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Abstract: The monthly variations of major floods are modelled as a discrete-time Markov chain. Based on this
stochastic process, it is possible, with the help of real-life data, to forecast the future variations of these events.
We are interested in the duration of the floods and in the area affected. By dividing the data set into two equal
parts, we can try to determine whether there are signs of the effects of climate change or global warming.
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1 Introduction
In [4], the author modelled the monthly variations of
major floods worldwide as a discrete-time Markov
chain having three possible states. Similarly, this sto-
chastic process was used as amodel for themonthly or
yearly variations of earthquakes. In both cases, using
real-life data, it was found that the models that were
proposed were indeed appropriate to describe the evo-
lution of these events.

Moreover, the limiting probabilities of theMarkov
chains were computed, in order to forecast the long-
term behaviour of the processes. Rather surprisingly,
the author concluded that themajor floods were seem-
ingly occurring almost at random and did not show
signs of increase due to climate change, whereas
earthquakes, and especially major ones, were trend-
ing upwards.

Markov chains have been used by other authors
as models in various applications. In hydrology,
Avilés et al. [1] forecast drought events based on these
stochastic processes, while Matis et al. [5] used them
to forecast cotton yields. Drton et al. [2] proposed a
Markov chain to model tornadic activity.

Similarly, Markov or semi-Markov processes of-
ten served as models to forecast earthquakes; see, for
instance, Sadeghian [8] and Panorias et al. [6].

Now, in [4], in the case of major floods, the vari-
able of interest was their number permonth. There are
however other variables that can be considered. In
the current paper, we will study two such variables,
namely the total duration of the floods and the total
area affected.

As in [4], the data set used will also be divided into
two equal parts to determine whether there have been

some significant changes in the variations of major
floods during the period considered.

In the next section, the mathematical background
will be presented. The model will then be imple-
mented for the total duration of the floods and the total
area affected in Sections 3 and 4, respectively.

2 Mathematical background
Wewill briefly recall the mathematical results needed
to carry out our study. See also [3] or [4].

A (time-homogeneous) discrete-time Markov
chain is a stochastic process {Xn, n = 0, 1, 2, . . . }
such that

P [Xn+1 = j | Xn = i,Xn−1 = in−1, . . . , X0 = i0]

= P [Xn+1 = j | Xn = i] := pi,j

for all states i0, . . . , in−1, i, j in the state spaceS and
for any n. In this paper, we will assume that the state
space of the process is the finite set S = {0, 1, 2}.
Hence, we assume that for any n, Xn is equal to one
of the numbers 0, 1 or 2, which are actually a cod-
ing system. The matrix P of the various pi,j’s is the
transition matrix of the Markov chain.

In the case of a discrete-time Markov chain, the
states i and j can be the same in pi,j . If we denote
by Ki the number of time units that the chain spends
in state i before moving to a different state, then (by
independence) we can write that

P [Ki = k] = (pi,i)
k−1 (1− pi,i)

for k = 1, 2, 3, . . . That is, the random variable Ki

has a geometric distribution with parameter p :=
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1 − pi,i. Notice that the above probability is strictly
decreasing with k.

Next, we define the limiting probability that the
Markov chain will be in state i when it is in equilib-
rium:

πi = lim
n→∞

P [Xn = i].

Under some conditions that will clearly be fulfilled
in our case, we can show (see, for instance, [7]) that
the limiting probabilities exist and can be obtained by
solving the following system of linear equations:

π = πP , (1)

where π := (π0, π1, π2), subject to the condition

2∑
i=0

πi = 1. (2)

In the next section, the total duration of the ma-
jor floods that occurred during a given month will be
considered.

3 Total duration of the floods
Let Fn be the number of floods during month n. In
[4], the author defined the following three states for
the variable Xn:

0 : if Fn − Fn−1 < −2,
1 : if −2 ≤ Fn − Fn−1 ≤ 2,
2 : if Fn − Fn−1 > 2.

Making use of the data set found on the site flood-
observatory.colorado.edu, which gives a list of large
flood events worldwide from 1985, it was found that
the stochastic process {Xn, n = 2, 3, . . .} can be con-
sidered as a Markov chain.

The data for the years 2000 to 2016 were used in
the study. There are 2825 floods in the data set for
this period, so that the average number of floods per
month is 13,85.

For each flood, the data set provides the dates
when it began and ended, its magnitude, the number
of dead, the area affected, etc. The magnitude of a
flood is a number defined by

M = Log(Duration × Severity ×Affected Area),

in which the Duration is in days, the Affected Area
is in square kilometres and the Severity is equal
to 1, 1,5 or 2 for large, very large and extreme
events, respectively. For the definition of the vari-
able Severity, see the site http://floodobservatory.col-
orado.edu/Archives/ArchiveNotes.html. A flood hav-
ing anM greater than 4 (respectively 6) is considered
as severe (respectively very severe). The vast major-
ity of the floods in the data set are at least severe.

The estimated transition matrix was found to be

P =

(
1/6 19/66 6/11
9/34 27/68 23/68
37/68 23/68 2/17

)
,

from which we obtain the following limiting proba-
bilities:

π0 = 0,3257, π1 = 0,3420, π2 = 0,3324.

As mentioned above, we must therefore conclude
rather surprisingly that, in the long run, the three states
of the Markov chain are almost equally likely. Fur-
thermore, we find that the average value of the differ-
ences Fn −Fn−1 is 0,0345. Thus, the monthly varia-
tions of the number of major floods do not show any
trend during the period 2000-2016. This conclusion
is strengthened when we divide the data set into two
parts (from 2000 to 2007, and from 2008 to 2016) and
we calculate the corresponding limiting probabilities;
see Table I.

Table I: Limiting probabilities calculated for the pe-
riods 2000-2007 and 2008-2016.

Period π0 π1 π2
2000-2007 0,3368 0,3263 0,3368
2008-2016 0,3149 0,3575 0,3275

Indeed, the πi’s did not change much between the two
time periods, and are consequently close to the values
obtained for the whole period. Actually, we see that
there are less variations during the period 2008-2016,
because state 1 then has the largest limiting probabil-
ity. This is confirmed by the fact that the standard de-
viation of the monthly variations decreased from 7,54
(in 2000-2007) to 5,90 (in 2008-2016). Finally, the
mean also decreased, from 0,116 to −0,037.

Now, although the number of monthly major
floods appears to be quite stable, there are other vari-
ables related to floods that are important. In this sec-
tion, we consider the total duration of the floods that
started during a given month.

Let Mn be the total duration of the floods that
started during month n. As in the case of the number
of floods, we define three states for the stochastic pro-
cess {Xn, n = 2, 3, . . .}. We write that Xn is equal
to

0 : ifMn −Mn−1 < −50,
1 : if −50 ≤ Mn −Mn−1 ≤ 50,
2 : ifMn −Mn−1 > 50.

Using the data for the whole time period 2000-2016,
we first obtain the histograms for the variablesK0,K1

and K2 defined above. These histograms are shown
in Figures 1 to 3, respectively.

As we can see, the histograms present approxi-
mately the exponential decrease that should be ob-
served if the random variableKi, for i = 0, 1, 2, has a
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Figure 1: Histogram of the variableK0 in the case of
the total duration of the floods.
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Figure 2: Histogram of the variableK1 in the case of
the total duration of the floods.

geometric distribution. Therefore, we may conclude
that assuming that {Xn, n = 2, 3, . . .} is a Markov
chain is realistic.

Next, we can easily estimate the transition proba-
bilities pi,j , for i, j ∈ {0, 1, 2}. We find the following
estimated transition matrix:

P =

(
13/64 26/64 25/64
19/79 34/79 26/79
31/59 20/59 8/59

)
.

Then, solving the system (1), (2), we obtain the lim-
iting probabilities:

π0 = 0,3120, π1 = 0,3962, π2 = 0,2918.

Moreover, we have the following descriptive statistics
of the 203 differencesMn −Mn−1:

x̄ = −0,276 and s = 160,4.

Hence, as in the case of the number of major floods,
we must come to the conclusion that the duration of
the floods is quite stable. There is in fact a very slight
decrease in the average total duration of the floods,
and π0 is larger than π2.
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Figure 3: Histogram of the variableK2 in the case of
the total duration of the floods.

To complete this section, we compute the limiting
probabilities for two equal subsets of the data set: first
from January 2000 to June 2008, and then from July
2008 to December 2016. The results are presented in
Table II.
Table II: Limiting probabilities for the total duration
of the floods calculated for the periods I: January 2000
to June 2008, and II: July 2008 to December 2016.

Period π0 π1 π2
I 0,2803 0,4098 0,3099
II 0,3431 0,3824 0,2745

Since the value of π0 has increased very significantly
in the second time period considered, it is possible
to state that, not only the total duration of the major
floods shows no sign of increase, it actually seems to
be decreasing. However, the descriptive statistics of
the differences are

x̄I = −0,833 and sI = 192,2,

and
x̄II = 0,287 and sII = 121,2.

Thus, the average difference increased slightly (about
1,12 days, or 26,88 hours), but the standard deviation
is much smaller during the second part of the period
considered.

In the next section, we will turn to the total area
affected by the floods.

4 Total area affected by the floods
Let An be the total area (in 106 square kilometres)
affected by the floods during month n. We define the
following states for the random variable Xn:

0 : if An −An−1 < −5,
1 : if −5 ≤ An −An−1 ≤ 5,
2 : if An −An−1 > 5.

The histograms for the variables K0, K1 and K2 ob-
tained for the time period 2000-2016 are presented
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in Figures 4 to 6, respectively. Since the three ran-
dom variables behave approximately like a geometric
distribution, we can claim that the stochastic process
{Xn, n = 2, 3, . . .} may be considered as a Markov
chain.
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Figure 4: Histogram of the variableK0 in the case of
the total area affected by the floods.
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Figure 5: Histogram of the variableK1 in the case of
the total area affected by the floods.

We find that the estimated transition matrix P is

P =

(
7/62 32/62 23/62
17/82 37/82 28/82
38/58 12/58 8/58

)
,

from which we estimate the limiting probabilities:

π0 = 0,3086, π1 = 0,4001, π2 = 0,2913.

We see that the limiting probabilities are very close
to the ones computed in the previous section. There-
fore, we must again conclude that there is no sign of
upward or downward trend for the monthly total area
affected by the floods. When we divide the data set
into two equal parts, we obtain the values in Table III.
Table III: Limiting probabilities for the total area af-
fected by the floods calculated for the periods I: Jan-
uary 2000 to June 2008, and II: July 2008 to Decem-
ber 2016.
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Figure 6: Histogram of the variableK2 in the case of
the total area affected by the floods.

Period π0 π1 π2
I 0,2934 0,4171 0,2893
II 0,3235 0,3824 0,2941

We observe an increase (respectively a decrease) of π0
(respectively π1), and a slight increase of π2, which
implies that there are more variations in the second
part of the time period considered than in the first one.
However, the limiting probabilities are rather stable.

The main descriptive statistics of the differences
An −An−1 are presented in Table IV.

Table IV: Descriptive statistics of the monthly dif-
ferences An −An−1.

Period x̄ s
01/01 – 12/16 0,0791 15,63
01/01 – 06/08 0,1380 15,87
07/08 – 12/16 0,0207 15,46

We see that the average and the standard deviation of
the monthly variations are quite stable, with a small
decrease in each case.

5 Conclusion
In this paper, we continued the study of the monthly
variations of the major floods worldwide that was
started in [4]. In the previous paper, it was found that
the number of major floods does not show any sign
of upward trend during the period 2000-2016. In the
current paper, we considered two important charac-
teristics of the floods, namely their duration and the
area affected. In both cases, the conclusion was the
same as in [4]. Indeed, we observe a slight increase
in the monthly variations, but the most likely state of
the Markov chain remains the one that corresponds
to small variations of the variable of interest. This
conclusion is strengthened when we compute the de-
scriptive statistics of the two variables. We find that
the mean of the observations is close to zero.

We also considered the number of people who died
because of the floods. This variable is more volatile,
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because it depends in particular on the countries that
were affected by the floods. At any rate, if we denote
by Dn the total number of dead during month n, we
find that the average of the differences Dn − Dn−1

decreased during the period 2000-2016: it went from
2,35 between January 2000 to June 2008, to −10,60
between July 2008 to December 2016. Thus, again
we see no sign of upward trend.
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