[3] Vapnik, (2000). The Nature of Statistical
Learning Theory. Springer, New York, 2000.
[4] Yoshinobu Kano, William A. Baumgartner,
Jr, Luke McCrohon, Sophia Ananiadou, K.
Bretonnel Cohen, Lawrence Hunter, Jun'ichi
Tsujii, U-compare: Share and compare text
mining tools with UIMA. Bioinformatics,
Vol. 25, No. 15, 2009, pp. 1997-1998.
doi:10.1093/bioinformatics/btp289.
[5] Consoli, D., (2009). Analyzing customer
opinions with text mining algorithms. AIP
Conference Proceedings, Vol. 1148, 2009, pp.
857-860.
[6] Kostoff, R. N., Karpouzian, G., & Malpohl,
G., (2005). Text mining the global
abruptwing-stall literature. Journal of Aircraft,
Vol. 42, 2005, pp. 661-664.
[7] Lin, Hsieh, & Chuang, (2009). Discovering
genres of online discussion threads via text
mining. Computers and Education, Vol. 52,
2009, pp. 481-495
[8] Gans, Joshua S. and Goldfarb, Avi and
Lederman, Mara, (2017). Exit, Tweets and
Loyalty, NBER Working Paper No. w23046,
2017.
[9] Jordan MI, Mitchell TM. (2015). Machine
learning: trends, perspectives, and prospects.
Science Vol. 349, No. 6245, pp. 255–260.
[10] Guran, Aysun, Selim Akyokuş and Nilgun
Guler Bayazit, (2009). Turkish Text
Categorization Using N-gram Word.
International Symposium on Intelligent
Systems and Applications, 2009.
[11] J. -S. Xu, (2009). TCBPLK: A New Method
of Text Categorization, International
Conference on Machine Learning and
Cybernetics, Hong Kong, China, 2007, pp.
3889-3892, doi:
10.1109/ICMLC.2007.4370825
[12] Feng Li, (2011). Textual analysis of corporate
disclosures: a survey of the literature. Journal
of Accounting Literature Vol. 29, 2011, pp.
143-165.
[13] Sameer B. Srivastava, Amir Goldberg, V.
Govind Manian, Christopher Potts, (2017).
Enculturation Trajectories: Language,
Cultural Adaptation, and Individual Outcomes
in Organizations. Management Science, Vol.
64, No. 3, 2017, pp. 1-17.
[14] Struhl S., (2015). In the mood for sentiment.
In Practical Text Analytics: Interpreting Text
and Unstructured Data for Business
Intelligence, Kogan Page Publishers: London,
U.K., 2015.
[15] Jorge A. Balazs, Juan D. Velasquez, (2016).
Opinion mining and information fusion: a
survey. Information Fusion Vol. 27, 2016, pp.
95-110.
[16] Tetlock PC. (2007). Giving content to investor
sentiment: the role of media in the stock
market. The Journal of Finance, Vol. 62, No.
3, 2007, pp. 1139–1168.
[17] Frederick F, Patacsil, and Proceso L.
Fernandez, (2015). Blog comments Sentence
Level Sentiment Analysis for Estimating
Filipino ISP Customer Satisfaction.
International Conference Data Mining, Civil
and Mechanical Engineering (ICDMCME
‘2015) February 1-2, 2015, Bali (Indonesia)
[18] Allahyari, Mehdi Seyedamin Pouriyeh, Mehdi
Assefi, Saied Safaei, Elizabeth D.Trippe, Juan
B.Gutierrez, and Krys Kochut. (2017). A
Brief Survey of Text Mining: Classification,
Clustering and Extraction Techniques. In
Proceedings of KDD Bigdas, Halifax, Canada,
2017, pp. 1-13.
[19] Raghavan, P., Amer-Yahia, S., & Gravano,
L., ((2004). Structure in Text: Extraction and
Exploitation. Proceedings of the 7th
International Workshop on the Web and
Databases (WebDB), ACM SIGMOD/PODS,
ACM Press, Vol. 67, 2004.
[20] Manning CD, Raghavan P, Schütze H.,
(2008). Introduction to Information Retrieval,
Cambridge University Press: Cambridge,
U.K., 2008.
[21] Sebastiani F. (2002). Machine learning in
automated text categorization. ACM
Computing Surveys (CSUR) Vol. 34, No. 1,
pp. 1–47.
[22] Walaa Medhat, Ahmed Hassan, Hoda
Korashy, (2014). Sentiment Analysis
Algorithms and Applications: a Survey. Ain
Shams University. Ain Shams Engineering
Journal, Vol.5, No. 4, 2014, pp. 1093-1113
[23] Vafeiads, Thanasis. “A Comparison of
Machine Learning Techniques for Customer
Churn Prediction.” Simulation Modelling
Practice and Theory Vol. 55, 201, pp. 1–9.
[24] Yang, Y., & Liu, X. (1999). A re-examination
of text categorization methods. In Proceedings
of the 22nd annual international ACM SIGIR
conference on Research and development in
information retrieval (pp. 42-49). ACM.
[25] Zhang, L., Zhu, C., & Li, P. (2014). A
comparative study of naive Bayes and support
vector machines for sentiment analysis. In
2014 International Conference on
Mechatronics, Electronic, Industrial and
WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT
DOI: 10.37394/232015.2023.19.50