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Abstract: - According to the European Environmental Agency, road traffic noise is one of the worst and most 
prevalent kinds of environmental pollutants, which causes health problems to a constantly increasing number of 
people in urban areas throughout Europe. It has been proved that prolonged exposure to sound levels exceeding 
55 dBA is harmful and causes severe problems like sleep disturbances, tiredness, lack of concentration, high 
blood pressure and, in the worst case, sudden death. A precise and constant evaluation of sound level in 
inhabited areas is therefore desired (and in some cases compelled by laws), but collection of actual noise data is 
not easy and sometimes not possible. For this reason, Road Traffic Noise (RTN) models are very handy: one 
can (more or less precisely) estimate the noise emitted in a certain area having certain road traffic 
characteristics. The application of RTN models, anyway, also has problems. First of all, an RTN model has to 
be built and calibrated by using real collected noise data. Moreover, when trying to apply an RTN model on 
road traffic situations that are far away from the site of collection, the models generally fail. To overcome such 
problems, in this contribution, a road traffic dataset has been computed by randomly generating values of traffic 
variables like the number of vehicles per unit of time, their velocities, and their distance from the receiver. 
Then, by applying a multiregressive function on the dataset, the obtained coefficients have been used to 
calibrate and validate the presented model. The three steps (generation of the dataset, calibration of the model, 
and validation on a real dataset) are detailly investigated. 
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1  Introduction 
Road Traffic noise is one of the most intrusive kinds 
of noise in urban contexts. European Environment 
Agency has estimated that a large part of the 
population is constantly exposed to noise levels 
exceeding the safety threshold (55 dBA). If 
prolonged, such exposure can lead to several health 
issues like annoyance, sleep disturbances, high 
blood pressure, and even sudden death, [1], [2], [3], 
[4]. In urban contexts noise is mainly, but not 
exclusively,  constituted by traffic, [1], [5], which 
has been growing over the years. Road traffic noise 
– i.e. the one generated by passing vehicles - is not 
the only one contributing to the high noise level in 
urban contexts. Sources other than the cars, for 
example, are railway noise, which is also recognized 
to be detrimental to human health, [6], noise coming 
from port areas,  [7], and even motor race events, 
[8], when the circuit is not adequately far away from 
the urban center. Back to road traffic noise, to 
determine the noise level of a specific area, a 

campaign of measurements with specific sound 
level meters must be organized, but such an 
approach is not always applicable. For different 
reasons, in fact, real measurements can be not 
available, and alternative approaches have to be 
followed. Typically, when the assessment of the 
noise level in a specific area is not possible because 
of a lack of real measured data, Road Traffic Noise 
(RTN) models can supply by simulating noise levels 
according to independent parameters, which usually 
are the number of passing vehicles, their speed and 
the distance between each noise emitting vehicle 
and the receiver. Some models also take into 
account parameters like climatic conditions (which 
can modify the noise propagation), structure of 
acoustic barriers, or specific road conformation (like 
the presence of roundabouts, [9], [10]). Several 
models for road traffic noise estimation are present, 
and they are generally framed into national laws and 
regulations. Some example are: the CoRTN model 
in United Kingdom, [11], the RLS90 model used in 

WSEAS TRANSACTIONS on ENVIRONMENT and DEVELOPMENT 
DOI: 10.37394/232015.2023.19.106

Domenico Rossi, Aurora Mascolo, 
Claudio Guarnaccia

E-ISSN: 2224-3496 1145 Volume 19, 2023



Germany, [12], the NMPB model in France, [13], 
the ASJ model in Japan, [14]. Another model 
important to mention is the CNOSSOS model, 
which is recently born by the efforts of the 
European Community to create a model including 
several noise sources, [15]. Application of RTN 
Models, anyway, also have significant problems, 
since they need a proper calibration, which is, in 
turn, usually performed basing on real measured 
data. Moreover, such calibration process typically 
makes the model – when properly built – usable in 
the same context where the calibration data have 
been collected, but less efficient when applied on a 
different site. For this reason, road traffic noise 
models built in a country are adopted from the same 
country but not from others. To overcome such 
issues, the authors conceived an RTN model (based 
on a multilinear regression) which is calibrated on 
computed data instead of real collected ones. By a 
proper tuning of the parameters and 
hyperparameters of the functions generating the data 
it is in fact possible to obtain a dataset mimicking a 
wide range of real situations. The subsequent 
calibration, then, results in a model not anymore 
bounded to simulate traffic conditions in a single 
place. The generation of the computed set of data 
took idea from a previously published work, [16], 
and further improved. In this contributions authors 
investigated how the manipulation of data in terms 
of dataset size, different sets of data and time of 
execution can modify the final efficiency of the 
model in simulating road traffic noise levels. IN 
detail, the model has been validated using measured 
data coming from a work of Université Gustave 
Eiffel and Unité Mixte de Recherche en Acoustique 

Environnementale (UMRAE), Nantes, called “Long 
Term Monitoring Station” (LTMS). LTMS was an 
experimental campaign of collection of acoustic and 
meteorological data on a road of the city of Saint-
Berthevin, made from 2002 to 2007, [17]. The final 
dataset is available for research purposes. 
 

 

2  Material and Methods 
 
2.1   Computation of the Dataset for Model 

Calibration 
The computed datasets used for the implementation 
and testing of the here presented multi-regressive 
model have been generated on a DELL Pc (Intel® 
Xeon® CPU E3-1245 v5 @3.50 GHz with 16 Gb of 
RAM installed, 64bit) using Python, a free objected 
oriented programming language. Several Python 
packages have been used for the generation of the 

dataset: the more important were numpy, which is a 
numerical package for calculations, pandas, which is 
a package for the creation, organization, and 
filtering of datasets, and matplotlib. pyplot and 
seaborn, which are packages used for the plotting of 
data. The compiler chosen for running the Python 
code is Jupyter Notebook, which works with a 
Google browser interface and permits the 
organization of the script at isolated blocks so that 
the written code can be run after being sliced in 
pieces. The generation of the dataset proceeded per 
row, by filling each of the independent variables 
with a randomly extracted value within 
predetermined ranges. The exact sequence is 
reported in Figure 1, and it has been established as 
follows. 
 
2.1.1 Generation of Independent Variables 

1) Determination of Q. Flow, expressed as vehicles 
passing on the investigated road per time period, has 
been chosen to cover all the possible situations, 
spanning from a minimum of 10 vehicles/time to a 
maximum of 2000 vehicles /time, with a step of 10 
vehicles /time. 
2) Random extraction of light vehicles velocity. The 
velocity of light vehicles (common cars) is 
randomly extracted from a range spanning a 
minimum of 30 km/h to a maximum of 130 km/h, 
with a step size of 1 km/h. Please note that all the 
possible velocities between the minimum and the 
maximum range have the same probability to be 
extracted, and this characteristic applies in all the 
following points regarding the random extraction of 
values (2 to 7). 
3) Random extraction of medium vehicle velocity. 
The velocity of medium vehicles is randomly 
extracted from a minimum of 30 to a maximum of 
100 km/h, with a step size of 1 km/h. If the velocity 
of light vehicles falls within this range, such a value 
becomes the upper limit for the random extraction 
of the medium vehicles' velocity. 
4) Random extraction of heavy vehicles velocity. 
The velocity of high vehicles is randomly extracted 
from a minimum of 30 to a maximum of 80 km/h, 
with a step size of 1 km/h. As for the medium 
vehicles, if the velocity of light vehicles falls within 
this range, such a value becomes the upper limit for 
the random extraction of the medium vehicles' 
velocity. 
5) Random extraction of medium vehicles 

percentage. The percentage of medium vehicles 
over the total Q is randomly extracted from a 
minimum of 0% to a maximum of 20%, with a step 
size of 0.1%. 
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6) Random extraction of heavy vehicles percentage. 
The percentage of medium vehicles over the total Q 
is randomly extracted from a minimum of 0% to a 
maximum of 20% minus medium vehicles 
percentage, with a step size of 0.1%. 
7) Random extraction of distance. The distance 
between noise-emitting cars and the receiver is 
randomly extracted from a minimum of 10 to a 
maximum of 100 m, with a step size of 1 m. 
8) Multiplication of the row number. Steps from 2 to 
7 are repeated n times to statistically enlarge the 
dataset. 
9) Simulation of the Leq,t. Leq,t values are simulated 
by using REMEL, [18], as a noise emission model 
and the formulation found in [19]. In detail: Leq,t 
values are calculated with a specific Noise Emission 
Model (NEM). The NEM used in this case study is 
the one presented in the work of [18], [19]. In detail, 
as the first step REMELs (the sound level at a 
referring distance) are calculated for light, medium, 
and heavy vehicles by using the following 
equations: 
 

𝐿0,𝐿 = 31.13 log10(𝑣𝐿) + 12.777         (1) 
𝐿0,𝑀 = 18.765 log10(𝑣𝑀) + 43.697         (2) 
𝐿0,𝑀 = 18.765 log10(𝑣𝑀) + 43.697         (3) 

 
where L0 are the power levels at the source. Then, 
the actual sound power level of a single vehicle 
traveling at a specific velocity is propagated by 
equations 4, 5, and 6. 
 

LWL = L0,L + 20 log10 Dref + 11          (4) 
𝐿𝑊𝑀 = 𝐿0,𝑀 + 20 log10 𝐷𝑟𝑒𝑓 + 11         (5) 
𝐿𝑊𝐻 = 𝐿0,𝐻 + 20 log10 𝐷𝑟𝑒𝑓 + 11           (6) 

 

being Dref, a reference distance of 15 m. In the third 
step, the Sound Exposure Levels are calculated with 
formulas 7, 8, and 9. SEL is the total sound emitted 
by the vehicles, as it was emitted in one single 
second. 

 
𝑆𝐸𝐿𝐿 = 10 log10 𝑄𝐿 + 𝐿𝑊𝐿 − 20 log10 𝑑 + 11  (7) 

𝑆𝐸𝐿𝑀 = 10 log10 𝑄𝐿 + 𝐿𝑊𝑀 − 20 log10 𝑑 + 11  (8) 
𝑆𝐸𝐿𝐻 = 10 log10 𝑄𝐻 + 𝐿𝑊𝐻 −  20 log10 𝑑 + 11 (9) 
 

QL, QM, and QH are respectively the number of light, 
medium, and heavy vehicles, and d is the distance as 
randomly generated in the phases of dataset 
construction (please refer to step A of this section). 
Finally, the total equivalent level (Leq,t) is computed 
as follows (equation 9) 
 

𝐿𝑒𝑞,𝑡 = 10 log10 (
1

𝑠𝑒𝑐
) + 10 log10(10

𝑆𝐸𝐿𝐿
10 + 10

𝑆𝐸𝐿𝑀
10 + 10

𝑆𝐸𝐿𝐻
10 )    (10) 

In equation (10), sec is the number of seconds 
used to evaluate the final equivalent sound level, 
which is the sound level at which a receiver is 
exposed at a certain distance d for a certain period 
of time. To be compliant with regulations and 
literature, a typical value of 3600 seconds (1 hour) 
has been chosen. Once the hourly equivalent level 
(Leq,h from now on) is computed, the multilinear 
regression can be applied by setting Leq,h as the 
dependent variable. Correlation between each 
variable and Leq,h is established and the coefficients 
are stored. Naming C1, C2, C3 and so on the 
regression coefficients, a final equation is used to 
validate the model on a real dataset: 

𝐿𝑒𝑞,ℎ 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 = 𝐶1𝑣𝐿 + 𝐶2𝑣𝑀 + 𝐶3𝑣𝐻 +

𝐶4𝑃𝑀 + 𝐶5𝑃𝐻 + 𝐶6𝑑 + 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡                   (11) 

2.1.2 Variation of Dataset Size 

Dataset size can be varied, according to the 
previously presented schematization, by varying n, 
which is the time the random extraction of the 
independent variables is performed, associated with 
each Q value. The authors, then, performed the 
generation of a single dataset by varying the 
hyperparameter n, chosen values of n are 1, 2, 5, 10, 
30, 60. Since Q values are originally 200, the 
corresponding resulting dataset has a number of 
rows equal to 200, 400, 1000, 2000, 6000, and 
12000. The generated dataset is then calibrated with 
the usual multilinear regression technique, obtaining 
calibration residuals, and then validated on the same 
validation dataset. Computation of the datasets 
requires a variable time, which increases at the 
increase of the n value. Analysis of such computing 
time has been performed with the in-built Jupyter 
Notebook %%time function, that gives back, after 
each block of compiled code, the wall time and the 
CPU time. CPU time is the time actually spent by 
the CPU in the execution of the code (for this reason 
it is sometimes referred to as “execution time”), 
whereas wall time is the real time elapsed between 
the code run and the visualization of the result. Such 
last parameter is greatly affected by the business of 
the CPU since it is slower when other processes are 
running. 
 
2.1.3 Variation of Used Data (seed) 

Another useful in-built function of the used 
packages (numpy and pandas) is the seed function, 
which permits to tracing of the random choice of 
values. When randomly placing the values of 
independent variables during dataset generation, 
in fact, it is useful to store a seed number that 
permits to recreate of the exact combination of 
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independent variables' values and makes the dataset 
precisely reproducible.  

 

 

 
Fig. 1: Scheme of the generation of the dataset for model calibration. Each independent variable is randomly 
extracted within certain ranges and is associated with a fixed Q value spanning from 10 to 2000 vehicles per 
time period. The random extraction of some of the variables is constrained by the value of other variables. 

 
When executing a function, the seed parameter 

is declared between the parameters of the function 
itself as a number; each time the function is run 
declaring the same seed number the results will be 
exactly the same. Such operation is very important 
to test different algorithms on the same data and 
compare the results, but it is also essential to fulfill 
the scientific purpose of reproducibility of an 
experiment. Every single dataset, then, has been 
generated 100 different times by using 100 different 
seeds (for the sake of practicality the seed number 
are from 1 to 100) to verify whether the variation of 
data (due to different used seeds) can be associated 
to the diverse final result of the model in terms of 
calibration and validation. 

 
2.2  Calibration Step 
Multilinear regression technique has been applied to 
the generated dataset to determine the proper 
coefficient and slope to be used to correlate the Leq,t 

values to the independent variables. When 
performing multilinear regression, a population of 
residuals is obtained, which is calculated by the 
difference between the real data and the calibrated 
one. When the model is properly calibrated and no 

biases are present, the population of residuals is 
normally shaped with an average value around 0 and 
a certain sigma value. 
 

2.3 Statistical Analysis of the Generated 

Dataset 
Generated datasets have been statistically 
investigated by means of several parameters. The 
mean and standard deviation of the populations of 
residuals have been investigated, together with the 
Shapiro-Wilk test for the normality of the 
distribution. 
 
2.3.1 Outliers Trim and New Iteration of 

Multilinear Regression 

The application of the multilinear regression to the 
dataset generates a series of calibration residuals, 
which are defined as the discordances between the 
values obtained after the calibration and the original 
values. The distribution of such residuals is 
indicative of the goodness of the calibration process. 
To improve the calibration process, the multilinear 
regression has been performed twice. First 
multilinear regression has been performed on the 
overall dataset, obtaining the first residual 
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population (step D). Such residual population has 
been investigated by searching the outliers and 
removing them. Outliers in the residuals population 
are the expression of the row of the original dataset 
where the calibration process got a value 
significantly different from the original one. By 
removing the outliers, then, the authors pruned the 
original dataset eliminating the rows in the 
multilinear regression that had more difficulty in 
fitting. A second multilinear regression, then, has 
been applied to the dataset diminished by the 
removal of the outliers, calculating a new residual 
population. The process of outliers removal was 
performed by trimming the data that fall outside the 
range defined in the following formula (12): 
 

𝑚𝑒𝑎𝑛 = 𝑖𝑞𝑟 × 𝑘0                     (12) 
 
where iqr is the interquartile range, i.e. the 
difference between the 75th and the 25th quantile of 
the residuals population and k0 is a factor that has 
been iterated from a minimum of 0.1 to a maximum 
of 4.0. 
 

2.4 Validation of the Model 
These final simulated equivalent levels are 
compared with the real ones to assess the sensitivity 
of the model. The real dataset used for the validation 
of the model is the Long Term Monitoring Station 
(LTMS) dataset. LTMS dataset is a collection of 
environmental acoustics data collected by a system 
installed in the city of Saint-Berthevin (France) by 
the Université Gustave Eiffel and Unité Mixte de 
Recherche en Acoustique Environnementale 
(UMRAE), Nantes, over a period of ten years. The 
authors in [17], suggested that LTMS is originally 
composed of equivalent sound levels measured over 
15 minutes, so data preprocessing has been 
performed to convert the data in 1 one-hour time 
period (the procedure described until now has been 
also visually explicated in Figure 2). 

The results obtained are compared with the real 
Leq,h values by comparing the two data distributions 
in terms of mean, standard deviation, skewness, and 
kurtosis index. Then the Mean Absolute Error 
(MAE) and Mean Absolute Percentage Error 
(MAPE) values are used to assess the final 
sensitivity of the model itself. 
 

 

 

 

 

 

3 Results and Discussion 
 
3.1 Generation of the $ 
The generation of the dataset for the calibration of 
the multilinear regression model is a crucial point 
for the sensitivity of the model itself. The 
populations of the dataset variables have been 
investigated through statistical analysis, which is 
reported in Table 1. The numerosity of the sample, 
mean and standard deviation of the sample, 
skewness, and kurtosis index of the distribution and 
Shapiro-Wilkins test have been performed on the 
datasets built by varying the n number (i.e. by 
varying the sample numerosity) As visible, the 
statistical analysis shows no difference between the 
datasets, meaning that the procedure of the 
generation of the dataset, i.e. the random extraction 
of the values of independent variables and the 
constraints between the variables themselves (see 
section 2 “Material and methods” and also, [16]) is 
solid, is not affected by the numerosity of the 
sample and it does not introduce bias on the 
samples. 
 
3.2 Calibration of the Model 
The obtained datasets were processed with the 
multilinear regression function described in section 
three, in order to find the residual population and 
evaluate whether the dataset amount influenced the 
calibration phase by the residuals analysis. Table 2 
collects the results of the application of the already 
used statistical parameters on the residual 
population of each of the generated datasets. In all 
cases, the mean of the population is around 0.0, but 
for the other parameters, some discrepancies are 
visible. The standard deviation of the population, for 
instance, decreases with increasing of the dataset 
size, suggesting that the generation of a bigger 
dataset improves the width of the residuals’ 
distribution. The other parameter with a similar 
behavior is the kurtosis index, which increases with 
the dataset size, from a minimum value of 0.504 up 
to a maximum tested value of 1.456 for the 60X 
dataset. This means that the residual population 
becomes “sharper” when the original dataset has 
more entries, and since the mean of the distributions 
is always 0.0, the distributions are more centered 
and fewer values fall on the tails region.  
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Fig. 2: schematic representation of the steps of Leq,h generation with the used NEM and the subsequent steps of 
calibration (by using multilinear regression technique)  and validation of the model to the real data of LTMS. 

 
Table 1. Statistical parameters of the variables of 

the dataset at different sizes of the dataset itself. 
 1X 2X 5X 10X 30X 60X 

Q       
Mean 

[veh/time] 1005 1005 1005 1005 1005 1005 

Std 
[veh/time] 578.792 578.067 577.632 577.487 577.391 577.367 

skewness 0.0 0.0 0.0 0.0 0.0 0.0 
kurtosis -1.2 -1.2 -1.2 -1.2 -1.2 -1.2 
Shapiro 0.955 0.955 0.955 0.955 0.955 0.955 

vL       
Mean 
[km/h] 82.875 83.432 83.314 82.971 82.341 82.036 

Std 
[km/h] 26.669 30.269 30.049 30.114 30.122 30.226 

skewness -0.036 -0.064 -0.065 -0.054 -0.016 0.002 
kurtosis -1.227 -1.264 -1.188 -1.176 -1.179 -1.192 
Shapiro 0.952 0.948 0.955 0.956 0.956 0.954 

vM       
Mean 
[km/h] 54.13 54.608 530.814 53.876 53.343 53.285 

Std 
[km/h] 17.941 18.559 19.195 19.305 193194 19.148 

skewness 0.583 0.619 0.670 0.648 0.682 0.683 
kurtosis -0.608 -0.627 -0.620 -0.669 -0.610 -0.615 
Shapiro 0.941 0.933 0.921 0.926 0.917 0.917 

vH       
Mean 
[km/h] 50.08 50.338 50.380 49.856 49.811 49.880 

Std 
[km/h] 15.725 15.885 15.802 15.621 15.55 15.570 

skewness 0.514 0.485 0.490 0.528 0.537 0.542 
kurtosis -0.913 -0.953 -0.951 -0.881 -0.859 -0.855 
Shapiro 0.925 0.927 0.927 0.926 0.927 0.927 

P       
Mean [%] 15.092 15.030 14.952 14.955 14.932 15.007 
Std [%] 3.996 4.143 4.475 4.470 4.526 4.435 

skewness -0.799 -0.782 -0.931 -0.980 -0.960 -0.971 
kurtosis -0.030 -0.169 0.033 0.195 0.080 0.160 
Shapiro 0.927 0.921 0.899 0.897 0.895 0.897 

d       
Mean [m] 52.98 54.243 54.674 55.301 55.658 55.013 
Std [m] 26.320 26.108 26.012 26.246 26.301 26.241 

skewness 0.124 0.002 0.027 -0.022 -0.034 -0.002 
kurtosis -1.131 -1.133 -1.154 -1.184 -1.20 -1.199 
Shapiro 0.954 0.958 0.958 0.956 0.954 0.955 

Table 2. Statistical parameters of the residuals 
were obtained after applying the multilinear 

regression of each analyzed dataset. 
 1X 2X 5X 10X 30X 60X 

residuals       
Mean[dBA] 0.0 0.0 0.0 0.0 0.0 0.0 
Std [dBA] 1.021 1.011 1.010 0.992 0.963 0.967 
skewness 0.559 0.617 0.559 0.559 0.634 0.629 
kurtosis 0.504 0.881 0.807 1.015 1.389 1.456 
Shapiro 0.979 0.977 0.981 0.979 0.975 0.976 

 
It can be observed that, by enlarging the entries 

of the original dataset that are provided to the 
multilinear regressor, a corresponding enlarged 
number of residuals is generated that will populate 
the distribution. Since the distribution becomes 
sharper and sharper (as indicated by the kurtosis 
indexes, Table 2), it can be concluded that most of 
the residuals are in the center part of the 
distribution, making them less relevant than the ones 
located in the tail regions. 

Such a shape also indicates that the multilinear 
regression technique applied to the dataset is valid 
since it generates residuals normally distributed and 
perfectly centered. The Skewness index of the 
residual populations presents no large fluctuation 
between the datasets, meaning that the symmetry of 
the populations is preserved whether the dataset is 
increased in size or not. Finally, the Shapiro-Wilk 
test for the assessment of the normality of the 
distribution indicates that all the populations of the 
residuals are normally shaped, having values bigger 
than 0.974. Figure 3 shows the distribution of the 
residual populations for all the datasets investigated. 
The investigation of the datasets proceeded with the 
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evaluation of the process of residual outliers 
removing, to test if it affected the calibration 
process. 

As stated in section three, such a process 
consists of the removal from the original dataset of 
the entries that generate outliers of the distribution 
of the residuals, followed by a second repetition of 
the multilinear regression on the remaining data. 
Being the outliers of a distribution the values that 
are more distant from the mean value, such a 
process removes the entries of the dataset that more 
deviate from the average, and that negatively 
influence the multilinear regression. In such a way, 
we investigated whether the application of the 
multilinear regression to the remaining dataset 
results in a better calibration or not. To do so, a first 
analysis of which 𝑘0 factor of equation 1 best fits 
the scope of improving the residuals population 
distribution of multilinear regression has been 
performed on the 1X dataset. 

 

 
Fig. 3: Residuals of the multilinear regression 
technique on the generated datasets. The bigger the 
amount of data, the sharper the residual distribution, 
as also indicated by values reported in Table 2. 
  

In such a way, we investigated whether the 
application of the multilinear regression to the 
remaining dataset results in a better calibration or 
not. To do so, a first analysis of which k0 factor of 
equation 1 best fits the scope of improving the 
residuals population distribution of multilinear 
regression has been performed on the 1X dataset. 
The 1X dataset has been repeated 40 times by 
applying each time a different k0 factor of equation 
1, from 0.0 to 4.0, and the statistics of the obtained 
residuals have been analyzed. Such statistical 
residuals are reported in Table 3. The mean of the 
residual distribution is constantly 0.0, while the 
standard deviation of the residual significantly 
changes at varying of k0 factor. In detail, when 
applying no outlier removal, the value of the 

standard deviation of the residuals is 1.021, which 
decreases at a minimum value of 0.417 when k0 
factor is equal to 0.1, in order to start increasing at 
the increase of k0 value, up to the same value when 
no outliers removal procedure is applied.  

The removal of residuals outliers, then, and the 
consequently second multilinear regression does 
actually improve the residuals population 
distribution. The best results are obtained, according 
to equation 1, by removing the data exceeding the 
mean for the ten percent of the interquartile range, 
while a wider range of exclusion is detrimental for 
the multilinear regression results. Skewness of the 
distribution of the residuals has a maximum value of 
0.599 when no outliers removal is applied, then 
decreases to 0.323 at a value of k0 equal to 0.1. As 
for the k0 grows, the skewness value becomes bigger 
up to the same value of 0.599 when k0 factor is 
equal to or bigger than 2.4. The symmetry of the 
distribution is then positively affected by the 
process of outliers removal. The kurtosis index is 
0.504 without removing outliers, then decreases to -
0.514 at k0 equal to 0.1, and increases up to the 
original value. 

 
Table 3. Statistical parameters of the 1X dataset 

residual population with and without the outliers 
removal process, at varying 𝑘0 factor values 

𝒌𝒐 Mean 

[dBA] 

Std  

[dBA] 

Skewness Kurtosis Shapiro 

None 0.0 1.021 0.559 0.504 0.979 
0.1 0.0 0.417 0.323 -0.514 0.977 
0.2 0.0 0.518 0.382 -0.658 0.969 
0.3 0.0 0.598 0.205 -0.775 0.979 
0.4 0.0 0.658 0.259 -0.737 0.975 
0.8 0.0 0.783 0.367 -0.346 0.982 
1.2 0.0 0.907 0.489 -0.025 0.976 
1.6 0.0 0.990 0.507 0.246 0.980 
2.0 0.0 0.990 0.507 0.246 0.980 
2.4 0.0 1.021 0.599 0.504 0.979 
2.8 0.0 1.021 0.599 0.504 0.979 
3.2 0.0 1.021 0.599 0.504 0.979 
3.6 0.0 1.021 0.599 0.504 0.979 

 
Such behavior suggests that the sharpness of the 

distribution of the residuals is negatively affected by 
the removal of the outliers. However, it has to be 
considered that, even if the kurtosis index decreases, 
the corresponding standard deviation value is 
significantly lower compared to the original residual 
population (containing the outliers), making the 
process valid and worthy to be application. In 
Figure 4 the mean value of the residual is reported at 
varying of k0 factor value (thick black line), together 
with a gray shaded area representing the standard 
deviation of the residuals themselves. As mentioned 
above, it is minimal when k0 is equal to 0.1. The 
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same approach has been used to verify the combined 
effect of outliers removal and dataset increasing to 
test if the residual population could be further 
improved. To do so, the outliers removal approach 
has been applied to the 1X, 2X, 5X, 10X, 30X, and 
60X datasets at k0 value varying from 0.1 to 4.0. 
Table 4 reports the results of the statistical analysis 
(in order to not overload the table clarity only 
results from the analysis of residuals at k0 equal to 
0.1, 0.4, 1.6, and 3.6 are reported). The mean value 
is constantly at 0.0, meaning that no matter which 
size of the dataset and whether the outliers removal 
procedure is applied or not, the distribution of the 
residuals is centered at 0.0. The standard deviation 
of the residuals always presents the same trend: it 
decreases at the increasing of the dataset size with 
the iterations and becomes bigger at varying the k0 
value, presenting the minimum value at k0 equal to 
0.1. The smallest value of the standard deviation of 
the residuals, then, is found when the outliers are 
removed with k0 factor is equal to 0.1 is applied on 
the 60X dataset. Skewness presents a similar trend: 
it decreases with the increase of the dataset size but 
is limited to k0 values between 0.1 and 0.4, where 
for higher k0 values it suddenly increases. The best 
symmetry for the residuals is then obtained when 
the dataset is big and the outliers removal process is 
applied. The Kurtosis index does not change so 
sharply as it does when the whole dataset is 
considered (when no outliers are removed), while 
the Shapiro-Wilk test always reveals a normal 
distribution. Finally, from Table 4 it can be noted 
how, when the outliers removal process is applied, 
the main statistical parameters are identical for 
residuals of datasets 1X and 2X. The results of 
Table 4, relative to the standard deviation 
parameter, are also shown in Figure 5, where a 
heatmap permits the easy identification of the k0 
value and dataset size to minimize the standard 
deviation of the residual population. Dataset size 
and outliers removal process are the first two 
parameters studied in relation to the residual 
outcomes. A third aspect has been also investigated: 
the seed number. As stated before, the seed number 
is the specific value assigned to the in-built 
functions of Python to ensure the possibility of 
controlling the repetition of the experimental 
procedure: each time a seed value is assigned the 
function will return the same extracted values. To 
test the solidity of the written code and, in the end, 
of the built model, a test of the residual statistics 
over a dataset built with different seeds has been 
performed. 
 

Table 4. Statistical parameters of the residuals 
population of all the analyzed datasets with and 

without the outliers removal process, at varying k0 
factor values 

 1X 2X 5X 10X 30X 60X 

No outliers removal 
Mean[dBA] 0.0 0.0 0.0 0.0 0.0 0.0 
Std [dBA] 1.021 1.011 1.010 0.992 0.963 0.967 
skewness 0.599 0.617 0.599 0.599 0.634 0.629 
kurtosis 0.504 0.881 0.807 1.015 1.389 1.456 
Shapiro 0.979 0.977 0.981 0.979 0.975 0.976 

Outliers removal with 𝒌𝟎 factor = 0.1 
Mean[dBA] 0.0 0.0 0.0 0.0 0.0 0.0 
Std [dBA] 0.417 0.417 0.378 0.357 0.347 0.348 
skewness 0.323 0.323 0.188 0.162 0.104 0.087 
kurtosis -0.514 -0.514 -0.848 -0.932 -0.943 -0.905 
Shapiro 0.977 0.977 0.978 0.975 0.978 0.981 

Outliers removal with 𝒌𝟎 factor = 0.4 
Mean[dBA] 0.0 0.0 0.0 0.0 0.0 0.0 
Std [dBA] 0.658 0.658 0.542 0.497 0.475 0.484 
skewness 0.259 0.259 0.269 0.203 0.151 0.173 
kurtosis -0.737 -0.737 -0.642 -0.680 -0.713 -0.673 
Shapiro 0.975 0.975 0.983 0.985 0.987 0.987 

Outliers removal with 𝒌𝟎 factor = 1.6 
Mean[dBA] 0.0 0.0 0.0 0.0 0.0 0.0 
Std [dBA] 0.990 0.990 0.910 0.868 0.826 0.830 
skewness 0.507 0.507 0.370 0.334 0.326 0.314 
kurtosis 0.246 0.246 0.157 0.193 0.265 0.199 
Shapiro 0.980 0.980 0.988 0.989 0.990 0.990 

Outliers removal with 𝒌𝟎 factor = 3.6 
Mean[dBA] 0.0 0.0 0.0 0.0 0.0 0.0 
Std [dBA] 1.021 1.021 1.01 0.992 0.960 0.962 
skewness 0.559 0.559 0.559 0.559 0.617 0.601 
kurtosis 0.504 0.504 0.807 1.015 1.306 1.313 
Shapiro 0.979 0.797 0.981 0.979 0.976 0.977 

 
The same statistical parameters analyzed for a 

single dataset, then, have been compared between 
100 different datasets of the same dimensions. 
Mean, standard deviation, kurtosis index, skewness, 
and value of the Shapiro-Wilk test have been 
collected and averaged over the 100 repetitions, to 
verify if the averaged values correspond to the mean 
values reported in Table 2. To prevent confusion 
and to facilitate the discussion, residuals from Table 
2 come from a multilinear regression applied on 
datasets having seed=0, while datasets shown from 
now on, used for the assessment of the reliability of 
the model, have seed values from 1 to 100. The 
approach used for the following discussion, then, is 
to evaluate the averaged statistic values coming 
from datasets having seed 1 to 100 compared to the 
unique statistic values obtained from datasets having 
seed=0. From the results reported in Table 5, it is 
immediately visible how the change of seed does 
not affect the mean value of the residuals 
distribution, regardless of the dataset dimension and 
k0 the value used to remove the outliers. For dataset 
1X the averaged value, in fact, is 0.0 ± 0.0 and it is 
perfectly consistent with the dataset having seed=0.  
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Table 5. Statistical parameters of the residuals 
population of the analyzed datasets vs the averaged 
values of the residuals of the datasets repeated 100 

times with different seed 
 1X 2X 5X 10X 30X 60X 

Residuals of datasets with seed = 0 
Mean[dBA] 0.0 0.0 0.0 0.0 0.0 0.0 
Std [dBA] 1.021 1.011 1.010 0.992 0.963 0.967 
skewness 0.599 0.617 0.599 0.599 0.634 0.629 
kurtosis 0.504 0.881 0.807 1.015 1.389 1.456 
Shapiro 0.979 0.977 0.981 0.979 0.975 0.976 

Residuals of datasets with seed = 1 to 100 (averaged values) 

Mean[dBA] 0.0 
± 0.0 

0.0 
± 0.0 

0.0 
± 0.0 

0.0 
± 0.0 

0.0 
± 0.0 

0.0 
± 0.0 

Std [dBA] 0.962 
± 0.069 

0.973 
± 0.047 

0.976 
± 0.027 

0.977 
± 0.017 

0.979 
± 0.012 

0.979 
± 0.009 

skewness 1.306 
± 0.869 

1.364 
± 0.583 

1.467 
± 0.457 

1.501 
± 0.309 

1.534 
± 0.167 

1.554 
± 0.106 

kurtosis 0.612 
± 0.233 

0.607 
± 0.167 

0.631 
± 0.107 

0.631 
± 0.071 

0.637 
± 0.044 

0.637 
± 0.027 

Shapiro 0.969 
± 0.015 

0.973 
± 0.010 

0.974 
± 0.007 

0.974 
± 0.005 

0.975 
± 0.003 

0.975 
± 0.001 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 4: Statistics of the 1X dataset residuals population with and without the outliers removal process, at 
varying 𝑘0 factor values 

 
 
 

 
Fig. 5: heatmap correlating the dataset size and the 𝑘0 factor applied to the process of outliers removal. 
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The standard deviation value is 0.962 ± 0.069, 
compared to the 1.021 of the dataset with seed=0. 
Shapiro Wilk test result is 0.969 ± 0.015, compared 
with 0.979 of seed=0, showing that all the residuals 
obtained populations are normally distributed. 

Indices of asymmetry and sharpness of the 
residual distributions are also comparable, but the 
difference between the 100 repetitions is wider. 

The Kurtosis index value for the 100 repetitions 
is 0.612 ± 0.233, where the one for the single dataset 
with seed = 0 is 0.599; the average skewness value 
of the 100 datasets is 0.612 ± 0.015 vs the one of a 
dataset at seed 0 equal to 0.504. Skewness and 
Kurtosis index are, in general, more variable over 
the 100 repetitions. At last, it is observable that a 
common trait of the repetition process of the 
datasets is that when the dataset is bigger in size, the 
wideness of the distribution of the averaged value is 
smaller. Overall, out of these results, it can be easily 
concluded that the random generation of the 
independent variables used to build the dataset is 
completely reliable, and it is not affected by the 
different repetitions of the process. 
 
3.3  Validation of the Model 
The investigations of the results regarding the 
validation of the model proceeded following the 
same criteria applied for the calibration: to verify if 
the different size of the generated dataset can 
improve the final results of the model (indicated by 
the error metrics) and if the final result changes at 
varying of the chosen seed. Since from the analysis 
of the calibration the most convenient value of k is 
shown to be 0.1, the following result analysis will 
focus on the comparison of the regression technique 
with and without outliers’ removal only with the 
factor k=0.1. At first, the investigation of the 
multiregression coefficients is shown, since they are 
the ones used to simulate the final noise values. 
Table 6 reports the mean values of the coefficients 
at varying seeds, with and without outliers’ removal 
process. The tables indicate that the values of the 
coefficients do not significantly change when 
applying the outlier’s removal procedure. What is 
noticeable, nonetheless, is that the associated 
standard deviations reduced at increasing the dataset 
dimension (for all the coefficients). When 
calibrating the model using a larger dataset, then, 
the multiregression stage is performed with 
coefficient values more similar between the seeds, 
compared to when the multiregression is performed 
after a calibration with a shorter dataset. 
Consequently, the coefficients of the multi-
regression will be more similar to each other when 
using a larger dataset, whichever seed has been 

chosen. Figure 6 reports the oscillation of the 
various coefficient values through the 100 chosen 
seeds when calibrating with a 1X and a 60X dataset, 
with and without outliers’ removal. 
 

Table 6. Mean values of the coefficients of the 
multilinear regression repeated 100 times with 

different seeds, with and without outliers’ removal 
at k=0.1 

 1X 2X 5X 10X 30X 60X 

Multi-regression coefficients without outliers’ removal 

Intercept 29.116 
± 1.667 

29.071 
± 0.661 

29.214 
± 1.146 

29.117 
± 0.458 

29.117 
± 0.293 

29.180 
± 0.223 

Coeff. Q 10.034 
± 0.167 

10.024 
± 0.091 

10.028 
± 0.128 

10.023 
± 0.056 

10.023 
± 0.033 

10.022 
± 0.022 

Coeff. vL 18.586 
± 0.646 

18.588 
± 0.278 

18.536 
± 0.411 

18.612 
± 0.174 

18.609 
± 0.123 

18.607 
± 0.086 

Coeff. vM 2.339 
± 0.520 

2.360 
± 0.226 

2.356 
± 0.390 

2.346 
± 0.135 

2.338 
± 0.093 

2.336 
± 0.066 

Coeff. vH 1.455 
± 0.513 

1.477 
± 0.201 

1.477 
± 0.327 

1.451 
± 0.154 

1.437 
± 0.103 

1.440 
± 0.062 

Coeff. P 2.363 
± 0.545 

2.344 
± 0.254 

2.326 
± 0.386 

2.320 
± 0.177 

2.311 
± 0.106 

2.310 
± 0.071 

Coeff. d -25.646 
± 0.388 

-25.643 
± 0.164 

-25.658 
± 0.248 

-25.638 
± 0.119 

-25.641 
± 0.073 

-25.641 
± 0.056 

Multi regression coefficients with outliers’ removal (k = 0.1) 

Intercept 28.383 
± 1.536 

28.454 
± 1.107 

28.332 
± 0.591 

28.341 
± 0.402 

28.376 
± 0.278 

28.385 
± 0.210 

Coeff. Q 10.031 
± 0.173 

10.019 
± 0.129 

10.016 
± 0.083 

10.016 
± 0.048 

10.015 
± 0.031 

10.014 
± 0.022 

Coeff. vL 19.042 
± 0.622 

18.898 
± 0.433 

19.023 
± 0.288 

19.032 
± 0.170 

19.030 
± 0.112 

19.020 
± 0.080 

Coeff. vM 2.190 
± 0.531 

2.234 
± 0.395 

2.222 
± 0.238 

2.228 
± 0.131 

2.221 
± 0.090 

2.226 
± 0.067 

Coeff. vH 1.449 
± 0.517 

1.446 
± 0.339 

1.469 
± 0.224 

1.448 
± 0.160 

1.450 
± 0.104 

1.465 
± 0.064 

Coeff. P 2.182 
± 0.552 

2.151 
± 0.399 

2.185 
± 0.252 

2.168 
± 0.170 

2.163 
± 0.109 

2.159 
± 0.073 

Coeff. d -25.492 
± 0.391 

-25.479 
± 0.245 

-25.474 
± 0.162 

-25.463 
± 0.115 

-25.470 
± 0.072 

-25.470 
± 0.050 

 
To test if and how the validation process is also 

affected by the dataset size we finally performed the 
validation step with a dataset of all dimensions 
(1X,2X,5X,10X,30X,60X) and iterated the process 
through 100 seeds. The results are summarized in 
Figure 7. Dots represent the mean value of the errors 
of the validation process (identified as Measured 
Leq,h minus Simulated Leq,h) through the 100 chosen 
seeds. The spread of the values constantly decreases 
at increasing the dimension of the original dataset, 
remaining on a mean value of -0.5 dBA. This means 
that the sensitivity of the model does not improve 
with increasing the size of the dataset, but it 
becomes more and more consistent over the seeds. 
In other words, when calibrating on a 30X or 60X 
original dataset, whichever random combination of 
values will produce a validation with an error value 
close to the mean one (in this application -0.5 dBA). 
By choosing a larger dataset for the calibration, 
then, the reproducibility is more likely than when 
using a smaller one. Figure 8 and Table 7 strengthen 
this aspect, by visualizing the mean error (averaged 
through the chosen 100 seeds) at different original 
dataset sizes (1X, 2X, 5X, 10X, 30X, 60X), with the 
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corresponding standard deviation. Whether the 
mean values do not move from -0.5 dBA, the 
standard deviation through seeds constantly reduces. 
It is important to underline that this aspect is not 
related to the final sensitivity of the model, i.e. the 
capability to simulate noise level as close as 
possible to the real measured ones, and that the two 
aspects are not related. 

 
Table 7. Mean values (averaged through seeds) of 

the error of the validation step, by using different 
dataset sizes (without outliers’ removal process) 
1X 2X 5X 10X 30X 60X 

-0.433 
± 0.249 

-0.448 
± 0.156 

-0.499 
± 0.100 

-0.449 
± 0.081 

-0.448 
± 0.048 

-0.433 
± 0.033 

 
To finally test the sensitivity of the model we 

compared the distribution of the values of Measured 
and Simulated Leq,h with different statistical 
parameters. We tested validation results for Leq,h 

values coming from calibration with and without 
outlier’s removal, at 1X and 60X original datasets, 
as reported in Table 8. Mean values of Measured 
and Simulated are comparable, (72.085 vs. 72.491 
for the 1X dataset; 72.085 vs 72.505 for the 60X 
dataset) as well as Skewness (-1.685 vs -1.195 for 
the 1X dataset; -1.685 vs -1.192 fr 60X dataset). The 
Kurtosis index differs between Measured and 
Simulated (4.872 vs 2.025 for the 1X dataset; 4.872 
vs 2.023 for the 60X dataset), maybe because the 
model cannot correctly simulate values of the left 
tail of the Measured distribution (see Figure 9, 
where the two distributions are visually compared 
for dataset1X without outliers’ removal). These 
values are probably due to anomalous situations of 
traffic, where the LTMS recorded unusually low 
Leq,h values. Shapiro-Wilk test results indicate that 
all the distributions are reasonably normal shaped 
(all the values are bigger than 0.885). 

 

 

 
 

 

Fig. 6: Oscillation of the multi-regression coefficients over seed with (upper part, lines yellow and black) and 
without (lower part, lines red and blue) outliers’ removal. In all the graphs the value of the coefficients derived 

from the application of the multiregression on a 1X dataset is compared to the values derived from the 
application of the multiregression on a 60X dataset. 
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Fig. 7: Mean values of errors through the chosen seeds when calibrating with datasets of different sizes 
(1X,2X,5X,10X,30X,60X) with and without outliers’ removal. 

 
The last rows of Table 8 report error metrics 

MAE and MAPE. Also in this case there are no 
significant variations between the 1X dataset (MAE 
1.747, MAPE 0.024 without outliers’ removal, 
MAE 1.758, MAPE 0.025 with outliers’ removal) 
and the 60X dataset (MAE 1.761, MAPE 0.023 
without outliers’ removal, MAE 1.759 MAPE 0.025 
with outliers’ removal). The findings summarized in 
Table 7, then, strengthen the observation that the 
dataset size and the process of outliers’ removal do 
not influence positively nor negatively the final 
validation process in terms of error metrics. 

 

Table 8. Statistical parameters of measured and 
simulated Leq,h values at 1X and 60X dataset, with 

and without outliers’ removal (k=0.1) 
 1X 1X, k= 0.1 60X 60X, k= 0.1 

 Meas Sim Meas Sim Meas Sim Meas Sim 

Mean 
72.085 
± 1.999 

72.491 
± 2.483 

72.085 
± 1.999 

72.508 
± 2.498 

72.085 
± 1.999 

72.541 
± 2.486 

72.085 
± 1.999 

72.505 
± 2.505 

Skew -1.685 -1.195 -1.689 -1.189 -1.685 -1.192 -1.685 -1.180 
Kurt 4.872 2.025 4.872 1.987 4.872 2.023 4.872 1.995 

Shapiro 0.886 0.923 0.886 0.924 0.886 0.924 0.886 0.924 
MAE 1.747 1.758 1.761 1.759 

MAPE 0.024 0.025 0.023 0.025 

 

 
Fig. 8: Mean and standard deviations of error 
through 100 seeds when calibrating with datasets of 
different sizes (1X,2X,5X,10X,30X,60X) 

Fig. 9: Comparison of simulated and measured noise 
levels distributions are for dataset1X without 
outliers’ removal 
 
A last consideration has been made regarding the 
processing time used by the computer to return a 
final result of the calibration process and the 
validation process. As first two different times have 
been distinguished: the wall time and the CPU time. 
CPU time is the laps of time needed by the CPU to 
compute all the needed operations to return the 
results, whereas the wall time is the time effectively 
elapsed from the start of the calculation until the 
visualization of the results. CPU time can be 
affected by the contemporary execution of any other 
process in the background.  
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Fig. 10: CPU and Wall time of the calibration and 
validation of the model by using different sizes of 
the original dataset, expressed in seconds. 

 
In the presented application no other relevant 

processes were running on the background, except 
for the essential ones. Wall time is generally higher 
than CPU time since it also involves the time 
needed by the compiler to process and visualize the 
results. Since the analyzed datasets are very 
different from each other in size, the time needed for 
their generation was studied. By comparing the 
execution times with the obtained results, in fact, a 
finer optimization of the model itself can be 
obtained. In Figure 10 a line is visualized, showing 
the total CPU and Wall time needed – expressed in 
seconds – for the calibration of datasets, depending 
on their dimension. CPU and Wall time needed for 
each dataset have been evaluated five times: the 
average value is shown, and the shaded area refers 
to the standard deviation. Please note that the 
elapsed time indicated in Figure 10 refers to the 
calibration and validation of datasets where no 
outlier removal has been performed. Figure 10 
indicates that the time for the calibration of the 
model remains below 2 seconds until the dataset is 
10X bigger than the standard one of 200 entries, but 
it doubles for the 30X dataset, and it doubles again 
for the 60X datasets. The elapsed time, then, 
significantly grows when the dataset gets bigger. By 
comparing Figure 5 with the results of Figure 10, 
anyway, it can be seen how the standard deviation 
of the residuals population does not present 
significant variation between 30X and 60X datasets 
(0.347 vs 0.348), making it not convenient for 
general prediction purposes when choosing a 60X 
datasets – requiring 10 s and a high percentage of 
CPU usage – to get a proper calibration process. 
Similarly, when comparing the outputs of the 
validation process (Figure 8 and Table 7), the 

difference, in terms of error, between 30X and 60X 
is not significant.  
 
 
4   Conclusions 
In this contribution, the reproducibility of the 
calibration and validation steps of a road traffic 
noise multilinear regression model based on a 
generated road traffic dataset is studied. The model 
has been previously described but here expanded 
and investigated in detail. The goodness of the 
calibration process has been estimated by analyzing 
in detail the statistical parameters of the residual 
population of the multilinear regression. The 
original dataset by which the model has been 
calibrated in previous works has been multiplied by 
specific factors to verify if an increased size of the 
input dataset could enhance the multilinear 
regression technique output. The size of the dataset 
has been observed to not greatly affect the residual 
statistical parameters. A second analysis has been 
performed by studying the effect of the multilinear 
regression technique on the removal of the outliers 
value of the residual population and of the 
application of a second identical multilinear 
regression technique. In such a case, even if the 
mean of the residual distribution has not changed, 
the wideness of the distribution itself is much 
smaller, meaning that the multilinear regression has 
been significantly improved. A combination of the 
two processes – increasing the size of the dataset 
and outliers removal – has also been tested, finding 
further improvement in the whole technique. 
Another analysis has been set on the dependence of 
the model on the input data, to test if the random 
generation of values of the independent variables 
could affect the final result of calibration. It has 
been observed that, in 100 different random 
generations of data, the final results are not affected. 
The aforementioned approach has been used to test 
the goodness of the validation step of the model, 
which has been tested on a road traffic dataset 
coming from a study of the Université Gustave 
Eiffel. The analysis revealed that, whether the mean 
value of the error metric is not affected by the 
outliers’ removal process, it is strongly influenced 
by the size of the dataset where the calibration 
process is performed. By iterating the validation 
through the 100 seeds, in fact, it has been noted that 
the value of the mean error is greatly more stable on 
60X datasets than on 1X datasets. It is safe to say, 
then, that when the calibration is applied on a larger 
generated dataset, the mean value of the final errors 
will be more stable and not depend on the random 
generation of the original dataset. To conclude, an 
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investigation on computing time of the generation-
regression process has been analyzed at different 
dataset sizes, finding the best compromise between 
the time involved in the process and the final results 
in terms of mean value and wideness of the 
residuals and error populations. The here-tested 
model, then, correctly predicts Leq,h values with an 
MAE of 1.75 and a MAPE of 0.02, by using a 
generated dataset, which is particularly useful when 
real data are not available for the calibration. also 
present some criticalities, since it performs the 
calibration and validation only by using a single 
NEM, where the final results could be influenced by 
the usage of different strategies for computation of  
Leq,h values which will be used by the regressor: for 
this reason future works will focus on the 
implementing of different NEMs to test if the model 
will be stable and reliable and, consequently, 
suitable for a larger part of the scientific 
community. 
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