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Abstract: - Logistic regression models combined with Bayesian inference were developed to predict locations 
and quantify factors that influence the siting of biomass-using facilities that use woody biomass in the 
Southeastern United States.  Predictions were developed for two groups of mills, one representing larger 
capacity mills similar to pulp and paper mills (Group II), and another group of smaller capacity mills similar 
to the size of sawmills (Group I). “Median Family Income,” “Road Density,” “Slope,” “Timberland Annual 
Growth-to-Removal Ratio,” and “Forest Land-Area Ratio” were highly significant in influencing mill location 
for Group I.  “Slope,” “Urban Land Area Ratio,” and “Number of Primary Wood Processing Mills” were 
highly significant in influencing mill location for Group II.  In validation the sensitivity of the model for 
Group I was 86.8% and specificity was 79.3%.  In validation the sensitivity for Group II was 80.9% and 
specificity was 84.1%.  The higher probability locations (> 0.8) for Group I mills were clustered in the 
southern Alabama, southern Georgia, southeast Mississippi, southwest Virginia, western Louisiana, western 
Arkansas, and eastern Texas. The higher probability locations (> 0.8) for Group II mills were clustered in 
southeast Alabama, southern Georgia, eastern North Carolina, and along the Mississippi Delta.   

Key-words: - Biomass-using facilities, woody biomass, site location, prediction, Bayesian logistic models 

 

1  Introduction 
The 20th century was marked by rapid growth and 
increased prosperity in the world.  By 2040, the 
world’s energy consumption is predicted to be 48% 
higher than it is today [1].  Since the 1970s, 
macroeconomists have viewed changes in the price 
of oil as an important source of economic 
fluctuations, as well as a paradigm for global 

economic shock, likely to affect many economies 
simultaneously [2].  The amalgamation of 
economic, environmental, social, and national 
security concerns for petroleum-based economies 
have created a renewed emphasis on alternative 
sources of energy which include biomass [3-9]. 

Biomass is a renewable resource procured 
from multiple sources which include agricultural 
residues, land clearings, landscaping, industrial 
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byproducts, etc. [10]. However, developing a new 
bioeconomy will involve understanding and 
quantifying many economic relationships [11-15]. 
The objective of this study was to improve the 
assessment of site locations for biomass-using 
facilities that rely on woody biomass feedstocks.  
Decision support tools utilizing GIS-based multi-
criteria, land-use, and socio-economic analyses can 
generate visual evidence of biomass 
supply/demand, land suitability, energy crop 
production potential, and ecological benefits.  
Composite indices visually summarizing 
information contained in an array of individual 
attributes would help the public, industry, media, 
and policy makers see an overall picture that is not 
so obvious from the component attributes 
themselves. 

The present study enhances the study by 
Young et al. [16]. Prior research exists on 
identifying economically viable sites for biomass-
using facilities [17-23].  However, the authors are 
not aware of previous published research that 
combines logistic regression with Bayesian 
inference to assess site locations for biomass-using 
facilities.  The current study relies on existing mills 
that use woody biomass (e.g., sawmills, OSB mills, 
and pulp and paper mills).  These mills were used 
as surrogates for potential woody biomass-using 
bioenergy and biofuels plants for validation.  The 
assumption is that such mill share similarities in 
feedstock requirements, supply chain, and 
processing/handling technologies.  Support for this 
assumption comes from Patari [24], i.e., 
complementary resources held by forest and energy 
companies make collaboration in the bioenergy 
business favorable.  Leveraging the synergistic 
business relationships that exist in the feedstock 
supply chain between the two industries will be 
essential for reducing risk and minimizing capital 
investment in the emerging bioenergy and biofuels 
industries [25-27].  The study by Thorpe et al. [28] 
also indicates that the pulp and paper sector will 
rely on cellulosic byproducts as an important 
business strategy for product mix and energy self-
sufficiency.      

Predictive models were developed to 
quantify significant factors that influence the siting 
of such biomass-using facilities. Economic factors, 
transportation related influences, and biomass 
availability were studied as predictor variables. The 

study region consisted of 13 states in the 
Southeastern United States.1   

2 Materials and Methods  
2.1 Date Set 
This study involved organizing large volumes of 
data collected from various sources, including the 
U.S. Census Bureau [29, 30], U.S. Forest Service 
[31], U.S. National Land Cover Database [32], U.S. 
National Elevation Dataset [33], U.S. Department 
of Agriculture National Agricultural Statistic 
Service [34], U.S. Environmental Protection 
Agency [35], and state-level mill location 
directories of 2010.  Cost data from the BioSAT 
model were also used [36].  All records in this 
study were organized at the U.S. Census Bureau 
[30] 5-digit ZIP Code Tabulation Area (ZCTA) 
level.  There were 10,016 ZCTAs in the study 
region which corresponded to 10,016 potential 
analytical polygons or potential sites for woody 
biomass-using facilities. The average area size for 
5-digit ZCTAs in the 13-state study regions was 
209.84 km2.   

2.2 Biomass Estimation using GIS 
Forest biomass annual growth and removal quantity 
data were collected at the county level from the 
Forest Inventory and Analysis Database (FIADB) 
version 3.0 and reallocation was done for each of 
the 10,016, 5-digit ZCTAs using geographic 
information system (GIS) technology (Figure 1a).  
National land cover data [34] and digital raster map 
data were used to identify forestland.  In the digital 
raster map, each pixel represents one particular 
land cover class, i.e., water, urban, forest, or 
cropland, etc. (Figure 1b). Forest biomass annual 
growth and removal quantities were proportionally 
allocated with GIS spatial overlay techniques to 
each 5-digit ZCTA using the county boundary of 
the 5-digit ZCTA, and the land cover image data. 
Due to some misalignments of county boundaries 
with 5-digit ZCTA boundaries each forest biomass 
county was split into multiple area parts via the 5-
digit ZCTA area shape file, and assigned a unique 
5-digit ZCTA identifier. By overlaying each area 
part with the land cover image layer, the numbers 
of pixels in all land cover classes within each area 
of the 5-digit ZCTA were estimated (Figure 1c). By 
summing up the pixels of deciduous, coniferous, 

1Alabama, Arkansas, Florida, Georgia, Kentucky, 

Louisiana, Mississippi, North Carolina, Oklahoma, 

South Carolina, Tennessee, Texas, and Virginia. 
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and mixed deciduous- coniferous forests, which 
together represented total forestland, a forestland 
pixel ratio for each 5-digit ZCTA within a county 
boundary was calculated. The forest biomass 
quantity in every 5-digit ZCTA was derived using 
this pixel ratio technique (Figure 1d). A summed 
quantity value was then calculated as the forest 
biomass quantity in a 5-digit ZCTA. Allocation of 
biomass supply using GIS land cover data and 

proportionality allocating it at the 5-digit ZCTA 
level while incorporating socio-economic factors 
such as urban areas, road network density, etc., as 
well as other geographic phenomenon such as park 
and preserve boundaries, waterways, etc., 
maintains the integrity of the U.S. Census data with 
the overlays and expands upon prior research [36, 
3, 9]. 

 
Figure 1. Illustration of forest biomass allocation at the level of 5-digit ZCTA. 

2.3 Logistic Regression 
In Young et al. [16] logistic regression was used to 
identify site locations for biomass-using facilities 
and significant factors associated with these site 
locations. This study applied Bayesian inference 
for estimation of the parameters in the logistic 
regression models. Bayesian inference specifies the 
probability distribution for the underlying 
categorical or continuous variables and estimates 
parameters β. Bayesian inference allows for 
incorporation of prior beliefs and the combination 
of such beliefs with statistical data which are well 
suited for representing the uncertainties in the value 
of independent variables [37, 38]. The data set used 
to develop the Bayesian logistic regression (10,016 
observations associated with the 5-digit ZCTAs) 
were partitioned into two parts using a stratified 
random sampling technique for each state which 
ensured a spatially proportionate data allocation 
across the study region: 80% for training and 20% 
for validation. The training data were used to 
develop the models while the validation data were 
used to evaluate the model performance.  

2.4 Group I and Group II Subsets 
Bioenergy and biofuel plants are defined as 
facilities that integrate woody biomass conversion 
processes, and equipment to produce wood pellets 
for energy, biofuels, biopower, or value-added 
biochemicals [39]. Only 60 such facilities are 
known to exist in the study region. Given the large 
amount of ZCTAs that did not contain bioenergy or 
biofuels mills (which is problematic for logistic 
regression) more traditional wood-using facilities 
in the study area were used as surrogates (e.g., 
sawmills, OSB mills, and pulp and paper mills). 
The assumption is that similar factors will 
influence site preference and suitability given the 
commonality in feedstocks and procurement 
systems [40-43, 16]. The mills were partitioned 
into groups based on capacity:  

 Group I: Sawmills (Figure 2); 
 Group II: Pulp and paper mills, 

OSB mills and wood pellets mills 
(Figure 3). 

2.5 Response and Explanatory Variables 
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 Two separate response variables were 
considered for modeling and ranking potential 
sites. For Group I, the response variable, yi1 equals 
1 if ith ZCTA had at least one woody biomass-
using facility, and yi2 equals 1 was defined 
similarly for Group II mills. In logistic regression 
the dependent variable is either a 1 or 0 depending 
on the desired outcome of y, in this case 1 is a 
desired outcome of mill location. Thirteen 
explanatory variables for data available in the 

public domain were examined in the Bayesian 
logistic models (Table 1). The 13-explanatory 
variables were selected given the ability to use data 
sources in the public domain that are periodically 
updated and that such data could be organized at 
the resolution of the 5-digit ZCTA. These variables 
were selected given the findings of previous 
research, e.g., population density [42], median 
income [44], etc. 

 
Figure 2. Illustration of Group I woody biomass-using mills. 

 

 
Figure 3. Illustration of Group II woody biomass-using mills. 
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Table 1. Explanatory Variables Organized by ZCTA 

Variable 
Original Data 
Resolution Unit Data Sources 

Population Density 5-digit ZCTA People/mile2 
U.S. Census Bureau (2010) population 
density in each 5-digit ZCTA. 

Household Density 5-digit ZCTA Household/mile2 
U.S. Census Bureau (2010) household 
density in each 5-digit ZCTA. 

Household Unit Density 5-digit ZCTA 
Household 
unit/mile2 

U.S. Census Bureau (2010) household 
unit density in each 5-digit ZCTA. 

Median Family Income County Dollar 
U.S. Census Bureau (2010) median 
family income in each county 

Farm Net Income County Dollar 
USDA NASS Census Agriculture (2007) 
farm net income in each county. 

Road Density 5-digit ZCTA km/km2 U.S. Census Bureau (2010) road length 
Crop Cultivated Land 
Area Ratio 

5-digit ZCTA percent 
U.S. National Land Cover Database 
(2006) 

Forest Land Area Ratio 
Urban Land Area Ratio 
Water Area Ratio 

Slope 5-digit ZCTA percent 
U.S. National Elevation Dataset (2010) 
NED 1arc second 

Timberland Annual 
Growth-to-Removal Ratio County - 

Forest Inventory and Analysis – The 
Timber Products Tools (TPO) (2009) 

Number of Primary Wood 
Processing Mills in Each 
ZCTA 5-digit ZCTA - 

U.S. Forest Service (2009) and state mill 
directories 

 
2.6 Modeling Scoring and Interpretation 
Given a specific response variable and set of 
predictor variables, the fitted Bayesian logistic 
regression model provided an estimated probability 
that a ZCTA will contain a woody biomass-using 
facility, i.e., it is the probability (not the odds ratio) 
of exactly one biomass using facility. The 
probability was used in the validation data set to 
compare ZCTAs with actual mill locations.  

3 Results 

3.1 Bayesian Logistic Regression Estimates 

3.1.1 Predicted Mill Locations for Group I 
Eight out of the possible 12 predictor variables 
were statistically significant (p-value < 0.05), see 
Table 3. To compare the maximum likelihood 

estimator (MLE) and Bayesian inference estimation 
methods for parameter coefficients, Classification 
Tables were used for the training and validation 
data sets. The Classification Tables confirmed that 
the Bayesian logistic regression inference assuming 
a uniform prior had good predictive power for the 
siting locations for Group I mills (Tables 4 and 5). 
In the validation data set, the sensitivity of this 
model was 86.78% (i.e., the model predicted a 
current mill location correctly 86.78%), and 
specificity (i.e., predicting no mill location) was 
79.26%. The sensitivity rates in training and 
validation data sets exceeded those of the study by 
Young et al. [16] and were considered to be 
acceptable when compared to the stringent 75% 
criteria of medical radiology screening [45].  
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Table 3. Significant Variables for Group I mills 
Significant variables Mean Estimates p-value 

Intercept -4.54  
Median Family Income -0.000037 <0.0001 
Road Density -0.33 <0.0001 
Slope -0.075 <0.0001 
Timberland Annual Growth-to-Removal Ratio 2.09 <0.0001 
Forest Land Area Ratio 2.66 <0.0001 
Urban Land Area Ratio -0.33 <0.0012 
Water Area Ratio 5.90 <0.0020 
Household Density -0.0002 <0.0073 

 
Table 4. Summary of Classification Table for Training Dataset for Group I mills 

Parameter Estimation 
Method 

Training Data Set (y = Prediction Value |Actual Value) 

y=0|0 y=1|0 y=0|1 y=1|1 
Specificity 
ˆ( 0 | 0)P y y= =  

Sensitivity
ˆ( 1 | 1)P y y= =  

Maximum Likelihood 
Estimation (MLE) 2670 658 132 778 79.99% 85.49% 

Bayesian 
Inference 

Uniform 2673 655 124 786 80.08% 86.37% 
Gaussian 2670 658 133 777 79.99% 85.38% 

 
Table 5. Summary of Classification Table for Validation Dataset for Group I mills 

Parameter Estimation 
Method 

Validation Data Set (y = Prediction Value |Actual Value) 
y=0|0 y=1|0 y=0|1 y=1|1 Specificity Sensitivity 

Maximum Likelihood 
Estimation (MLE) 640 194 37 190 76.74% 83.70% 

Bayesian 
Inference 

Uniform 661 173 30 197 79.26% 86.78% 
Gaussian 640 194 37 190 76.74% 83.70% 

 
Median Family Income, Road Density, Slope, 

Timberland Annual Growth-to-Removal Ratio, and 
Forest Land Area Ratio were highly significant in 
influencing mill location (recall Table 3). Other 
statistically significant variables were Urban Land 
Area Ratio, Water Area Ratio, and Household 
Density. A higher family income, higher household 
density, higher road density, and land area ratio 
classified as Urban had negative coefficients. Slope 
had a negative coefficient, and Timberland Annual 
Growth-to-Removal Ratio, Forest Land Area Ratio, 
and Water Area Ratio had positive coefficients. 
This indicates that landscape with a lower slope but 
abundant forestland, high water area ratios, and 
high forest land ratio are preferred.   

The study results related to median family 
income supports the study by White and Mazza 
[43]. As White and Mazza [43] note in citing other 
studies key determinants in land conversion are 
increasing human populations, rising personal 
incomes, and changing societal preferences [46, 

47]. The signs of the coefficients in the Bayesian 
logistic regression models support the findings of 
White and Mazza [43] and other authors as cited in 
their study, i.e., higher family incomes, household 
density and road densities have a negative 
influence on forestation which would deter any 
future wood processing mill location. See Kimsey 
et al. [48] for the limitations of slope on timber 
harvesting. The study also supports the findings of 
Luppold and Baumgras [49] and the interaction 
between forest industry and the proximity of the 
forest resource.  

This result suggests the importance of 
landscape suitability on mill location [44]. Four 
categories of probability were developed from the 
Bayesian logistic model (Figure 4).  The higher 
probability locations (> 0.8) for Group I mills were 
clustered in the southern Alabama, southern 
Georgia, southern Mississippi, southern Virginia, 
western Louisiana, southwest Arkansas, and 
eastern Texas.  
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Figure 4. Estimated probability locations for Group I. 

 

3.1.2 Predicted Mill Locations for Group II 
Four predictor variables were statistically 
significant (Table 6). The classification tables 
confirmed that the logistic regression with 
Bayesian inference assuming a uniform prior had 
good predictive power for the siting locations at the 
5-digit ZCTA resolution for Group II (Tables 7 and 

8).  Bayesian Inference with a uniform prior had a 
sensitivity of 80.95% and specificity of 84.10% for 
Group II training data (Table 7). In the validation 
data set, the sensitivity of this model was 90.48% 
and specificity was 80.14% (Table 8). Both 
sensitivity and specificity were greater than those 
of Young et al. [16].  

 

Table 6. Significant Variables for Group II mills 

Significant variables 
Mean 

Estimates p-value 
Intercept -0.511 <0.0001 
Slope -0.511 <0.0001 
Forest Land Area Ratio -0.077 0.0075 
Urban Land Area Ratio 4.848 <0.0001 
Number of Primary Wood Processing Mills in Each ZCTA 5.251 <0.0001 

 
Table 7. Summary of classification table for Training Dataset for Group II mills 

Parameter Estimation 
Method 

Training Data Set (y = Prediction Value |Actual Value) 

y=0|0 y=1|0 y=0|1 y=1|1 
Specificity 
ˆ( 0 | 0)P y y= =  

Sensitivity
ˆ( 1 | 1)P y y= =  

Maximum Likelihood 
Estimation (MLE) 489 96 17 67 83.59% 79.76% 

Bayesian 
Inference 

Uniform 492 93 16 68 84.10% 80.95% 
Gaussian 489 96 17 67 83.59% 79.76% 
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Table 8. Summary of classification table for Validation Dataset for Group II mills 
Parameter Estimation 
Method 

Validation Data Set (y = Prediction Value |Actual Value) 
y=0|0 y=1|0 y=0|1 y=1|1 Specificity Sensitivity 

Maximum Likelihood 
Estimation (MLE) 117 29 4 17 80.14% 80.95% 

Bayesian 
Inference 

Uniform 117 29 2 19 80.14% 90.48% 
Gaussian 117 29 4 17 80.14% 90.48% 

 
 
Slope, Urban Land Area Ratio, and Number of 

Primary Wood Processing Mills in Each ZCTA 
were highly significant in influencing Group II mill 
locations. Another less statistically significant 
variable was Forest Land Area Ratio. Slope had 
negative influences on mill locations for Group II. 
Forest Land Area Ratio, Urban Land Area Ratio, 
and Number of Primary Wood Processing Mills in 
Each ZCTA had positive influences on Group II 
mill locations. This may reinforce the preposition 
of the synergistic relationship that exists between 
Group I and Group II facilities which are dependent 

on feedstocks from Group I mills. Many pulp and 
paper mills rely on wood chips from sawmills and 
the statistical significance of Group I mills 
(primarily sawmills) as an independent variable for 
the larger Group II mills highlight another strength 
of the models. Four categories of probabilities were 
developed from the Bayesian logistic model 
(Figure 5). The higher probability locations for 
Group II mills were clustered in southeast 
Alabama, southern Georgia, eastern North 
Carolina, and the Mississippi Delta.  

 
Figure 5. Estimated probability locations for Group II. 

 
3.3 Validation with newly start-up plants in 
the year of 2011-2013 
There were 21 bioenergy/biofuels, four pulp and 
paper mills, and 12 wood pellets mills start-ups 
between 2011-2013 (Table 9).  Considering the 
medium-to-large operating volume of these mills, 
the siting model for Group II was used for this 
additional validation study. Fourteen of the 21 
bioenergy/biofuels had estimated probabilities over 
0.5. Three of the four pulp and paper mills fell in 

the probable locations where the estimated 
probabilities were greater than 0.5, and all wood 
pellets mills had the estimated probabilities greater 
than 0.5 (Table 10). The overall correct rate in the 
use of newly startup mills for Group II siting model 
was 78.4%. Although there were eight mills not 
directly falling into the probable locations of the 
Group II model, they were very close to the nearby 
preferred probable locations (Figure 6).  
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Table 9.  Newly startup plants in the year of 2011-2013 

Plant Type Plant Name County State Zip 
Code Startup Capacity 

Biofuels Savannah River Site Aiken  SC 29802 2011 200,000 tons 
Biofuels Aspen Power Angelina TX 75901 2011 500,000 tons 
Biofuels Rentech/Biomass G&E Gulf FL 32456 2011 550,000 tons 
Biofuels Dominion Virginia Wise  VA 24293 2012 537,000 tons 
Biofuels WGS Energy  Twiggs  GA 31044 2012 350,000 tons 
Biofuels Southern Co Nacogdoches  TX 75788 2012 1,000,000 tons 
Biofuels Green Power Solutions Laurens GA 31040 2012 560,000 tons 
Biofuels Grow Green Power Anson  NC 28170 2012 370,000 tons 
Biofuels Weyerhaeuser/KGRA Pitt  NC 28513 2012 45,000 tons 
Biofuels ClearFuels Wayne TN 38450 2013 70,000 tons 
Biofuels North Star Renewable Jackson  GA 30549 2013 240,000 tons 
Biofuels Dominion Power Franklin VA 23851 2013 500,000 tons 
Biofuels Dominion Power Hopewell  VA 23860 2013 500,000 tons 
Biofuels South Boston Energy South 

Boston 
VA 24592 2013 500,000 tons 

Biofuels MeadWestvaco Covington VA 24426 2013 750,000 tons 
Biopower Piedmont Green Power Lamar GA 30204 2012 50 Megawatt 
Biopower Southern Power Nacogdoches TX 75961 2012 100 Megawatt 
Biopower Gainesville Renewable 

Energy Center 
Alachua  FL 32653 2013 100 Megawatt 

Biorefinery KiOR Lowndes  MS 39701 2012 182,500 tons 
Biorefinery ClearFuels Wayne TN 38450 2013 200,000 tons 
Biorefinery HCL Clean Tech Grenada MS 38901 2013 1,000,000 tons 
Pulp and paper Packaging Corporation of 

America 
Lowndes GA 31601 2012 457,000 tons 

Pulp and paper International Paper 
Franklin VA Mill 

Franklin VA 23851 2012 300,000 tons 

Pulp and paper International Paper Pine 
Hill Mill 

Wilcox  AL 36769 2012 450,000 tons 

Pulp and paper MeadWestvaco Evadale 
Mill 

Hardin  TX 77656 2012 696,000 tons 

Wood pellet Georgia Biomass Ware  GA 31503 2011 1,500,000 tons 
Wood pellet Enviva Hertford  NC 27910 2011 770,000 tons 
Wood pellet Biomass Energy/Enviva Louisa VA 23024 2011 260,000 tons 
Wood pellet Fram Renewable Fuels Appling  GA 31513 2012 400,000 tons 
Wood pellet Westervelt Renewable En. Pickens  AL 35442 2012 620,000 tons 
Wood pellet Varn Wood Products Brantley  GA 31542 2012 160,000 tons 
Wood pellet German Pellets Tyler TX 75979 2012 1,000,000 tons 
Wood pellet Equustock Chesterfield  VA 23836 2012 88,000 tons 
Wood pellet Enviva Northampton NC 27832 2012 880,000 tons 
Wood pellet Enviva Southampton Southampton  VA 23837 2013 550,000 tons 
Wood pellet Point Bio Energy Baton Rouge LA 70767 2013 880,000 tons 
Wood pellet Enviva Southampton  VA 23837 2013 1,000,000 tons 
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Table 10.  Validation Group II model with newly startup plants in the year of 2011-2013 

Plant Type 
Total 

Numbe
r  

Estimated Probability for Group II  
(logistic with the competition index) 

Correct Rate for 
“Probable Location”  

(probability>0.5) >0.8 0.5-0.8 0.2-0.5 <0.2 
Bioenergy/Biofuels 21 1 13 6 1 66.67% 

Pulp and paper 4 0 3 1 0 75% 
Wood pellet 12 1 11 0 0 100% 

 

 
Figure 6. Newly startup mills overlay of estimated probability locations for Group II facilities. 

5 Conclusions  
Logistic regression models combined with 
Bayesian inference were developed to quantify 
factors that influence the siting of biomass-using 
facilities that use woody biomass and predict 
potential biorefinery locations in the Southeastern 
United States. Median Family Income, Road 
Density, Slope, Timberland Annual Growth-to-

Removal Ratio, and Forest Land Area Ratio were 
statistically significant in influencing mill location 
for smaller capacity mills similar to sawmills 
(Group I).  Slope, Urban Land Area Ratio, and 
Number of Primary Wood Processing Mills were 
statistically significant in influencing mill location 
for large capacity mills like pulp and paper mills 
(Group II).  
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