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Abstract: - Most machines fail due to lack of appropriate preventive maintenance (PM) and replacement 
schedule, and this failure leads to higher cost of repair maintenance, distortion of production schedule, elongated 
downtime period and reduced productivity. These could however be avoided by the utilization of optimal PM 
and replacement models suited for the specific kind of system. It is on this premise that this work develops an 
optimal PM and replacement model for mechanically repairable systems with linearly increasing hazard rate 
which failure distribution of the system is characterized by the Rayleigh distribution. The failure times of a 
Rolls Royce dredging machine was used as real-time data to obtain the PM and replacement schedule for the 
machine at respective cost ratios. The results showed that the model provided an effective maintenance schedule 
for the machine and ensures optimal performance. 
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1 Introduction 
Preventive maintenance (PM) is an effective method 
of enhancing the condition of a machine’s 
functionality. It aids in minimizing cost of 
maintenance and unexpected failure of machines. A 
PM policy outlines the scheduling requirements for 
PM activities. It may be periodic, which calls for 
machine maintenance at integer multiples of a 
predetermined period or sequential which keeps the 
system running at a series of intervals that may have 
different lengths. Both of these PM plans share the 
same presumption that the machine will only need 
minimal maintenance if it breaks down in between 
PM actions. When a machine breaks down, minimal 
repair just gets it back to working condition (as-
good-as old); it does not get the machine healthier 
overall. In other words, minor repairs have no impact 
on the machine’s age or hazard rate. Authors in [1] 
and [2] defined Preventive maintenance (PM) as a 

set of activities to be performed before system 
failures, aimed at keeping the system in a good 
working state and reducing its operational 
expenditure. A sequential PM policy with failure 
rate threshold for lease items with Weibull lifetime 
distribution was developed by [3] and applied it to 
leased equipment. The work showed that any 
product failure that occurs during the term of the 
lease is fixed with minimum repairs, and if a 
minimal repair takes longer than expected, the lessee 
may be charged a fee. Furthermore, additional PM 
actions were carried out in an effort to reduce 
product failures. The best threshold value and 
accompanying maintenance degrees were 
determined using this maintenance scheme and a 
mathematical model of the predicted total cost in 
order to reduce cost.  
In 2009, [4] reviewed maintenance policies with 
emphasis on replacement, imperfect PM, and 
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inspection policies in a broader context. The three 
common models of block replacement, simple 
replacement, and periodic replacement with 
minimum maintenance were changed into finite 
replacement models. Subsequently, an ideal 
preventive maintenance and replacement plan for a 
system was determined using a novel mathematical 
model by [5] with three potential actions; keeping 
the system up to date, replacing it, and doing nothing 
for each of the discrete, equally spaced intervals that 
made up the maintenance planning horizon, noting 
that every choice has a price and it influences the 
system's failure pattern. In a later development, [6] 
integrated dynamic programming with the branch 
and bound method to find the best PM plan for a 
sequence of repairable and maintainable system 
which components have increasing rate of failure. In 
order to meet the system's objectives, the best 
choices for each component during each period were 
examined. These were all based on the general 
increasing hazard rate condition of mechanically 
repairable systems. A repairable machine is a 
machine in which damaged parts can be serviced or 
readjusted so as to get the system into proper 
working condition. In this type of machine, a failure 
to one part of the machine does not necessary mean 
a failure to the entire machine. Also, damaged parts 
are not completely replaced regularly.  
In 1880, [7] proposed the Rayleigh distribution to 
solve a problem in the field of acoustics. Since then, 
a lot of researches in various branches of science and 
technology has been done in relation to this 
distribution. The generalized Rayleigh distribution 
was put forth by [8], and various estimating 
techniques have been used to determine its 
parameters. Authors in [9] investigated the 
estimation of the Rayleigh distribution's parameter 
in the presence of various censoring sampling 
strategies, including type-I, type-II, and progressive 
type-II censored sampling. The Weibull distribution 
with scale parameter 2 is a particular instance of the 
Rayleigh distribution which is of interest in this 
work. When the shape parameter is adjusted to 1, the 
Rayleigh distribution changes into the chi square 
distribution with two degrees of freedom. The failure 
rate or hazard function of the Rayleigh distribution, 
according to [10], is a crucial property since it rises 
over time. This suggests that when failure time is 
dispersed in accordance with the Rayleigh model, 
excessive aging/piece occurs. The Rayleigh 
distribution's hazard rate increases linearly over 
time. It has several uses, including reliability 
analysis, clinical investigations, life testing 
experiments and applied statistics. It is frequently 
used to simulate the behaviour of systems with rising 

failure rates. The two-parameter Rayleigh 
distribution provides a simple but nevertheless 
useful model for the analysis of lifetimes, especially 
when investigating reliability of technical 
equipment.  
 Several replacement maintenance models and 
policies abounds in the literature. For instance, [11] 
proposed that the first and last triggering event 
approaches for replacement with minimal repairs of 
whichever occurs last should be used in 
optimizations for policy consideration when 
replacement times could be scheduled at a planned 
time, T of operation and at a number, N of minimal 
repairs to compare with the traditional approach of 
whichever occurs first. The long-run average cost 
rates was minimized by [12] to estimate the best 
scheduled replacement instants. In order to examine 
the effects of such variations, cost-rate minimizing 
models were created, presuming that the real PM 
time and the scheduled PM time varied from one 
another in a probabilistic manner. Also, [13] 
reviewed general maintenance policies under the key 
areas of maintenance: holistic review, concept 
planning, development planning and optimization 
planning. Furthermore, a non-periodic preventive 
maintenance schedule for repairable systems using 
failure rate threshold was developed by [14]. 
Over time, many combined PM and replacement 
models have been proposed to improve system 
maintenance. Of particular interest is [15] who 
proposed a PM and replacement schedule based on 
the age and hazard models. The result showed that 
the age model outperformed the hazard model.  In a 
later development, [16] formulated a hybridized PM 
model on the assumption that PM is imperfect by 
combining the age reduction model and the hazard 
rate adjustment model of [15] for improved decision. 
Also, [17] developed a geometric imperfect 
preventive maintenance and replacement model for 
ageing repairable systems with higher degrees of 
deterioration. The model has three phases: the 
average life span, beyond the average life span, and 
beyond the initial replacement age of the system. 
The model was a generalization of [16] to produce a 
PM and replacement timeline for ageing 
mechanically repairable systems at various phases of 
deterioration. 
It is however noted that these models were 
developed for the general case of repairable systems 
with increasing hazard rate mostly characterized by 
the Weibull failure function. In this work, we 
consider a special class of repairable systems with 
linear increasing hazard rate and therefore propose 
an optimal PM and replacement model for this class 
of system which were not considered in previous 
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works. The Rayleigh distribution is utilized as the 
failure distribution characterizing the failure rate of 
this class of system, [10]. The proposed model is 
implemented on the Roll Royce dredging machine to 
obtain optimal PM and replacement schedule. 
 

 

2 Problem Formulation 
The Rayleigh distribution is the proposed failure 
distribution for this work because of it has the 
property of linear increasing hazard rate (LIHR). It 
is derived from the Weibull distribution when the 
shape parameter is 2. The 2-parameter Weibull 
distribution is given by;
    0,0,0;1   


 tettf t

  
The hazard and cumulative hazard functions are 
respectively given as: 
      ttHandtth  1  

For 2 , we have the Rayleigh distribution as 
follows; 
    0,0;2

22     tettf t

 
 

And its respective hazard and cumulative hazard 
functions are: 
    2222 ttHandtth    

 
2.1 Formulation of imperfect preventive and 

replacement model for repairable systems 

with linearly increasing hazard rate (LIHR) 

In [16] a hybrid model which is a combination of the 
hazard rate adjustment model and the age reduction 
model of [15] was formulated. The model is given 
by;       xutdhxt  11 where d is the hazard 
rate adjustment factor, u is the age reduction factor 
and x is the operating time before the next PM;

 ,,0;10;1 12 ttxud    th is the 
failure rate function for  1,0 tt . 

The PM activity at time, 1t  generates a new failure 

rate function, λ(t) for  12 ,ttt   with  xdh as the 
failure rate function in the subsequent PM interval 
which solely depends only on h(x) and the associated 
PM activity. In other words, λ(t) is dependent on 
both h(t) for  1,0 tt  and u, the magnitude of the 

PM activity in time .1t  
2.2 The average cost of running the system 

per unit time 

The associated cost model to PM and replacement 
model is often used to evaluate the performance of 
the repairable system and also to determine expected 
time for safe and appropriate maintenance. The aim 

is to minimize the expected cost of maintenance. 
Hence, the expected cost rate model is; 
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where rQ , mp QandQ  are respectively the cost of 
replacement maintenance, preventive maintenance 
and minimal repair of the machine, 
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kD  and  kyH  are the product of the hazard rate 
adjustment factor and the cumulative hazard 
function occurring within the interval  ,,1 kk tt   

which is between the time of   PMk
th1 and the 

kth PM respectively and 11  kk yu  is the effective 

age of the system right after  thk 1  PM. 
 
 
 
 
3 Problem Solution 
3.1 Minimizing expected cost per unit time 

To generate optimal PM and replacement plan for 
mechanically repairable systems with linearly 
increasing hazard rate, we shall determine optimal 
PM intervals by finding the optimal values of ky (k 
=1,2,3,…,N) and at replacement point, N as decision 
variables to minimize the expected cost rate in (1); 
see [18], [15] and [16]. Let   CyyyC N ,..., 21 ; In 
order to minimized the cost function, we take the 
partial derivative of  (1) with respect to ky  and 
equate the obtained derivative to zero as follows; 
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        011   kkkkkkkm uCyuhDuyhDC

 
       kkkkkkkm uCyuhDuyhDQ   11     (2)                                                           
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 1,...,3,2,1  Nk  
Where;  kyh  is the hazard function and  kyH  is 

the cumulative hazard function,  kk yuh  is the 

adjusted hazard function of the machine after thk
PM where .1,...,3,2,1  Nk  
Similarly, at replacement point, N; 
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01 kD  since replacement occurs at the thk PM.  

  NNm yhDQC         (4) 
By substituting  (4) into (2) we have; 

          kNNmkkkkkkm uyhDQyuhDuyhDQ   1111

 
           1,...,3,2,11111   NkuyhDyuhDuyhD kNNkkkkkk      

              (5) 

where
12
16
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
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is the hazard rate adjustment 

factor and 
12 


k

k
uk is the age improvement 

factor, [16] 
Also, from (1); 
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(6) 

Substituting (4) into (6), we obtain; 
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(7) 

3.2 Algorithm for generating PM and 

Replacement Schedule  

Based on the preceding results, the following 
computational algorithm would be used; 
Step1: solve for  ky  as a function of Ny  

Step2: Substitute ky into (7) 

Step3: Choose N to minimize  NN yhP   

Step4: Obtain ky  from the expression in step 1 

Step5: obtain Nkyuyx kkkk ,...,3,2,1,11    

The input parameters are the cost rQ , pQ and mQ  

with ratios ,
p

m

p

r

Q

Q
and

Q

Q
 the Weibull parameters 

are  and  , and the adjustment factors are kd

and ku . 
3.3 Implementation of the optimal PM and 

replacement algorithm  

Step 1: Substituting the Rayleigh hazard function in 
(5), we have; 
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Step 2: 
From (7) we have; 
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By substituting Equation (8) into (7) we obtain; 
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Substituting the Rayleigh hazard and cumulative 
hazard functions, we have; 
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Step 3: To obtain optimal N, we seek optimal 
number *N  which minimizes  NN yhD  
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A necessary condition for the existence of a finite 
*N  which minimizes B(N) is that *N  satisfies the 

inequalities; 
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follows; 
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3.4 Application of the proposed model 

The inter failure times of Rolls Royce - RB211 
Engine Dredging machine was studied and found to 
follow a Rayleigh distribution with rank 1 and scale 
parameter 5.2 with the help of Easyfit (5.6) 
software. Rolls Royce is a dredging machine that is 
used to suck out accumulated sediment from the 
bottom or banks of bodies of water, rivers, lakes or 
streams. See Fig.1 in the appendix. 
Recall: 

12
16






k

k
d k is the hazard rate adjustment factor 

and 
12 


k

k
uk is the age improvement factor. 

NkdD
k

i

ik ,...,3,2,1,
1

1






is the cumulative 

hazard rate adjustment factor 

The optimal N, cost ratios 
p

r

Q

Q
and 

p

m

Q

Q
 were 

obtained from equation (10) as shown in Table 1. 
Also, the effective age ky  and optimal preventive 

maintenance and replacement schedule kx  was 
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obtained for the dredging machine from (8) and Step 
5 of the algorithm respectively. 
Table 1: Optimal PM and replacement Schedule 

for Rolls Royce Dredging Machine  with 

LIHR (‘0000) 
*N  1 3 5 7 9 11 13 

p

r

Q
Q

 

2 5 10 20 30 50 80 

1x  0.2
502 

0.4
225 

0.5
594 

0.7
911 

0.9
689 

1.2
508 

1.5
822 

2x   0.2
305 

0.2
356 

0.3
194 

0.3
856 

0.5
742 

0.6
179 

3x   0.2
315 

0.1
899 

0.2
525 

0.3
023 

0.4
918 

0.4
796 

4x    0.1
567 

0.2
047 

0.2
434 

0.3
065 

0.3
821 

5x    0.2
405 

0.1
809 

0.2
140 

0.2
680 

0.3
331 

6x     0.2
004 

0.1
906 

0.2
375 

0.2
942 

7x     0.2
111 

0.1
708 

0.2
118 

0.2
615 

8x      0.1
542 

0.1
904 

0.2
344 

9x      0.1
812 

0.1
718 

0.2
110 

10x       0.1
557 

0.1
906 

11x       0.1
955 

0.1
728 

12x        0.1
550 

13x        0.2
000 

 

3.5 Discussion of results 

Table 1 shows the optimal number, N* of PM and 
replacement at the last point in row 1. The cost ratios 
are contained in row 2 while rows x1 … x13 are the 
operating times of the machine under different cost 
ratios. The decreasing pattern of the operating times 
in columns 1 to 13 except the last one which is the 
replacement point shows shorter operating times 
before next PM. This calls for frequent PM due to 
usage and aging which is in line with the result 
obtained in the works by [15], [16], [19] and [17]. 
For instance, under the cost ratio of 20,000 in the 
first column of Table 1, replacement should be 
carried out on the machine after about 2,502hours of 
operation. If the company chooses to continue with 
the use of the machine, then it moves to the next 
column with a higher cost ratio of 50,000. In this 
column, the first PM is carried out on the machine 

after about 4,225hours of operation, the next PM is 
carried out after about 2,305hours of operation, 
being the second cycle and finally replacement is 
recommended in the third cycle after about 
2,315hours of operation. If the operator still chooses 
to continue with the use of the machine, it moves to 
the next column with next higher cost ratio and so 
on. 
 

4 Conclusion 
A PM and replacement model has been 
developed in this work for a special class of 
mechanically repairable systems with linearly 
increasing hazard rate (LIHR) which failure rate 
is characterized by the Rayleigh distribution. 
The proposed model is shown to provide 
optimal PM and replacement schedule for this 
class of systems which were not provided for in 
earlier models. This model was applied to the 
Rolls Royce dredging machine which failure 
times was found to follow the Rayleigh 
distribution with scale parameter 2.5 to obtain 
optimal PM and replacement schedule. The 
machine has a linearly increasing hazard rate 
(LIHR), which means the machine deteriorates 
linearly with time. It is found that for a system 
with LIHR, PM is carried out more often at 
different costs levels which guarantees safe 
operation and of course, conforms to earlier 
results by [15], [16] and others. The frequent 
PM schedule obtained in this work will reduce 
the effective age and downtime of the machine 
as well as avoiding unplanned failures thereby 
increasing the uptime of a machine. 
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Figure 1: Rolls Royce dredging machine connected to a suction pipe 
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