
However, caution is advised when applying the
method in conditions with obstacles. Future
research aims to enhance the accuracy of Impulse
modeling across all ocean conditions.
References:
[1] Helene and M T Yamashita (2006),
Understanding the tsunami with a simple
model, European Journal of Physics,
27,855–863.
[2] Smid, T. C. (1970). Tsunamis in Greek
Literature. Greece and Rome, 17(01), 100–
104,
https://doi.org/10.1017/S001738350001739
3.
[3] Pablo G. Silva a, Javier Elez b, Raúl Pérez-
López c, Jorge Luis Giner-Robles d, Pedro
V. Gómez-Diego a, Elvira Roquero e,
Miguel Ángel Rodríguez-Pascua c, Teresa
Bardají f (2023), The AD 1755 Lisbon
Earthquake-Tsunami: Seismic source
modelling from the analysis of ESI-07
environmental data, Quaternary
International, 651, 6-24.
[4] Chris Zweck a 1, Jeffrey T Freymueller a,
Steven C Cohen b (2002), The 1964 great
Alaska earthquake: present day and
cumulative postseismic deformation in the
western Kenai Peninsula, Physics of the
Earth and Planetary Interiors, 132,(1–3), 5-
20.
[5] Chris Zweck, Jeffrey T. Freymueller, Steven
C. Cohen (2002). Three-dimensional elastic
dislocation modeling of the postseismic
response to the 1964 Alaska earthquake.
Journal of Geophysical Research: Solid
Earth, 107(B4), ECV 1–1–ECV 1–11.
[6] Alexander B. Rabinovich, Rogério N.
Candella & Richard E. Thomson (2011)
“Energy Decay of the 2004 Sumatra
Tsunami in the World Ocean”. Pure Appl.
Geophys., 168, 1919–1950.
[7] Robert L. Long (1965) On the Boussinesq
approximation and its role in the theory of
internal waves, Tellus, 17, 1, 46-52,
https://doi.org/10.1111/j.2153-
3490.1965.tb00193.x.
[8] Kanamori, H. (1977) The energy release in
great earthquakes, J. Geophys. Res., 82,
2981 – 2987.
[9] Fred E. Camfield (1994), Tsunami Effects
on Coastal Structures, Journal of Coastal
Research, Special Issue No. 12. Coastal
Hazards: Perception, Susceptibility and
Mitigation (1994), pp. 177-187
[10] Furumoto, A. S., Analysis of Rayleigh
wave, part II, in Source Mechanism Study
of the Alaska Earthquake and Tsunami of
March 27, 1964, Rep. HIG-65-17, pp. 31 –
2, Univ. of Hawaii, Inst. of Geophys.,
Honolulu, Dec. 1965
[11] Kanamori, H., The Alaska earthquake of
1964: Radiation of long-period surface
waves and source mechanisms, J. Geophys.
Res., 75, 5029 – 5040, 1970.
[12] George Pararas-Carayannis (2018), Brief
History of Early Pioneering Tsunami
Research – Part A, Journal of Tsunami
Society International, Vol. 37, 1-11.
[13] Max Wyss;James and N. Brune (1967) The
Alaska earthquake of 28 March 1964: A
complex multiple rupture, Bulletin of the
Seismological Society of America, (1967),
57 (5), pp.1017–1023.
[14] Anawat Suppasri, Kazuhisa Goto, Abdul
Muhari, Prasanthi Ranasinghe, Mahmood
Riyaz, Muzailin Affan, Erick Mas, Mari
Yasuda & Fumihiko Imamura (2015), A
Decade After the 2004 Indian Ocean
Tsunami: The Progress in Disaster
Preparedness and Future Challenges in
Indonesia, Sri Lanka, Thailand and the
Maldives, Pure and Applied Geophysics,
172, 3313–3341.
[15] Eric L. Geist & Tom Parsons (2006),
Probabilistic Analysis of Tsunami Hazards*,
Natural Hazards, vol. 37, pp.277–314.
[16] Vasily Titov, Alexander B. Rabinovich,
Harold O. Mofjeld, Richard E. Thomson,
And Frank I. Gonza ez (2005), The Global
Reach of the 26 December 2004 Sumatra
Tsunami, Science, Vol. 309, Issue 5743,pp.
2045-2048
[17] NOAA. NCEI / WDS Global Historical
Tsunami Database of 1964 Alaska
earthquakes and tsunami, [Online].
https://www.ngdc.noaa.gov/hazel/view/
hazards/tsunami/related-runups/1954
(Accessed Date: February 16, 2024).
[18] NOAA. The tsunami source data is related
to tsunami run-up data observed - 2004
Indian Ocean earthquake and tsunami,
[Online].
https://www.ngdc.noaa.gov/hazel/view/
hazards/tsunami/related-runups/2439
(Accessed Date: February 16, 2024).
[19] National Geophysical Data Center / World
Data Service: NCEI/WDS Global Historical
WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT
DOI: 10.37394/232015.2023.19.122
Syed Mohamed E., Pon Selvan C. M.