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Abstract: - In this article we present with STATA regression models suitable for analyzing over-dispersed 

count outcomes. Specifically, the Negative Binomial regression can be an appropriate choice for modeling 

count variables, usually for over-dispersed count outcome variables. The common problem with count data 

with zeroes is that the empirical data often show more zeroes than would be expected under either Poisson or 

the Negative Binomial model. We concluded, this publications showcases that Zero-inflated models can be 

used to model count data that has excessive zero counts. 
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1 Introduction 
Plant-parasitic nematodes such as the Meloidogyne 

species are recognized as major agricultural 

pathogens worldwide. Meloidogyne javanica is one 

of the most damaging crop parasites often causing 

heavy losses. Nowadays, the most reliable practices 

to control the pathogen are preventive e.g. crop 

rotation including the choice of plant varieties or the 

use of biological control agents such as the obligate 

hyperparasitic bacterium Pasteuria penetrans [1]. 

The literature review shows that the most widely 

studied bacterial pathogen of Meloidogyne species 

(root-knot nematodes) is in the genus Pasteuria. 

Pasteuria penetrans is a mycelial, endospore-

forming, bacterial parasite that has shown 

remarkable potential as a biological control agent of 

second-stage juvenile (J2) of root-knot nematodes. 

The biological control potential of Pasteuria spp. 

has been demonstrated on many crops and has been 

reported to develop endospores only in females of 

Meloidogyne spp. [1]. Based on previous research 

[2], attachment count data were observed to be over-

dispersed concerning high numbers of spores 

attaching on each J2 at 6 and 9 h after spore 

application. It was concluded that the negative 

binomial distribution was found to be the most 

acceptable model to fit the observed data sets 

considering that P. penetrans spores are clumped. 

This issue of over-dispersion with zeros exists in a 

dataset [2] we recently analyzed. Based on this class 

of distributions, we tested two approaches to adjust 

the over-dispersed count data with zeros [3-5].  The 

first approach was to scale the variance of the 

Poisson distribution by submitting a dispersion 

parameter and multiplying it by the variance. The 

second approach was to test another probability 

distribution to handle the count data dispersion, such 

as the Negative binomial the Zero-inflated Poisson 

(ZIP) or the Zero-inflated negative binomial (Zinb) 

model. 

Overall, in this paper, we employed and compare 

these different models with a particular focus, on the 

over-dispersed count data with zeros. 

Moreover, this paper attempts to encourage 

researchers dealing with biological data not to ignore 

the over-dispersion which statistically influence the 

conclusions by underestimating the variability of the 

data. 

 

 

2 Materials and Methods 
 

2.1 Meloidogyne spp. Culture 
A culture of M. javanica was maintained on tomato 

plants (cherry tomato variety Tiny Tim) in the 

glasshouse. Eggs were collected by dissolving the 

gelatinous matrix into a solution of 0.5% sodium 

hypochlorite (NaOCl) (10% commercial bleach), 

passing the solution through a 200-mesh (75 µm) 

sieve, nested over a 500-mesh (26 µm) sieve and 

rinsing the eggs under slow running tap water to 

remove residual NaOCl [6]. Second stage juveniles 

(J2) were then hatched using standard laboratory 

practices [7]. 
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2.2 P. penetrans Spore Attachment Data 
Attachment tests on freshly hatched J2 were 

conducted in 2.5-cm Petri dishes using standard 

techniques [8]. Spore suspension of P. penetrans 

(Nematech Co. Ltd Japan) were prepared in tap 

water [9], and fresh J2s of root-knot nematodes were 

exposed to 5000 spores per Petri dish [10]. All 

dishes were placed in a 28°C incubator. Nematodes 

were observed under an inverted microscope at ×200 

magnification [10] and numbers of P. penetrans 

spores attached per nematode were recorded (Table 

1). For the data-set (Table 1), a total of 36 random 

nematodes were examined for P. penetrans spore 

attachment (att) after incubation of the Petri dishes 

at 28°C for 1, 3, 6 and 9 h. 

 

2.3 Statistical Analysis 
In this research, we use a dataset Table 1 based on 

the attachment counts of the bacterium P. penetrans 

spores to root-knot nematodes cuticle. This dataset 

which is presented in the results as Table 1, contains 

four independent variables (time 1, 3, 6, and 9hrs) 

and is analyzed with STATA 9.1 for Windows 

Statistical Software [11], to demonstrate the 

application of Poisson, negative binomial, over-

dispersed Poisson, and Zero-inflated Poisson 

approach to modeling over-dispersion in count data 

and explain with those models the excess zeroes [12-

14].  

Moreover, to estimate these calculates the 

commands used to produce the STATA output were 

sum () for descriptive statistics, glm (), 

family(poisson) nolog for poisson model, nbreg (), 

nolog for Negative binomial regression and zip (), 

inflate () nolog for zero-inflated Poisson model. All 

the above commands are on Stata's manual, e.g., 

stata.com/help.cgi?poisson for the Poisson 

regression, stata.com/help.cgi?nbreg for the 

Negative binomial regression, stata.com/help.cgi?zip 

for the Zero-inflated Poisson and 

stata.com/help.cgi?zinb for the Zero-inflated 

negative binomial. 

 

 

3 Results 
 

3.1 P. penetrans spore Attachment Data 
The Table 1 shows the number P. penetrans spores 

attached (att) to nematode cuticle. These data 

characterized by excess zeros were used to model P. 

penetrans’s attachment. 

 

 

 

Table 1. Table showing the observed values of P. 

penetrans spores attachment 

Variable (h)  observed values attachment 

(att) 

1 0; 1; 3; 4; 3; 4; 1; 0; 2; 1; 1; 3; 3; 

2; 1; 2; 2; 1; 1; 2; 0; 3; 2; 2; 1; 1; 

1; 2; 0; 1; 3; 0; 3; 1; 1; 1 

 

3 2; 0; 3; 4; 1; 7; 3; 1; 7; 6; 2; 4; 1; 

7; 4; 1; 8; 5; 0; 8; 3; 6; 4; 7; 6; 2; 

0; 4; 6; 4; 3; 8; 1; 0; 1; 5 

6 1; 6; 6; 8; 0; 5; 15; 4; 0; 4; 5; 9; 6; 

7; 7; 14; 7; 1; 9; 9; 0; 6; 8; 3; 5; 5; 

4; 8; 10; 0; 0; 3; 7; 12; 4; 2 

9 7; 2; 3; 9; 7; 3; 5; 6; 14; 12; 6; 10; 

12; 2; 11; 3; 8; 19; 11; 9; 7; 6; 12; 

8; 0; 0; 4; 13; 16; 3; 1; 8; 12; 3; 0; 

10 

 

3.2 Statistical Analysis of P. penetrans’s 

Attachment 
Descriptive statistics for counts variables (var1-4) 

time 1, 3, 6 and 9hrs (h), were presented in Table 2. 

The Table 2 shows that for var. 3h the mean is twice 

the variance, and for var. 6h, and 9h the mean is 

thrice the variance.  

 
Table 2. Descriptive statistics for var1, var2, var3, 

var4 
Variable 

(h) 

Obs. Mean Variance Std. 

Dev. 

Min Max 

1 

 

36 1.638 1.265 1.125 0 4 

3 36 3.722 6.663 2.581 0 8 

6 36 5.555 14.768 3.842 0 15 

9 36 7.278 22.778 4.773 0 19 

 
This suggests over-dispersion means the 

assumptions of the Poisson model are not met and 

make the Negative Binomial distribution a useful 

over-dispersed alternative to the Poisson 

distribution.  

Based on the above observations we presume that 

the variance is proportional rather than equal to the 

mean, therefore I divide Pearson's chi-squared by its 

d.f. in order to estimate the scale parameter φ. 

Specifically, var(Y) = E(Y) =  φµ applying that if φ 

= 1, the variance equals the mean and the Poisson 
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model is obtained. If the φ value is more than one (φ 

> 1), the data are over-dispersed when compared to 

Poisson. 

The expected value of this statistic is n- p if the 

model is correct. Equating the statistic to its 

anticipation and solving for φ gives the estimate 1. 

φˆ = χ2
p / n− p             estimate 1 (equation 1) 

In our model Table 3 Generalized linear models, 

χ2
p = 292.272 for a model with p = 3 parameters on n 

= 144 observations, which leads to φˆ = 292.272 

/140 = 2.087. From Table 3 we have that the Poisson 

estimates the standard errors by √2.087 = 1.4448, 

which inflates them by 49.4%. The high value of 

Pearson's χ2 and the p χ2 indicates a lack of fit, 

which is not related to specification problems but 

rather to over-dispersion. From Table 3, the 

Pearson's χ2 statistic divided by its degree of 

freedom (df) leads to 2.087 indicating over-

dispersion and however the Deviance statistic 

divided by its df leads to 2.495 recommended over-

dispersion. 

As shown above another method for modeling 

over-dispersion in count data is to start with a 

Poisson regression model and add a multiplicative 

random effect θ to represent unobserved 

heterogeneity, 

This directs to the Negative Binomial regression 

model (nbreg) as presented in Table 4. The Negative 

Binomial model (nbreg), Table 4, gives estimates 

that are very akin to the Poisson model, and retain 

the same interpretation with average unobserved 

characteristics as the count variables contain zeroes 

Table 1. 

The conditional probability distribution of the 

outcome Y (equation 1), specified an unobserved θ 

variable of Poisson with mean and variance θµ 

(equation 1), proposed that the data of Table1 would 

be Poisson if only we could observe θ. In our results, 

we do the hypothesis that θ captures unobserved 

factors that increase (if θ > 1) or decrease (if θ < 1). 

In our results (Table 5), the output uses alpha which 

is equal to 0.32245 to label the variance of the 

unobservable, recommending that the data would not 

be Poisson. 

As was noted above in the STATA log the 

Negative Binomial model provides estimates that are 

very similar to the Poisson model Table 4, and have 

the same interpretation. The standard errors 

resemble the over-dispersed Poisson standard errors, 

and both are more considerable than the reference 

Poisson errors. 

Maybe our distributional assumption is similar 

but the nbreg STATA test of Table 5, leads to χ2
LR = 

69.04 which is highly significant (p=0.000) 

suggested that the Negative Binomial is better than 

the Poisson model. Furthermore, it is obvious that 

AICPoisson, BICPoisson Table 3, and AICNeg.Binomial, 

BICNeg.Binomial Table 6, has very different values 

suggested the Negative Binomial model fits 

considerably better than the Poisson, but even has 

deviance suggested that empirical data probably 

show fewer zeroes than would be expected under 

either model. To solve that, we used a Zero-Inflated 

(ZIP) Model for frequent zero-valued observations 

and a zero-inflated negative binomial (ZINB) model 

for modeling over-dispersion and excess zeros.  

In an analysis of ZIP Table 7, the Poisson model 

predicts only 8% of the 11,8% of the nematodes 

without P. penetrans spores. The Poisson model 

prognosticates 8%, so it underestimates the zeroes 

by five percentage points. 

The ZIP model proposes that there are two latent 

categories of nematodes, the “always zero” and 

another the “not always zero”, where the count has a 

Poisson distribution with mean and variance > 0. To 

solve it we were used in STATA the zero-inflated 

Poisson command in the inflate() option Table 8. 

The inflate equation of the outcome values Table 8, 

shows that the related to the ZIP model where the 

probability of “always zero” exists in 3, 6 and 9 hrs 

of incubation. Table 8 shows that the incubation 

period (3, 6 and 9hrs) is a significant predictor of 

being in the “always zero” class. Furthermore, we 

can observe from Table 9 that as alpha = 0 is 

significantly different from zero signifying that our 

data are over-dispersed and that a zero-inflated 

negative binomial model is more proper than a zero-

inflated Poisson model. Moreover, the Zinb model in 

the option zfitnb Table 10, solve the problem with 

the excess zeroes, predicting that 10.5% of the tested 

nematodes were unencumbered with P. penetrans 

spores a very close to the observed (zobs) value of 

11.8 Table 7. 

 

Table 3. Poisson regression and a GLMs Poisson to 

accommodate the excess variation. 

STATA command poisson att i.h, vce(robust 
Poisson regression  Number of obs =144 

 Wald chi2(3) =101.43 

 Prob > chi2 =0.0000 

Log pseudolikelihood = -380.23145 Pseudo R2 =0.1667 

 

att 

 

Coef. 
Robust 

Std. 

Err. 

 

z 

 

P>|z| 

 

[95% 

Conf. 

 

Interval

] 

h       

3 .820 .160  5.10 0.000    .504 1.135 
6 1.22 .160  7.60 0.000    .905 1.535 
9 1.49 .156  9.52 0.000   1.183 1.797 

_cons .494 .113  4.36 0.000    .2721 .715 
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STATA command glm att i.h, family(poisson) nolog 
Generalized linear models  No. of obs = 144 

Optimization : ML Residual df = 140 

    

Deviance = 349.353 (1/df) Deviance = 2.495 

Pearson = 292.272 (1/df) Pearson = 2.087 

Variance function: V(u) = u 

Link function : g(u) = ln(u) 

[Poisson] 

[Log] 

Log likelihood = -380.231 AIC = 5.336 

  BIC =-346.41 

att 

 

Coef. 
OIM 

Std.Err. 

 

z 
 

P>|z| 
 

[95% 

Conf. 

 

Interval] 

h       

3 .820 .156   5.25 0.000   .514  1.126 
6 1.22 .148   8.24 0.000   .930  1.511 

9 1.49 .144  10.35 0.000  1.20  1.773 

_cons .494 .130   3.79 0.000   .238   .749 

 

Table 4. Comparing estimates and standard errors 

based on the Negative Binomial model and on the 

Poisson regression model. 

Variable poisson overdisp nbreg 

att 
 

h 

3 

 

6 

 

9 

 

 

_cons 

 

 
.82030 

 

 
.82030 

 

 
.82030 

.15624 .22575 .20586 
1.2207 1.2207 1.2207 
.14815 .21406 .19979 
1.4908 1.4908 1.4908 
.14410 .20821 .1968 

.49401 .49401 .49401 

.13018 .1881 .16104 

lnalpha 

_cons 

 

-1.1286952 

.22315033 

 
Table 5. Negative Binomial regression model. 

STATA command nbreg att i.h 
Negative binomial regression   Number of obs = 144 

   LR chi2(3) = 53.91 

Dispersion = mean   Prob > chi2 = 0.0000 
Log likelihood = -345.70896   Pseudo R2 = 0.0723 

att Coef. Std.

Err. 
z P>|z| [95% 

Conf. 
Interv

al 
h       
    3 .8203 .2058 3.98 0.000 .41680 1.2237 

6 1.2207 .1997 6.11 0.000 .82918 1.6123 
9 1.4908 .1968 7.57 0.000 1.1050 1.8765 

_cons .49401 .1610 3.07 0.002 .17838 
.80965 

/lnalpha -1.128 .2231   -1.566 -

.69132 
alpha .32345 .0721   .20886 .50091 

Likelihood-ratio test of alpha=0: chibar2(01) = 69.04 

Prob>=chibar2 =0.000 

 

Table 6. A Negative Binomial model to 

accommodate the excess variation. 

STATA command glm att i.h, family(nb `v') nolog 
Generalized linear models No. of obs = 144 

Optimization : ML Residual df = 140 

 Scale parameter = 1 

Deviance = 164.3046481 1/df) Deviance = 1.173605 

Pearson = 112.0212999 (1/df) Pearson = .8001521 

Variance function: V(u) = 

u+(.3235)u^2 

function : g(u) = ln(u)  

[Neg. Binomial] Link 

[Log] 

 

Log likelihood =-345.7089557 

AIC = 4.857069 

BIC = -531.4692 

 

Table 7. Zero-Inflated Poisson (ZIP) model. 

STATA command sum zobs zfitp 
Variable Obs Mean Std.Dev. Min Max 

zobs 144 0.11855 0.3238 0 1 

zfitp 144 0.08057 0.0807 0.000

69 

0.19419 

 

Table 8. Zero-Inflated Poisson (ZIP) model. 

STATAcommand zip att i.h, inflate(h) vce(robust) 
Zero-inflated Poisson regression  Number of obs = 144 

  Nonzero obs = 127  

  Zero obs = 17 

Inflation model = logit  Wald chi2(3)= 128.01 

Log pseudolikelihood = -

350.0632 

 Prob > chi2 = 0.0000 

 

att 

 

Coef. 
Robust 

Std. 

Err. 

 

  z 

 

P>|z| 

 

[95% 

Conf. 

 

  

Interval] 

att        

 h       

   3 .87726 .1518   5.78 0.000    .57966   1.1748 

   6 1.3274 .14411   9.21 0.000   1.045   1.6099 

   9 1.5371 .14561  10.56 0.000   1.2517   1.8226 

 
_c

ons 

.53439 .1096   4.88 0.000    .31956    .74921 

inflate 

h 

_cons 

 
.07184 

 
.09275 

 
  0.77 

 
0.439 

 
  -.10994 

 
  .25363 

-
2.6985 

.6298  -4.28 0.000   -3.9330  -1.4641 
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Table 9. Zero-Inflated Negative Binomial (Zinb) 

model. 

STATA command zinb att i.h, inflate(h) vuong zip 
Zero-inflated negative binomial 
regression 

 Number of obs = 144 

  Nonzero obs = 127  

  Zero obs = 17 

 
Inflation model = logit 

 
 LR chi2(3)= 68.18 

Log pseudolikelihood = -338.4195  Prob > chi2 = 0.0000 

att Coef. Std. 

Err. 

  z  P>|z|  [95% 

Conf. 

 Interval] 

att        

   h       

    3 .8618 .18628  4.63  0.000   .49678  1.227016 

    6 1.3262 .17982  7.38  0.000   .97380  1.678686 

    9 1.5489 .17491  8.86  0.000  1.2060  1.891729 

 _cons .51906 .14880  3.49  0.000   .22741   .810722 

inflate 

h 

_cons 

 

.11522 

 

.13260 

 

 0.87 

 

 0.385 

 

 -.14468 

 

  .3751219 

-3.143 .94447 -3.33  0.001  -4.9946 -1.292392 

/lnalpha -1.8996 .33253 -5.71  0.000  -2.5514 -1.247904 

alpha .14961 .04975     .07797  .2871059 

Likelihood-ratio test of alpha=0: chibar2(01) = 23.29 

Pr>=chibar2 = 0.0000 

Vuong test of zinb vs. standard negative binomial: z = 1.74 

Pr>z = 0.0410 

 

Table 10. Zero-Inflated Negative Binomial (Zinb) 

model with zfitnb option. 
Variable Obs Mean Std.Dev. Min Max 

zfitnb 144 0.1051 0.9739 0.237 0.268 

 
Finally, to choose between the Negative 

Binomial and Zero-inflated models the Vuong test, 

Table 9, suggests that the Zero-inflated negative 

binomial model is a significant better Pr>z = 0.0410, 

over a standard negative binomial model. 

 

 

4 Discussion  
According to our data (Table 1), the procedure 

discussed above confirmed that the Zero-inflated 

negative binomial model is the more appropriate 

model to estimate P. penetrans spore attachment 

count data. The Negative binomial model is also the 

preferred model as time of exposure increased (e.g. 

6 or 9 h), confirming the original conclusion 

reported by Vagelas [2, 15] that the data are over-

dispersed within a specific time period (e.g. 6). As 

the variance is greater than the mean [16-21], 

examination of the variability using the Negative 

binomial was an acceptable model to describe P. 

penetrans over-dispersion as an aggregating 

organism, leading to the conclusion that the bacteria 

are clumped and clustered under natural conditions. 

Moreover, in this paper, we used the Poisson, the 

Negative binomial and the Zero-inflated Poisson 

model [22], to deal with count data especially, when 

the data are over-dispersed and contain excessive 

zero counts [23]. In addition to the Poisson model, 

we used the Negative binomial and Zero-inflated 

models to the count data of Table 1. The first step 

should be a summary of Statistics (e.g. the observed 

data's sample mean and variance) to measure if the 

data are over-dispersed. Second, we illustrated the 

estimate of the dispersion parameter [24], as 

deviance or Pearson's χ2 statistic divided by the 

degrees of freedom, which is often used to indicate 

over-dispersion for Poisson models. Third, as the 

Poisson model is a special case of the Negative 

Binomial when σ2 = 0, we apply a likelihood ratio 

test to compare the two models. Finally, we 

suggested that the Zero-inflated models should be 

applied to estimate the dispersion parameters of the 

Negative Binomial [25] and offer an explanation for 

the excessive zero counts [26-27]. 

 

 

5 Conclusion 
In biological research including biocontrol, count 

data with a large proportion of zeros are often 

recorded [28-30]. For those count data Poisson 

regression is often used when the conditional 

variance is equal to the mean (equi-dispersion), or 

alternative since the variance exceeds the mean 

(over-dispersion), the negative binomial model was 

used to fit the count data. Since the over-dispersion 

has occurred, the probability of a structural zero, 

true zeros, and excess zero needs to test further. 

Further, apart from the negative binomial model, the 

Zero-inflated models can be an alternative to 

overcome over-dispersed data and can be used as a 

model to offer an explanation for the excess zeros 

condition in the counts. 
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