
[4] C.T. Jayasundara and H.P. Zhu, Impact energy
of particles in ball mills based on DEM
simulations and data-driven approach, Powder
Technology, Vol. 395, 2022, pp. 226-234.
https://doi.org/10.1016/j.powtec.2021.09.063
[5] Y. Zeng, B. Mao, A. Li, Y. Han and F. Jia,
DEM investigation of particle flow in a vertical
rice mill: Influence of particle shape and
rotation speed, Powder Technology, Vol. 399,
2022, pp. 117105.
https://doi.org/10.1016/j.powtec.2021.117105
[6] Y. Zeng, B. Mao, F. Jia, Y. Han and G. Li,
Modelling of grain breakage of in a vertical
rice mill based on DEM simulation combining
particle replacement model, Biosystems
Engineering, Vol. 215, 2022, pp.32-48.
https://doi.org/10.1016/j.biosystemseng.2021.1
2.022
[7] C. Xie, H. Ma, T. Song and Y. Zhao, DEM
investigation of SAG mill with spherical
grinding media and non-spherical ore based on
polyhedron-sphere contact model, Powder
Technology, Vol. 386, 2021, pp. 154-165.
https://doi.org/10.1016/j.powtec.2021.03.042
[8] Z. Bibak and S. Banisi, A combined physical
and DEM modelling approach to investigate
particle shape effects on load movement in
tumbling mills, Advanced Powder Technology,
Vol. 32, No3, 2021, pp. 916-930.
https://doi.org/10.1016/j.apt.2021.01.034
[9] F. Pedrayes, J.G. Norniella, M.G. Melero, J.M.
Menéndez-Aguado and J.J. del Coz-Díaz,
Frequency domain characterization of torque in
tumbling ball mills using DEM modelling:
Application to filling level monitoring, Powder
Technology, Vol. 323, 2018, pp.433-444.
https://doi.org/10.1016/j.powtec.2017.10.026
[10] A. Li, F. Jia, J. Zhang, Y. Han, X. Meng, P.
Chen, Y. Wang and H. Zhao, The effects of
filling level on the milling accuracy of rice in
the friction rice mill, Powder Technology, Vol.
398, 2022, pp.117052.
https://doi.org/10.1016/j.powtec.2021.117052
[11] M.S. Powell, N.S. Weerasekara, S. Cole,
R.D. LaRoche and J. Favier, DEM
modelling of liner evolution and its
influence on grinding rate in ball mills,
Minerals Engineering, Vol. 24, No.3–4,
2011, pp. 341-351.
https://doi:10.1016/j.mineng.2010.12.012
[12] T.L. Moodley and I. Govender,
Experimental validation of DEM in rotating
drums using Positron Emission Particle
Tracking, Mechanics Research
Communications, Vol.121, 2022, pp.
103861.
https://doi.org/10.1016/j.mechrescom.2022.
103861
[13] D. Boemer and J.P. Ponthot, DEM
modeling of ball mills with experimental
validation: influence of contact parameters
on charge motion and power draw,
Computational Particle Mechanics, Vol. 4
2017, pp. 53-67.
https://doi.org/10.1007/s40571-016-0125-4
[14] https://altairengineering.fr/simulation-021-
2/#
[15] H.R. Hertz, Uber die beruhrung fester
elastischer korper und uber die harte,
Journal für die reine und angewandte
Mathematik, Vol. 92, 1881, pp. 156–171.
[16] R.D. Mindlin and H. Deresiewicz, Elastic
spheres in contact under varying oblique
forces, Journal of Applied Mechanics, Vol.
20, 1953, pp.327–344.
https://doi.org/10.1115/1.4010702
[17] M. Mhadhbi, Simulations of Planetary Ball
Mill Using Discrete Element Method
Modeling. International Journal of Applied
Physics, Vol. 6, 2021, pp. 36–41.
ISSN: 2367-9034
[18] https://www.fritsch-
international.com/sample-
preparation/milling/planetary-
mills/details/product/pulverisette-7-classic-
line/
[19] K.C. Kim, T. Jiang, Y. Xu, N.I. Kim,
H.S. Jin and J.C. Kim, Application of
discrete element simulation in mechanical
activation of boron concentrate, Powder
Technology, Vol. 382, 2021, pp.441–453.
https://doi.org/10.1016/j.powtec.2020.12.0
31.
[20] S. Rosenkranz, S. Breitung-Faes and A.
Kwade, Experimental investigations and
modelling of the ball motion in planetary
ball mills, Powder Technology, Vol. 212,
2011, pp. 224–230.
https://doi.org/10.1016/j.powtec.2011.05.0
21.
[21] A.S. Rogachev, D.O. Moskovskikh, A.A.
Nepapushev, T.A. Sviridova, S.G.
Vadchenko, S.A. Rogachev and A.S.
Mukasyan, Experimental investigation of
DESIGN, CONSTRUCTION, MAINTENANCE
DOI: 10.37394/232022.2022.2.29