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Abstract: - The Black-Scholes option pricing model in classical form remains a benchmark model in Financial 

Engineering and Mathematics concerning option valuation. Though, it has received a series of modifications as 

regards its initial constancy assumptions. Most of the resulting modifications are nonlinear or time-fractional, 

whose exact or analytical solutions are difficult to obtain. This paper, therefore, presents exact (closed-form) 

solutions to the time-fractional classical Black-Scholes option pricing model by means of the He-Separation of 

Variable Transformation Method (HSVTM). The HSVTM combines the features of the He’s polynomials, the 
Homo-separation variable, the modified DTM, which increases the efficiency and effectiveness of the proposed 

method. The proposed method is direct and straight forward. Hence, it is recommended for obtaining solutions 

to financial models resulting from either Ito or Stratonovich Stochastic Differential Equations (SDEs). 
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1 Introduction 
Almost all aspects of applied mathematics have 

witnessed the emergence of Fractional Calculus 

(FC) as an important generalization of the classical 

calculus [1-4]. The derivative order(s) associated 

with FC go beyond the set of natural numbers, the 

point estimate, and so on. Instead, the orders can be 

defined in real and complex spaces, while an 

interval estimate is considered [5-8]. This creates 

rooms for memory settings of the systems. The 

applications of FC are widely seen in [9-11]. In 

financial mathematics, Jumaris [12,13] introduced 

FC to option pricing with its base in the Black-

Scholes pricing model (Financial derivatives). The 

Black-Scholes Model (BSM) for European option 

pricing and valuation plays a notable role in risk and 

portfolio management [14-17]. Though, some of the 

BSM underlying assumptions when relaxed leads to 

more complex or nonlinear versions. Hence, the 

need for effective and efficient numerical, semi-

approximate methods of solution. In literature, a lot 

of solution methods have been considered by a good 

number of researchers. These include: Adomian 

decomposition method (ADM), variational iteration 

method (VIM), Modified ADM (MADM), 

homotopy perturbation method (HPM), Differential 

transformation method (DTM), projected DTM 

(PDTM) [18-25]. He’s polynomials method was 

initiated in [26, 27] by Ghorbani et al., where the 

nonlinear terms were expressed as series of 

polynomials calculated with the aid of HPM. The 

He’s polynomials are noted to be compatible with 

the so-called Adomian’s polynomials. Though, they 

are easier to be computed and are user friendly to a 

greater extent. 

Other numerical approaches with more extensive 

applications to modelling situations in sciences, 

engineering, finance, and environmental 

management are considered in terms of analytical or 

approximate solutions [28-37]. 

 

 

2 The Classical Black-Scholes Model 
The solution of the Black-Scholes model is used for 

describing the value of option mainly of European 

type [38]. The solution solves the model of the 

form: 
2
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with the following as defined:  ,f f S 
 

represents the value of the underlying S , at a 

particular time,   such that 

       2,10, ,   [0, ] , , 0,t f C R T S R T     

 for a payoff function  , ,fp S t  and expiration 

price, E  such that: 
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In (2),  *S


 represents the maximum between 

*  and 0S  in terms of values, for the underlying 

asset ( )S S t , the volatility is  , r  is taken as the 

risk-free interest rate, meanwhile, the maturity time 

is T .  

In this work, we will look at a generalization of (1) 

regarding fractional order in terms of real and 

complex order of the derivatives. This will be 

regarded as a non-integer (time-fractional) Black-

Scholes model (TFBSM) following the form: 

   
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                   (3) 

subject to an attributed initial or boundary 

conditions,  ,  , 0,1,2,3,im i   , are non-zero 

functions. 

Recently, Ghandehari and Ranjbar [39] presented 

the exact solution of the option pricing model built 

on the Fractional Black-Scholes (FBS) equation 

employing a modified Homotopy Perturbation 

Method (HPM). In their method, they obtained the 

exact solutions basically with the aid of green 

function by combining the separation of variables 

method with HPM [39].  

Ouafoudi and Gao [40] introduced two solution 

methods viz: modified HPM and Homotopy 

Perturbation combined with Sumudu transform for 

handling the same option pricing model as 

considered in [39]. Both views of [39] and [40] 

required the application of green function. The new 

approach in this present work aims at providing 

exact solutions of the time-fractional classical 

Black-Scholes option pricing model by means of 

He-Separation of Variable Transformation Method 

(HSVTM). The HSVTM combines the basic 

features of the He’s polynomials, the Homo-

separation variable, and the modified Differential 

Transform Method without the concept and 

application of green function. Here, the fractional 

derivative is defined in the sense of Caputo. 

 

 

3 Remarks on the He’s Polynomial 

Solution Method  
Suppose a general form is considered as follows: 

  0                    (4) 

for a differential or an integral operator,   and 

 ,H p  denotes a convex homotopy given as: 

       , 1H p p p         (5) 

where   is a known operator (functional) with 

0  as a solution. Therefore, we get: 
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whenever  , 0H p   is satisfied, and the 

parameter  0,1p  is embedded. According to 

HPM in [26, 27], the parameter, p  is used in the 

expansion of: 
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From (7) we have the solution as 1p  . Though, 

the convergence of (7) as 1p   has already been 

considered in [24]. 

The method considers  N   as the nonlinear term 

given as: 
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where the He’s polynomials, 'kH s  can be obtained 

using: 
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3.1  The method on FDE 
Consider the general form of the time-fractional 

differential equation (GTFDE) of the form: 

       

   

, , , , ,

,0 ,

tD u x t Lu x t Nu x t f x t

u x g x

   




         (10) 

where 
tD

 is the fractional differential operator of 

order  0,1  in the sense of Caputo, L  is a linear 

operator, N  is a nonlinear operator,  ,f x t is a 

source term and  ,u x t  is a supposed function 

satisfying (3.7). 

Suppose  ,H p ;  ,x t  is defined as a convex 

homotopy such that: 

       , 1H p p p          (11)                             

where, 
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         , , , ,tD u x t Lu x t Nu x t f x t      

                       (12) 

and   is a functional operator with 0  as 

known solution such that:  

     , ,0t tD u x t D u x    .         (13) 

We remarked that: 
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For  , 0H p  , and using (12) and (13), we 

have: 

     1 0p p       

   
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                           (15) 

Expanding and simplifying (15) give: 
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                                                     (16) 

where  ,0u x  is an initial approximation of (10). 

In an integral form, (16) is expressed as: 

   
   

   

, ,
, ,0

, ,0
t

t

Lu x t Nu x t
u x t u x pJ

f x t D u x





  
   

   

   (17) 

where the nonlinear term is as defined above. 

Applying convex homotopy method to (17) with 

 0,1p  as an embedded parameter yields: 
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where      , ,0tx f x t D u x   . 

 

3.2 Procedures for the Exact Solution 

From (18),  0

0:  ,0p u u x . It is obvious that 

 0 ,0u u x  is the initial approximation 

(condition) of (10). To reduce the FDE (10) to ODE 

of the equivalent form, the exact solution is 

therefore defined as: 

         * 1 2, ,0 ,0u x t u x t u x t   .          (19) 

The functions  1 t  and  2 t  are to be 

determined. Thus,  * ,u x t  satisfies (3.7). Hence, 

       * * *, , , ,tD u x t Lu x t Nu x t f x t    .        (20) 

That implies that: 
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                                                                 (21) 

Since the assumed solution: 
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satisfies the initial condition, we have:  

         * 1 2,0 ,0 0 ,0 0 u x u x u x  .        (22) 

Thus, 
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Though, we have from (16) that: 
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                                        (24) 

Hence, simplifying (21) by putting (22) in (24) 

gives: 
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            (25) 

Equation (25) is thus, the fractional ODE (FODE) 

resulting from the fractional PDE in (10). Solving 

(25) may either lead to an IVP (ODE) or a system of 

ODEs. We will resort to Projected Differential 

Transform Method (PDTM) [25, 38, 41] for ease of 

computation as regards (25). Hence, suppose is an 

analytic function at  in a given domain say, D , then, 

the projected DTM of  ,x t  with respect to t  at 

*t  is defined and denoted by: 
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where (27) is known as the projected differential 

inverse transform of  , x j  with respect to the 

time parameter t  . 

 

 

4 Applications 
In this section, the following time-fractional Black-

Scholes equations are considered. 

Problem 4.1:  A linear Black-Scholes equation of 

the following form is considered: 
2
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Procedure w.r.t Problem 4.1:   

Choose  * ,w x t  as an initial approximation to (28) 

such that: 
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Hence, (28) becomes: 
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We therefore obtain the FODE system: 
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0 0                      

d
t t

dt




 



 
  

 
 

.              (34) 

From (34), it is obvious that  2 0t  . But solving 

(33) using the transformation properties [38] with 

 1 h  as the differential transform of  1 t gives: 

 
 

  
  1 1

1
1 6.5

1 1

h
h h

h





 
    

  
.            (35) 

Thus,  

 
 

 
1

6.5
,  1

1


  

 

p

p p
p

.              (36) 

  

   

 

 

 
 

 

1 1

0

0

0

  

6.5
               

1

6.5
               

1

               6.5 .

p

p

p

p

p

p

p

t p t

t
p

t

p

E t





























  




 




 

 







              (37) 

So, using (34) and (37) in (30) gives: 
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   
 
 

   

 

3

*

0

3

3

6.5
, max ,0

1

            max ,0 6.5

            6.5

p

p

t
w x t x

p

x E t

x E t




















 

 

 



              (38) 

where  denotes a one parameter Mittag-

Leffler function.  

 
Problem 4.2:  
A linear Black-Scholes equation model the 

following form is considered: 

  
2

2
1

w w w
k kw

t x x





  
   

  
             (39)

  

subject to: 

   ,0 max 1,0xw x e  .              (40) 

Procedure w.r.t Problem 4.2:   

Choose  * ,w x t  as an initial approximation to (39) 

such that: 

 
   

   

1

*

2

max 0, 1
,

max ,0

x

x

e t
w x t

e t





  
  

  

.           (41) 

Hence, (39) becomes: 

        

        

 
   

   

        

1 2

2

1 22

1

2

1 2

max 0, 1 max ,0

max 0, 1 max ,0

0
max 0, 1

1
max ,0

max 0, 1 max ,0 .

x x

x x

x

x

x x

e t e t
t

e t e t
x

e tw
k

x e t

k e t e t




 

 





 

 
  

 
 
   
 

  
      
    

 
   
 

                                  

                                                     

(42)   


 

       

       

1 2

1 1

0 max 0, 1 max ,0

     max ,0 max 0, 1 .

x x

x x

d d
e t e t

t t

k e t k e t

 

 
 

 

  
 

  

                             (43) 

Thus,  

 

     

     

1 1

2 1

max 1,0

0

max ,0

x

x

d
e t k t

t

d
e t k t

t









 

 

  
   

  
  

  
     

.    (44) 

We therefore obtain the FODE system: 

   

 

1 1

1

0,

0 1,                       


 


 

d
t k t

dt




 



             (45) 

and 

   

 

2 1

2

0,

0 0.                   

d
t k t

dt




 




 


 

             (46) 

From (45), the relation: 

 
 

  
  

 

1 1

1

1
1 ,  

1 1

0 1.

h
h k h

h





  
    

  

 

           (47) 

     
 

 
1 ,  0

1

p
k

p p
p


  

 
.             (48) 

Therefore, 

   

   

 
 

 

1 1

0

0

        
1

p

p

p

p

t p t

kt
E kt

p






















  




 
     





       (49) 

Similarly, from (46), the relation: 

 
 

  
  

   

2 1

1 2

1
1 ,  

1 1

0 1,  0 0.

h
h k h

h





 
   

  

   

      (50) 

   
 

 
2 ,  1

1

p
k

p p
p

 
  

 
.             (51) 

 

   

 
 

2 2

0

1

        
1

p

p

p

p

t p t

kt

p


















  




 
    





              (52) 

But 

 
 
 

 
 0 1

1
1 1

p p

p p

kt kt

p p

 

 

 

 

 
 

   
  .     (53) 

  
 
 

 
 0 1

1
1 1

p p

p p

kt kt

p p

 

 

 

 

 
  

   
  .   (54) 

So, putting (54) in (52) gives: 

 
 

 
 

 

2

0

1
1

        1 .

p

p

kt
t

p

E kt















  

  


   


                  (55) 

( )E kt 
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Hence, 

 
   

    
*

max 0, 1
,

max ,0 1

x

x

e E kt
w x t

e E kt









  
 

  
    

.          (56) 

Here, the presentations of the graphical views of the 

solutions  ,  w w x t  are given (see figures 1-4).  

Fig.1 and Fig.2 are for problem 4.1, while Fig.3 and 

Fig.4 are for problem 4.2.  For each considered case, 

the same interval is applied for x  but different 

intervals are used for t . 

 

 
Fig. 1: :  18,  4w o t o x      

 

 

 
Fig. 2: :  36,  4w o t o x   

 
 

 
 

Fig. 3: :  5,  15w o t o x   
 

 

 
Fig. 4: :  10,  15w o t o x     

 

 

 

5 Concluding Remarks 
In this paper, a new exact solution method is 

proposed. The method presented the exact solutions 

of the time-fractional classical Black-Scholes option 

pricing model by means of the He-Separation of 

Variable Transformation Method (HSVTM). This is 

an extension of the conference paper-approach in 

[42]. The HSVTM combined the basic properties of 

the He’s polynomials, the Homo-separation 

variable, and the modified DTM. The engendered 

fractional derivative is defined in the sense of 

Caputo, which increases the efficiency and 

effectiveness of the proposed method. The merits of 

the HSVTM are numerous. These include direct and 

straightforwardness in its application. Besides, no 

knowledge of green function, linearization, or 

Lagrange multiplier is required. Hence, it is 

recommended for obtaining solutions of financial 

models resulting from either Ito or Stratonovich 

Stochastic Differential Equations (SDEs). 
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