
Abstract: It is known that time jitter can vary in nature and magnitude depending on how accurately
the time scale is generated and the dynamic process is sampled. We modify the Kalman filter for white
Gaussian random jitter and call it jitter Kalman filter (JKF). It is shown that to cope with time jitter
the system noise covariance acquires an additional term proportional to the fractional time jitter standard
deviation and the process rate. Based on numerical simulations, it is shown that if the process rate
grows without limits then the estimation error caused by time jitter will also grow without limits. The
conclusions are confirmed experimentally 1.
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1 Introduction
Before working on optimal recursive filtering,
Rudolf Kalman examined in his Ph.D. thesis, [1],
linear dynamical systems operation on randomly
sampled data. About the same time it was high-
lighted, [2], that the jitter is highly correlated
when timing is derived from the zero crossing.
Sampling jitter was later discovered in clocks, [3],
[4], [5], and many other digital devices, [6], [7],
and learned in signals, [8], [9], [10], [11], [12]. In
digital circuits the jitter can reach 50 ps with a
total jitter of 100 ps, [13]. In signal tracking us-
ing GNSS receivers, the clock jitter with the vari-
ance of 2×10−24 s provokes a degradation of about
1◦, [14]. Timing jitter can also heavily affect esti-
mates of rapidly maneuvering targets, [15], [16].

Errors produced by time jitter are proportional
to the derivative of the sampled signal, [17]. In-
deed, if we consider some process x(t) and suppose
that the discrete time instant tk = t̄k + τ̃k is de-
fined with some mean t̄k and jitter τ̃k, then the
expansion of x(tk) to the Taylor series around t̄k
gives

x(tk) = x(t̄k) + τ̃k
dx(t)

dt

∣∣∣∣
t=t̄k

+ . . . (1)

which suggests that the effect of time jitter τ̃k on
x(tk) is amplified by the rate of the process dy-
namics, i.e. if the derivative is close to zero, then
there should not be any need to worry about jitter.
Otherwise, the time jitter may cause big trouble.
The questions thus arise: how does the sample
time jitter affect the Kalman estimate and accord-
ingly the batch optimal FIR estimate, [18], [19]?
and how can we modify the Kalman filter so that
it copes with timing jitter and performs better?

An analysis of available literature shows that there
are no direct answers yet, but some results can be
noticed, [20], [21], [22], [23], [24], [25], [26], [27].
It has to be remarked that in these papers, the
authors mitigated the effects of time jitter by de-
veloping special algorithms. To the best of our
knowledge, no modification of the Kalman filter
has been proposed so far for random jitter in sam-
pling time. Therefore, the impact of time jitter on
Kalman estimates in general also remains unclear,
except in some practical cases.

2 Model and Problem
Formulation

Sampling jitter cannot be considered apart of the
continuous-time state-space model, as far as being
a product of discretization. Then consider an LTI
stochastic system represented in state space with
the following equations

ẋ = Ax+w , (2)
y = Cx+ v , (3)

where the continuous-time noise vectors are white
Gaussian, w ∼ N (0, Cw(θ)) and v ∼ N (0, Cv(θ)),
with the covariances

cov(w) = Cw(θ) = E{w(t)wT (t+ θ)} = Swδ(θ) (4)

cov(v) = Cv(θ) = E{v(t)vT (t+ θ)} = Svδ(θ) (5)
where δ(t) is the Dirac delta and Sw and Sv

are the noise double-sided power spectral density
(PSD) matrices. Also, the property E{w(t)vT (t+
θ)} = 0 holds for all θ. Suppose that the process
is measured in discrete time tk with the sampling
time τk = tk − tk−1 and assume that the sampling
time is jittering and represent it as τk = τ + τ̃k,
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Figure 1: Effect of time jitter on signal discretiza-
tion. Jitter error is proportional to the derivative
of the sampled signal, see (1).

where τ is the mean sampling time. Although the
time jitter τ̃k can be random and deterministic, in
this paper we are concerned of Kalman filtering.
Therefore, we will think that the scalar τ̃k is a ran-
dom white Gaussian process τ̃k ∼ N (0, σ2

τ ) with
known covariance E{τ̃kτ̃l} = σ2

τδk−l. By defining
the fractional jitter as

δτk =
τ̃k
τ

, (6)

we represent the jittering sampling time by

τk = τ + τ̃k = τ(1 + δτk) . (7)

Note that the Kalman filter treat τ̃k as white
Gaussian noise and compute its variance as fol-
lows:

σ2
τ =

∫ ∞

0
Sτ (2πf) df , (8)

where Sτ (2πf) is the one-sided (measured) PSD
Sτ (2πf) of the clock oscillator phase noise, which
has different slopes in the Fourier frequency do-
main, [28], [29], [30]. The effect of timing jitter
is illustrated in Fig. 1, from which it follows that
timing jitter does not affect the constant value.
This is used intelligently in event-triggered state
estimation, [31], where measurements are trans-
mitted only when the value significantly changes
in time, i.e. when the value is noticeably dynamic.

3 Derivation of Noise
Covariances under Random
Time Jitter

In this section, we first transform the continuous-
time state-space model to discrete time in the
presence of timing jitter using Euler’s backward
method and then derive the noise covariances for
the transformed model.

3.1 Model Transformation under
Random Timing Jitter

With some prior knowledge of sample time jitter,
we can integrate the state equation (2) from tk−1

to tk, and convert the continuous-time model to
discrete-time as follows, [32]:

x(tk) = eAτkx(tk−1) +

∫ tk

tk−1

eA(tk−θ)w(θ)dθ (9)

y(tk) = Cx(tk) + v(tk) . (10)

By replacing x(tk) = xk, y(tk) = yk, and v(tk) =
vk, and introducing

Fk = eAτk , (11)

wk =

∫ tk

tk−1

eA(tk−θ)w(θ)dθ , (12)

the equations (9) and (10) become

xk = Fkxk−1 +wk , (13)
yk = Hxk + vk , (14)

where H = C and the discrete-time measurement
noise is defined by

vk =
1

τk

∫ tk

tk−1

v(t) dt . (15)

Note that the matrix Fk has a random com-
ponent in the matrix exponential (11) and is thus
also random. Therefore, we make further trans-
formation of the state equation (13) by splitting
Fk into the constant part F and random part F̃k:

Fk = eA(τ+τ̃k) ≈ I+Aτ +Aτ̃k = F+ F̃k , (16)

where F = I + Aτ and F̃k = Aτ̃k. This gives
the first order approximation of the state equa-
tion (13):

xk ≈ (F+ F̃k)xk−1 +wk

= Fxk−1 + τ̃kAxk−1 +wk . (17)

The past state xk−1 in the second term of (17) can
be replaced by the available past estimate x̂k−1

and the suitable state equation becomes

xk = Fxk−1 + τ̃kAx̂k−1 +wk

= Fxk−1 + ξk (18)

where the noise component

ξk = τ̃kAx̂k−1 +wk

=
τ̃k
τ
(F− I)x̂k−1 +wk (19)
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is zero mean and white Gaussian, because τ̃k and
wk are both zero mean and white Gaussian. This
finally gives the modified state space model:

xk = Fxk−1 + ξk (20)
yk = Hxk + vk (21)

where ξk ∼ N (0,Qξ) and vk ∼ N (0,R) are white
Gaussian and for which the covariances, Qξ and
R, and the cross-covariance cov(ξk,vl) still need
to be determined.

To apply Kalman filtering to modified equa-
tions (20) and (21), we need to determine the co-
variances of white Gaussian noise components wk,
ξk, and vk in the presence of time jitter, and find
out wether the vectors ξk and vk are correlated.
Since we have expanded the matrix exponential in
the first order approximation (16), the second or-
der terms in the following transformations should
be neglected. However, as we will later see, this
should not always be done, since neglecting all sec-
ond order terms makes the Kalman filter insensi-
tive to time jitter. Therefore, we will first derive
the noise covariances taking into account all of the
factors related to time jitter. Next, we will neglect
second order terms whenever possible.

3.2 Covariances of wk

Referring to (12), consider the covariance of wk:

cov(wk) = cov

(∫ tk

tk−1

eA(tk−θ)w(θ) dθ

)
that, by replacing the lower limit of integration
with tk−1 = tk−τ−τ̃k, can be written it as (22) (on
the top of next page), and we see that averaging
over two independent random variables w(t) and
τ̃k is required.

cov(wk) = E

{∫ tk

tk−1

∫ tl

tl−1

eA(tk−θ1)w(θ1)w
T (θ2)e

A(tl−θ2)T dθ1dθ2

}
≈ E

{∫ tk

tk−τ−τ̃k

∫ tl

tl−τ−τ̃l

[I +A(tk − θ1)]w(θ1)w
T (θ2)[I +AT (tl − θ2)] dθ1dθ2

} (22)

This can be done if we use the law of total
expectation, [33], and transform (22) to

cov(wk) = τSw +
τ2 + σ2

τ

2
(SwA

T +ASw)

+
τ

3
(τ2 + 3σ2

τ )ASwA
T , (23)

where we took into account that E{τ̃k} = 0 and
E{τ̃2k} = σ2

τ . Finally, neglecting the second order
terms gives

cov(wk) = Qδk−l = τSw , (24)

in which Sw is the double-sided PSD matrix of
continuous-time process noise w(t). Hence small
timing jitter does not affect the system noise co-
variance very much in the first order approxima-
tion associated with Kalman filtering.

3.3 Covariance of ξk
Recall that random components τ̃k and wk are
independent and transform the covariance of ξk as
follows:

cov(ξk) = E{(τ̃kAx̂k−1 +wk)(τ̃lAx̂l−1 +wl)
T }

=

[
σ2
τ

τ2
(F− I)x̂k−1x̂

T
l−1(F− I)T +Q

]
δk−l

= Qξkδk−l (25)

and we see that the second order term σ2
τ

τ2 can-
not be neglected, because the product (F −
I)x̂k−1x̂

T
k−1(F − I)T can be large. We will show

later that namely this component in (25) yields
the effect of time jitter, which is proportional to
the process rate, as explained by (1) and Fig. 1.

Example 1 Given the discrete-time linear time-
invariant (LTI) system with the system matrix

F =

[
1 τ
0 1

]
. Omitting the time index k, the co-

variance (25) can be transformed to

Qξ =
σ2
τ

τ2
(F− I)x̂x̂T (F− I)T +Q

=
σ2
τ

τ2

[
0 τ
0 0

] [
x̂1
x̂2

]
[x̂1 x̂2]

[
0 0
τ 0

]
+Q

=

[
σ2
τ x̂

2
2 0

0 0

]
+Q (26)

and we see that the component σ2
τ x̂

2
2 is proportional

to the jitter variance and to the squared estimate
of the second state (velocity). If x̂2 = 0 and hence
the value is constant, then it follows that timing
jitter does not affect the estimate.

Example 2 Given a constant value, which is rep-
resented by the one-state equation with F = 1 and
Q = σ2

w. The noise covariance (25) becomes

Qξ =
σ2
τ

τ2
(1− 1)x̂x̂T (1− 1)T + σ2

w = σ2
w ,

which confirms that timing jitter does not affect
the system noise covariance when the process is
constant.

Example 3 Given the discrete-time conservative
harmonic LTI system with the system matrix F =
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[
cosω0τ

1
ω0

sinω0τ
−ω0 sinω0τ cosω0τ

]
, where ω0 is the an-

gular fundamental frequency. By simple routine
transformations, the noise covariance (25) can be
shown to be

Qξ = σ2
τ

[
x̂22 −x̂1x̂2ω

2
0

−x̂1x̂2ω
2
0 x̂21ω

4
0

]
+Q .

In the limiting case of infinite period of repetition,
we set ω2

0 ≈ 0 and arrive at the covariance (26) of
the two-state polynomial model.

3.4 Covariances of vk
Now look at the discrete-time measurement noise
vk, which is defined by (15), and first transform it
as follows:

vk =
1

τ + τ̃k

∫ tk

tk−τ−τ̃k

v(t) dt

∼=
1

τ

(
1− τ̃k

τ

)∫ tk

tk−τ
v(t) dt

+
1

τ

(
1− τ̃k

τ

)∫ tk−τ

tk−τ−τ̃k

v(t) dt (27)

The covariance cov(vk) = E{vkv
T
l } can be trans-

formed to (28) (at the top of the next page), and
then averaging and simple transformations give

cov(vk) =
1

τ
SvE

{(
1− τ̃k

τ

)(
1− τ̃k

τ

)}
+

2

τ2
SvE

{(
1− τ̃k

τ

)(
1− τ̃k

τ

)
τ̃k

}
+

1

τ2
SvE

{(
1− τ̃k

τ

)(
1− τ̃k

τ

)
τ̃k

} (28)

cov(vk) =
1

τ
Sv

(
1− 5σ2

τ

τ2

)
= R

(
1− 5σ2

τ

τ2

)
. (29)

By neglecting the second order term, we finally
obtain

cov(vk) = Rδk−l =
1

τ
Sv , (30)

where Sv is the double-sided PSD matrix of
continuous-time noise v(t). So the covariance of
the measurement noise is not affected by time
jitter in the first order approximation associ-
ated with Kalman filtering. Moreover, no jitter-
induced addition is required to the observation
equation (21).

3.5 Cross-Covariance of ξk and wk

Finally, look at the cross covariance cov(ξk,vk) =
E{ξkvl}. Because these vectors contain the jitter
component τ̃k and wk is independent of any of
the remaining terms, we neglect wk, use the law of
total expectation, and make more transformations
as conclude that cov(ξk,vk) = 0, which means
that there is no correlation between ξk and vk.

4 Jitter Kalman Filtering
Algorithm

The Kalman filtering algorithm for random jitter
in sampling time can now be summarized as fol-
lows. Given the LTI continuous-time state space
model:

ẋ(t) = Ax(t) +w(t) (31)
y(t) = Cx(t) + v(t) (32)

where the continuous-time noise vectors are white
Gaussian, w(t) ∼ N (0, Cw(θ)) and v(t) ∼
N (0, Cv(θ)), with the covariances Cw(θ) = Swδ(θ)
and Cv(θ) = Svδ(θ), Sw and Sv are known
double-sided PSD matrices, and the property
E{w(t)vT (t+ θ)} = 0 holds for all θ. In discrete
time with the average sampling time τ , the model
undergoes random time jitter τ̃k ∼ N (0, σ2

τ ) and
becomes:

xk = Fxk−1 + ξk (33)
yk = Hxk + vk (34)

where ξk = Ax̂k−1τ̃k + wk ∼ N (0,Qξ), wk ∼
N (0,Q), E{wkw

T
l } = Qδk−l, vk ∼ N (0,R),

E{vkv
T
l } = Rδk−l, and E{wkv

T
l } = 0 holds for

all k and l. The second order statistics of ran-
dom values are defined as R = 1

τ Sv, Q = τSw,
σ2
τ =

∫∞
0 Sτ (2πf) df, and

Qξk =
σ2
τ

τ2
(F− I)x̂k−1x̂

T
k−1(F− I)T +Q

where Sτ (2πf) is the one-sided PSD of time jit-
ter τ̃k. Given the initial x̂0 and P0, the JKF al-
gorithm is represented with the pseudo code as
Algorithm 1. We see that random timing jitter
results in the increase in the system noise covari-
ance, which is proportional to the process velocity.
In the next sections we will test the JKF effective-
ness numerically and using experimental data.

5 Numerical Simulations
Numerical simulation is now required to learn ef-
ficiency of the JKF algorithm. We do it below
using polynomial and quasi harmonic state space
models with random timing jitter.

5.1 Tracking Polynomial Model
Consider a moving object, whose dynamics is de-
scribed in discrete time by the model

xk = Fxk−1 +Bwk (35)
yk = Hxk + vk (36)
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Algorithm 1: Jitter Kalman filtering al-
gorithm

Data: yk, x̂0, P0, Qk, Rk, σ2
τ

Result: x̂k, Pk

1 begin
2 for k = 1, 2, · · · do
3 x̂−

k = Fx̂k−1 ;
4 Qξk =

σ2
τ

τ2 (F− I)x̂k−1x̂
T
k−1(F− I)T +Q ;

5 P−
k = FPk−1F

T +Qξk ;
6 Sk = HP−

k H
T +R ;

7 Kk = P−
k H

TS−1
k ;

8 x̂k = x̂−
k +Kk(yk −Hx̂−

k ) ;
9 Pk = (I−KkH)P−

k ;
10 end for
11 end

where F =

[
1 τ
0 1

]
, B =

[
τ
1

]
, and H = [1 0].

The noise components are wk ∼ N (0, σ2
w) and

vk ∼ N (0, σ2
v) with the standard deviations σw =

5m/s and σv = 15m and the covariances are given
by Q = BBTσ2

w and R = σ2
v . Sampling is pro-

vided with τ = 0.5 s and the random timing jit-
ter τ̃k ∼ N (0, σ2

τ ) has the standard deviation of
στ = 0.3τ .

The standard Kalman filter and the JKF Algo-
rithm 1 are applied for known initial values. The
process dynamics generated over 10000 points is
shown in Fig. 2a and the estimation errors are
sketched in Fig. 2b. We see that the process rate
highly affects the Kalman estimate. When the
process is relatively slow, both filters produce con-
sistent estimates. But when the process changes
faster, the Kalman filter gives errors more than
twice as large. The dependence of the estimation
RMSE on the jitter standard deviation στ , mea-
sured using Monte Carlo simulation, is shown in
Fig. 3. Hence we conclude that in this process
timing jitter can be neglected when στ < 0.05 s,
and that the RMSE in the Kalman filter becomes
about 3 times larger when στ = 0.3 s. Note that
larger values of στ turn both filters to instability.

5.2 Quasi-Harmonic Process
When a noisy process varies quasi-periodically, the
harmonic model is better suited and we will look
into it below, assuming timing jitter. We repre-
sent the quasi-harmonic process by equations (35)
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Figure 2: Generated object trajectory sampled
with τ = 0.5 s and στ = 0.3τ over 1000 discrete
time points: (a) observed first state and (b) esti-
mation errors produced by the Kalman filter and
JKF.
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Figure 3: The effect of the standard deviation στ
of the random time jitter in the process shown in
Fig. 2a on the RMSEs of the Kalman filter and
JKF.
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Figure 4: The quasi harmonic process generated
over 200 discrete points with time jitter, its es-
timates produced by the Kalman filter and JKF,
and estimation errors: (a) process and estimates
(b) estimation errors.

and (36) with matrices B =

[
1
1

]
, H = [1 0], and

Fk =

[
cos(ω0τk)

1
ω0

sin(ω0τk)
−ω0 sin(ω0τk) cos(ω0τk)

]
, (37)

where ω0 = 2π/T is the angular fundamental
frequency, T = 20 s is the period of repetition,
τk = τ + τ̃k, and τ = T/24. The mutually inde-
pendent random components are wk ∼ N (0, σ2

w),
vk ∼ N (0, σ2

v), and τ̃k ∼ N (0, σ2
τ ) with the

standard deviations σw = 0.01, σv = 0.1, and
στ = 0.3τ . The noise covariances are defined as
Q = BBTσ2

w and R = σ2
v .

The typical quasi-harmonic process generated
over 10000 discrete points with timing jitter, the
estimates produced by the Kalman filter and JKF,
and the estimation errors are sketched in Fig. 4.
and the effect of jitter standard deviation on the
RMSEs in filtering estimates is exhibited in Fig. 5.
Like in the tracking model case (Fig. 3), here er-
rors in the Kalman filter also grow at a higher rate
with an increase in στ . A special feature is that
the both RMSE functions of στ are oscillating and
a much smaller step in στ/τ is required to restore
a complete picture.
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Figure 5: The effect of the standard deviation στ
of the random time jitter in the process shown in
Fig. 4a on the RMSEs of the Kalman filter and
JKF.

The following inferences can be drawn from this
simulation: 1) iming jitter significantly effects the
Kalman filter only when the process noticeably
changes over time and 2) JKF is highly robust to
time jitter, as far as being an estimator low sen-
sitive to time errors. It can also be emphasized
that JKF is practically insensitive to timing jit-
ter, because the corresponding errors are almost
stationary. In the meantime, the Kalman filter
exhibits the easily observable nonstationarity and
extra errors amplified by the process dynamics.

6 Conclusions
The jitter Kalman filter developed in this paper
has demonstrated the ability to cope very well
with timing jitter caused by various factors in dif-
ferent practical situations. An important conclu-
sion that has been made is that the extra error ετ
produced by timing jitter in the sampling time at
the estimator output is proportional to the square
of the jitter fractional standard deviation στ/τ
and the derivative of the process x:

ετ ∼ σ2
τ

τ2
dx

dt
,

which means that the process dinamics amplifies
the effect of fractional jitter at the estimator out-
put. To deal with this error, the JKF has ac-
quired an additional term in the system noise co-
variance, proportional to ετ . It also follows that
timing jitter can cause big troubles in estimation
of fast sampled processes; that is, if the process
rate grows without limits then the Kalman filter
error caused by timing jitter will also grow with-
out limits, while for slow processes it can be ne-
glected. We have verified the effectiveness of JKF
through simulations and experimental examples.
Thus, the main question that should arise in prac-
tice is not how large timing jitter is, but how much
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it is amplified by the process dynamics at the es-
timator output.
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