𝑜𝑠, are the instances, which are 

classified correct as positives, and, 𝑡𝑟𝑛𝑒𝑔, are the 
instances, which are classified correct as negatives. 
In addition, 𝑓𝑙𝑝𝑜𝑠, are the instances, which are 
classified false are positives, and, 𝑓𝑙𝑛𝑒𝑔, are the 
instances, that are classified false as negatives. A 
low value of 𝑎 means a weak classifier while a high 
value of a indicates an efficient statistical learning 
classifier. Concretely, experimental assessment 
based on the defined statistical quantities of: (1) 
𝑡𝑟𝑝𝑜𝑠, (2)  𝑡𝑟𝑛𝑒𝑔, (3) 𝑓𝑙𝑝𝑜𝑠, and (4) 𝑓𝑙𝑛𝑒𝑔, which 
compose the prediction accuracy evaluation metric’s 
experimental value, achieve to express the data 
sources’ dynamics and explain the observed optimal 
results. 
 
4.2.2 Correctly Classified Instances 

In statistical machine learning, it is common to 
express prediction accuracy as a percentage thus 
observed results being more easily interpreted and 
presented. Concretely, it is used the term correctly 
classified instances, 𝑐 ∈ [0%, 100%], which is 
defined according to the following mathematical 
equation, (2): 

𝑐 = 𝛼%                   (2) 
 

Where, a value close to 0% means that the 
classification algorithm is not efficient, while a 
value close to 100% indicates that the statistical 
algorithm is able to classify instances optimally. 

4.2.3 Confusion Matrix 

We also evaluated the adopted statistical 
classification algorithm with the confusion matrix 
evaluation metric. Confusion matrix is a special 
form of matrix, which in the case of a multiclass 
classification of 5 classes, (i.e., Class 1: Aris, Class 
2: Thouria, Class 3: Verga, Class 4: Arfara, and 
Class 5: Meligalas) has the following encoded form, 
as described in Table 1. 

Where, “A” quantity depicts the number of Class 
1 instances, which are classified correctly as 
instances of Class 1. “B” quantity depicts the 
number of Class 1 instances, which are falsely 
classified as instances of Class 2. “C” quantity 
depicts the number of Class 1 instances, which are 
falsely classified as instances of Class 3. “D” 
quantity depicts the number of Class 1 instances, 
which are falsely classified as instances of Class 4. 
“E” quantity depicts the number of Class 1 
instances, which are falsely classified as instances of 
Class 5. The same holds for the rest elements of the 
confusion matrix. A given classification model is 
considered efficient if  it maximizes the elements of 
the main diagonal of the confusion matrix (i.e., “A”, 
“G”, “M”, “S”, and “Y”) and minimizes the other 
elements. A confusion matrix is incorporated in 
machine learning evaluation methodology to 
support efficiently and explain in deep detail the 
statistical nature of output experimental results 
observed by the prediction accuracy evaluation 
metric. 
 

 

5  Experiments and Results 
The data model, which is based on fused data values 
is used to perform certain experiments and observe 
derived results. An experimental setup is necessary 
to formulate the experimental phase with certain 
evaluation methods and metrics and observe the 
results of the current research effort.  
 
5.1 Experimental Setup 
Specific parameters are incorporated to set up the 
experimental process. Concretely, it is defined as 
the number of classes, which is assigned to each 
data sample instance. Intuitively, predictive 
attributes used to describe a certain class are defined 
accordingly. Subsequently, a certain statistical 
machine learning algorithm should be adopted to 
perform the experiments and observe the results. 
 
5.1.1 Multiclass Classification 

Since the number of classes is 5 this classification 
process is characterized as a multiclass classification 

Class 1 Class 2 Class 3 Class 4 Class 5 ← Classified as 

A B C D E Class 1 

F G H I J Class 2 

K L M N O Class 3 

P Q R S T Class 4 

U V W X Y Class 5 
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problem. Specifically, 5 classes are defined as 
follows: (1) Class 1: Aris, (2) Class 2: Thouria, (3) 
Class 3: Verga, (4) Class 4: Arfara, and (5) Class 5: 
Meligalas. Concretely the number of predictive 
attributes is also 5, which are characterized as 
follows: (1) Predictive Attribute 1: ‘tocopherols’, 
(2) Predictive Attribute 2: ‘phenolic compounds’, 
(3) Predictive Attribute 3: ‘oxidation products of 
triglycerides’, (4) Predictive Attribute 4: ‘oxidation 
products of tocopherols’, and (5) Predictive 
Attribute 5: ‘chlorophylls’. The number of data 
sample instances is 29, which have the following 
distribution per class: (1) 2 samples from Class 1 
i.e., Aris, (2) 2 samples from Class 2, i.e., Thouria, 
(3) 7 samples from Class 3, i.e., Verga, (4) 15 
samples from Class 4, i.e., Arfara, and (5) 3 samples 
from Class 5, i.e., Meligalas. 
 
5.1.2 Logistic Statistical Learning Algorithm 

To select the optimum statistical learning algorithm 
that is effective in this multiclass classification 
problem we experimented with several statistical 
learning classifiers available in the Weka machine 
learning software, [40]. Intuitively, the machine 
learning algorithm, which has optimal predictive 
behavior emerged to be a Logistic statistical 
learning algorithm (i.e., the implementation of the 
Logistic Regression algorithm in Weka machine 
learning software) thus it is adopted for further 
experimentation to observe the derived results of the 
current research study. 
 
5.2 Derived Results 
To evaluate the experimental phase there is a need 
to define a specific evaluation method (i.e., 10-fold 
cross-validation) and metrics used to assess the 
efficiency of the adopted statistical learning 
algorithm, which in this case is the logistic 
statistical machine learning algorithm. Concretely, 
based on certain evaluation parameters specific 
derived results are observed, which define the 
effectiveness of the incorporated experimental setup 
adopted in the current research effort. Intuitively, to 
understand the observed results and be able to 
explain the research effort’s findings it is significant 
to use the incorporated evaluation method and 
evaluation metrics. Such knowledge would reveal 
the inherent complexity that exists in the provided 
data sources aiming to observe optimal results for 
the adopted machine learning algorithm. 
 
5.2.1 Observed Prediction Accuracy 

The evaluation method incorporated to evaluate the 
adopted machine learning multiclass classification 
algorithm is 10-fold cross-validation. According to 

this evaluation method observed prediction accuracy 
is: 𝑎 = 0.9655, which is a high value for prediction 
accuracy thus proving that the adopted statistical 
learning algorithm is suitable for the examined 
multiclass classification problem. Concretely, the 
high value observed for the prediction accuracy 
enables the adopted machine learning algorithm to 
be incorporated for similar use in new unseen olive 
oil instances in a further future research that might 
extend the potentiality of the current research effort 
to the geographical region of interest. 
 
5.2.2 Observed Correctly Classified Instances 

According to the evaluation method of 10-fold 
cross-validation correctly classified instances it 
occurred to be: 𝑐 = 96.55%, which indicated that 
the selected statistical machine learning algorithm is 
an optimal choice for the examined classification 
problem. 
 
5.2.3 Observed Confusion Matrix 

Confusion matrix results as derived based on a 10-
fold validation evaluation method for the examined 
multiclass classification problem. Derived results 
are presented in Table 2. 
 

Table 2. Confusion matrix observed results 

 
It can be observed that most of the classified 

instances are located in the main diagonal of Table 
2. Specifically, the quantity of elements in the main 
diagonal depicts the significant number of certain 
instances, which are correctly classified. Concretely, 
such an optimal prediction behavior indicates a 
robust classification algorithm for the examined 
multiclass classification problem. Such a detailed 
confusion matrix enables the observation of 
experimental results in deep detail thus being able to 
assess the efficiency of the adopted machine 
learning algorithm for predicting PDO Kalamata 
olive oil in other provided experimental instances. 
 
 
6  Discussion 
Problem definition indicates a multiclass 
classification problem of 5 discrete classes, with 5 
separate predictive attributes and a total of 29 
sample instances based on the local geographic 
origins of the Koroneiki olive oil variety, which is 

Class 1 Class 2 Class 3 Class 4 Class 5 ← Classified as 

2 0 0 0 0 Class 1 

0 2 0 0 0 Class 2 

1 0 6 0 0 Class 3 

0 0 0 15 0 Class 4 

0 0 0 0 3 Class 5 
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cultivated in the smart city of Kalamata in the 
Messenia region, Greece. Subsequently, the current 
research effort has achieved high values of the 
observed results based on certain evaluation metrics, 
which indicate the robustness of the examined 
evaluation parameters. Intuitively, the current 
research study has significant strengths as well as 
certain weaknesses, which should be presented with 
regard to a complete methodological research frame.  
 
6.1 Weaknesses of the Study 
Initial data as measured by the synchronous 
photoluminescence spectra IoT device are 
characterized as primitive raw data values, which 
should be further processed to enter a statistical 
machine learning algorithm to be evaluated 
properly. Concretely, visualizing initial data sources 
results in a complex plot, where there is vagueness 
in distinguishing the adopted 5 classes of the initial 
data source. Intuitively, such inefficiency results in 
limited evaluation capability based on the available 
initial data. Subsequently, classes get tangled up 
with each other thus making an inference 
assumption difficult to be applied. Exploitation of 
visualized initial data is not suitable for further 
experimentation in the current form. A fusion 
process is required in the initial data to remove 
outliers and missing values before further 
processing. 
 
6.2 Strengths of the Study 
The data fusion process adopted in the current 
research study eliminates the vagueness of the 
adopted 5 data classes. Concretely, fused data 
enabled the emergence of 5 discrete predictive 
attributes, which aim to face the vagueness of the 
initial data. Specifically, by visualizing fused data it 
is proved that the classes and the predictive 
attributes are distinguished easily, thus being able to 
proceed with further experimentation. Intuitively, 
the adopted evaluation method and metrics have 
proved to be effective in defining optimal derived 
results. Subsequently, the selection of a Logistic 
statistical machine learning classifier emerged to be 
an efficient solution to the multiclass classification 
problem. Concretely, the adopted classification 
algorithm was able to predict different classes based 
on the fused data sources. Such effectiveness 
enabled the capability of distinguishing the origin of 
PDO Kalamata olive oil produced in specific local 
areas in the rural areas of the Kalamata smart city. 
 

 

 

7  Conclusions and Future Work 
PDO Kalamata olive oil is an extra virgin olive oil 
produced in the province of Messenia in 
southeastern Greece (the name stands for capital 
city Kalamata). Because of different soil 
composition, microclimates, and agronomic factors 
olive oil from different areas of Messenia has 
diverse characteristics, although within the limits 
described by council regulation (EC) No 510/2006. 
Adopted synchronous photoluminescence spectra of 
olive oils IoT device can specify the different 
origins of PDO Kalamata olive oil. In this research 
effort, we use statistical machine learning 
algorithms to classify several geographic origins. 
Evaluation of the statistical models are based on 
certain methods and metrics, which have proved to 
be promising for differentiating origins thus 
enabling olive oil companies to choose PDO 
Kalamata olive oil from a specific area of Messenia 
with superior characteristics. 

According to our research outcomes, future work 
should mainly focus on the incorporation of more 
detailed input measurement data sources based on 
improvements in synchronous photoluminescence 
spectra IoT-enabled technology, thus providing a 
more robust input to the selected statistical 
classification algorithm. Concretely, data fusion 
techniques should be reapplied on the more detailed 
initial data sources to input several statistical 
learning algorithms, which might result in more 
effective results. Intuitively, current research could 
be further used in more detail to verify 
authentication and to detect adulteration of olive oils 
with protected designation of origin (PDO)  thus 
facing the fraud problem occurring in the olive oil 
trade. Intuitively, the current research effort focuses 
on a specific olive oil variety within a limited 
geographic region, while future research should also 
focus on the validation of the proposed 
methodology to other olive oil varieties and 
production areas within the Messenia region and/or 
in other geographic regions of Greece that are 
popular for the quality of their olive oil production. 
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