
flow, Journal of Structural Engineering, Vol.
144, No. 9, 2018, 04018140.
[3] M. Lazzari, A. V. Saetta and R. V. Vitaliani,
Non-linear dynamic analysis of cable-
suspended structures subjected to wind actions,
Computers and Structures, Vol. 79, No. 9,
2001, pp. 953–969.
[4] F. Rizzo and V. Sepe, Static loads to simulate
dynamic effects of wind on hyperbolic
paraboloid roofs with square plan, Journal of
Wind Engineering and Industrial
Aerodynamics, Vol. 137, 2015, pp. 46–57.
[5] F. Rizzo, P. D’Asdia, M. Lazzari and L.
Procino, Wind action evaluation on tension
roofs of hyperbolic paraboloid shape.
Engineering Structures, Vol. 33, No. 2, 2011,
pp. 445–461.
[6] F. Rizzo, P. D'Asdia, F. Ricciardelli and G.
Bartoli, Characterization of pressure
coefficients on hyperbolic paraboloid roofs.
Journal of Wind Engineering and Industrial
Aerodynamics, Vol. 102, 2012, pp. 61–71.
[7] J. Xu, Y. Zhang, L. Zhang, M. Wu, Y. Zhou,
K. Lei and Q. Zhang, Wind-induced response
of open type hyperbolic-parabolic membrane
structures, Structural Engineering and
Mechanics, Vol. 76, No. 2, 2020, pp.269-278.
[8] F. Rizzo and C. Demartino, Pressure modes for
hyperbolic paraboloid roofs, Curved and
Layered Structures, Vol. 7, 2020, pp.226-246.
[9] B. Rong, S. Yin, Q. Wang, Y. Yang, J. Qiu, C.
Lin and R. Zhang, Simulation and analysis of
wind pressure coefficient of landslide-type
long-span roof structure, Advances in Civil
Engineering, Vol. 2021, 2021, p. 1-15.
[10] M. L. M. A. Sousa, F. L. Carsalade, R. Z.
Araújo, O reconhecimento dos valores
patrimoniais pela comunidade e o conjunto
moderno da Pampulha, Arquitecturas del Sur,
Vol. 40, No. 61, 2022, pp. 8-23.
[11] D. M. Macedo, Da matéria à invenção: As
obras de Oscar Niemeyer em Minas Gerais,
1938-1955, Câmara dos Deputados, 2008 (in
Portuguese).
[12] J. Franke, A. Hellsten, H. Schlünzen and B.
Carissimo, Best practice guide for the CFD
simulation of flows in the urban environment,
COST Action 732: Quality assurance and
improvement of microscale meteorological
models, COST Office, 2007.
[13] M. R. Such, Análise aerodinâmica de um
veículo de eficiência energética, Undergraduate
thesis, Federal University of Santa Catarina,
2018 (in Portuguese).
[14] J. Franke, C. Hirsch, A. G. Jensen, H. W. Krüs,
M. Schatzmann, P. S. Westbury, S. D. Miles, J.
A. Wisse and N. G. Wright, Recommendations
on the use of CFD in predicting pedestrian
wind environment , COST Action C14: Impact
of Wind and Storms on City Life and Built
Environment. Hamburg, COST Office, 2004.
[15] Inc. ANSYS, ANSYS CFX-Solver Modeling
Guide. Canonsburg, 2009.
[16] H. S. Santana, A. G. P. Silva, M. G. M. Lopes,
A. C. Rodrigues, O. P. Taranto and J. L. Silva
Jr, Computational methodology for the
development of microdevices and
microreactors with ANSYS CFX, MethodsX,
Vol. 7, 2020, 100765.
[17] M. T. Vallis, Brazilian Extreme Wind Climate,
Doctoral dissertation, Federal University of Rio
Grande do Sul, 2019 (in Portuguese).
[18] J. Blessmann, O vento na Engenharia
Estrutural, UFRGS, 2013 (in Portuguese).
Contribution of individual authors to
the creation of a scientific article
Guilherme Teixeira was responsible for the
methodology, carrying out the simulation, and
writing the results. Marco Campos carried out the
conceptualization, review, and editing.
Creative Commons Attribution
License 4.0 (Attribution 4.0
International , CC BY 4.0)
This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US
DESIGN, CONSTRUCTION, MAINTENANCE
DOI: 10.37394/232022.2022.2.27
Guilherme S. Teixeira, Marco D. De Campos