
[7] Nordin, M. and Gutman, P. O Controlling
mechanical systems with backlash- a survey,
Automatica, vol. 38, (10), 2002, pp.1633-1649.
[8] Wang, C., Yang, M., Zheng, W., Hu, K. and Xu, D,
Analysis and suppression of limit cycle oscillation
for Transmission System with backlash
Nonlinearity, IEEE Transactions on Industrial
Electronics, vol. 62, (12), 2017, pp. 9261-9270.
[9] Viswandham, N., and Deekshatulu, B.L Stability
analysis of nonlinear multivariable systems. Int. J.
Control, 5, 1966, pp. 369-375.
[10] Gelb, A. and Vader-Velde, W.E Multiple-input
describing functions and nonlinear system design,
McGraw- Hill, New York, 1968
[11] Nikiforuk, P.N., and Wintonyk, B.L.M Frequency
response analysis of two-dimensional nonlinear
symmetrical and non-symmetrical control systems.
Int. J. Control, 7, 1968, pp.49- 62.
[12] Raju, G.S., and Josselson, R Stability of reactor
control systems in coupled core reactors, IEEE
Trans. Nuclear Science, NS-18, 1971, pp. 388-394.
[13] Atherton, D.P Non-linear control engineering -
Describing function analysis and design. Van
Noslrand Reinhold, London, 1975
[14] Atherton, D.P., and Dorrah, H.T A survey on
nonlinear oscillations, Int. J. Control, 31. (6), 1980,
pp. 1041-1105.
[15] Gray, J. O. And Nakhala, N.B Prediction of limit
cycles in multivariable nonlinear systems. Proc.
IEE, Part-D, 128, 1981 pp. 233-241.
[16] Mees, A.I Describing function: Ten years on. IMA
J. Appl. Math., 34, 1984 pp. 221-233.
[17] Sebastian, L the self-oscillation determination to a
category of nonlinear closed loop systems, IEEE
Trans. Autumn. Control, AC-30, (7), 1985 pp. 700-
704.
[18] Cook, P.A, Nonlinear dynamical systems, Prentice-
Hall, Englewood ClilTs, NJ, 1986
[19] Chang, H.C., Pan, C.T., Huang, C.L., and Wei, C.C
A general approach for constructing the limit cycle
loci of multiple nonlinearity systems, IEEE Trans.
Autumn. Control, AC-32, (9), 1987, pp. 845-848.
[20] Parlos, A.G., Henry, A.F., Schweppe, F.C., Gould,
L.A., and Lanning, D.D Nonlinear multivariable
control of nuclear power plants based on the
unknown but bounded disturbance model, IEEE
Trans. Autumn. Control, AC-33, (2), 1988 pp. 130-
134.
[21] Pillai, V.K., and Nelson, H.D A new algorithm for
limit cycle analysis of nonlinear systems, Trans.
ASME, J. Dyn. Syst. Meas. Control, 110, 1988, pp.
272-277.
[22] Genesio, R., and Tesi, A On limit cycles of
feedback polynomial systems, IEEE Trans. Circuits
Syst., 35, (12), 1988, pp. 1523-1528.
[23] Fendrich, O.R Describing functions and limit
cycles, IEEE Trans. Autom. Control, AC -31, (4),
1992, pp. 486487.
[24] Zhuang, M., and Artherton, D.P PID controller
design lor TITO system, TEE Proc. Control Theory
Appl. 141, (2), 1994, pp. 111-120.
[25] Loh, A.P., and Vasanu, V.V Necessary conditions
for limit cycles in multi loop relay systems, IEE
Proc., Control Theory Appl., 141, 31, 1994, pp.
163-168.
[26] Hakimi, A. R. and Binazadeh, T, Inducing sustained
oscillations in a class of nonlinear discrete time
systems, Journal of Vibration and control vol. 24,
Issue 6, July, 20, 2016.
[27] Tesi, A, Abed, E. H., Genesio, R., Wang, H. O.,
Harmonic balance analysis of periodic doubling
bifurcations with implications for control of
nonlinear dynamics, Automatic, 32 (9), 1996, 1255,
1271.
[28] Habib, G, and Kerschen, G. Suppression of limit
cycle oscillations using the nonlinear tuned
vibration absorber. Mathematical Physical and
Engineering Sciences, 08 April 2015 https://dol.org
[29] Lim, L. H and Loh, A.P. Forced and sub-harmonic
oscillations in relay feedback systems, Journal of
the Institution of Engineers Singapore,
45(5),(2005),pp88-100
[30] Hori, Y., Sawada, H., Chun, Y., Slow resonance
ratio control for vibration suppression and
disturbance rejection in torsional system, IEEE
Trans. Ind. Electron., vol. 46, (1), 1999, pp.162-
168.
[31] Raj Gopalan, P.K and Singh, Y. P. Analysis of
harmonics and almost periodic oscillations in
forced self-oscillating systems, Proc 4th IFAC
Congress, Warsaw.41,(1969),80-122
[32] Lin, C.H., Han, K.W Prediction of Limit cycle in
Nonlinear two input two output control system,
‘IEE Proc.-Control Theory Appl. Vol.146, No.3
may. 1999.
[33] Chidambaram, I.A, and Velusami, S Decentralized
biased controllers for load-frequency control of
inter connected power systems considering
governor dead band non-linearity, INDICON,
Annual IEEE, 2005, pp.521-525.
[34] Eftekhari, M and Katebi, S. D Evolutionary Search
for Limit Cycle and Controller Design in
Multivariable nonlinear systems, Asian Journal of
Control, Vol. 8, No. 4, 2006, pp. 345 – 358.
[35] Katebi, M., Tawfik, H., Katebi, S. D., Limit Cycle
Prediction Based on Evolutionary Multi objective
Formulation, Hindawi Publishing Corporation,
Mathematical Problems in engineering Volume,
Article ID 816707, 2009, 17pgs.
[36] Garrido, J, Morilla, F., Vazquez, F., Centralized
PID control by Decoupling of a Boiler-Turbine
Unit, Proceedings of the European Control
Conference, Budapest, Hungary, Aug. 2009, 23-26.
[37] Tsay, T.S Load Frequency control of
interconnected power system with governor
backlash nonlinearities, Electrical Power and
Energy, vol. 33, 2011, pp.1542-1549.
DESIGN, CONSTRUCTION, MAINTENANCE
DOI: 10.37394/232022.2024.4.16
Kartik Chandra Patra, Asutosh Patnaik