
References:
[1] Armel, K.C., Gupta, A., Shrimali, G. and Albert, A.
(2013). Is disaggregation the holy grail of energy
efficiency? The case of electricity. Energy policy,
52, pp.213-234.
[2] Baranski, M. and Voss, J. (2004). Genetic algorithm
for pattern detection in NIALM systems. In 2004
IEEE International Conference on Systems, Man
and Cybernetics (IEEE Cat. No. 04CH37583) (Vol.
4, pp. 3462-3468). IEEE.
[3] Beckel, C., Kleiminger, W., Cicchetti, R., Staake, T.
and Santini, S. (2014). The ECO data set and the
performance of non-intrusive load monitoring
algorithms. In Proceedings of the 1st ACM
conference on embedded systems for energy-
efficient buildings, pp. 80-89.
[4] Biggio, B., Fumera, G. and Roli, F. (2010). Multiple
classifier systems for robust classifier design in
adversarial environments, Int. J. Mach. Learn. &
Cyber., Vol. 1, pp. 27 – 41. DOI 10.1007/s13042-
010-0007-7.
[5] Candanedo., L.M., Feldheim, V. and Deramaix, D.
(2017). Data driven prediction models of energy use
of appliances in alow-energy house, Energy and
Buildings, Vol. 140, pp. 81 – 97.
http://dx.doi.org/10.1016/j.enbuild.2017.01.083.
[6] Chen, Y., Sun, X. and Jin, Y., 2019.
Communication-efficient federated deep learning
with layerwise asynchronous model update and
temporally weighted aggregation. IEEE transactions
on neural networks and learning systems, 31(10),
pp.4229-4238.
[7] ECO Dataset. (2022).
http://vs.inf.ethz.ch/res/show.html?what=eco-data.
[8] Efron, B. and Tibshirani, R. (1993). An Introduction
to the Bootstrap. Boca Raton, FL: Chapman &
Hall/CRC.
[9] Greer, K. (2019). New Ideas for Brain Modelling 3,
Cognitive Systems Research, Vol. 55, pp. 1-13,
Elsevier. DOI:
https://doi.org/10.1016/j.cogsys.2018.12.016.
[10] Greer, K. (2012). A Stochastic Hyper-Heuristic for
Matching Partial Information, Advances in
Artificial Intelligence, Vol. 2012, Article ID
790485, 8 pages. doi:10.1155/2012/790485,
Hindawi.
[11] Holland, J.H. (1984). Genetic algorithms and
adaptation. In Adaptive Control of Ill-Defined
Systems (pp. 317-333). Springer, Boston, MA.
[12] IDEAS. (2022). Novel building Integration Designs
for increased Efficiencies in Advanced climatically
tunable renewable energy Systems,
https://www.horizon2020ideas.eu/.
[13] IDEAS, Deliverable 4.4. (2021). Smart Mobile App
Development,
https://www.horizon2020ideas.eu/publications-
papers-downloads-videos-about-ideas/.
[14] Jiang, J., Kong, Q., Plumbley, M.D., Gilbert, N.,
Hoogendoorn, M. and Roijers, D.M. (2021). Deep
Learning-Based Energy Disaggregation and On/Off
Detection of Household Appliances. ACM
Transactions on Knowledge Discovery from Data
(TKDD), 15(3), pp.1-21.
[15] Jiang, X., Xiao, C. and Sun, J. (2019) Household
Energy Demand Management Strategy Based on
Operating Power by Genetic Algorithm, IEEE
Access, Vol. 7, pp. 96414 - 96423. DOI
10.1109/ACCESS.2019.2928374.
[16] Kephart, J.O. and Chess, D.M. (2003). The vision of
autonomic computing. Computer, 36(1), pp.41-50.
[17] Kim, H., Marwah, M., Arlitt, M., Lyon, G. and Han,
J. (2011). Unsupervised disaggregation of low
frequency power measurements. In Proceedings of
the 2011 SIAM international conference on data
mining (pp. 747-758). Society for Industrial and
Applied Mathematics.
[18] Kolter, J.Z. and Jaakkola, T. (2012). Approximate
inference in additive factorial hmms with
application to energy disaggregation. In Artificial
intelligence and statistics (pp. 1472-1482). PMLR.
[19] Li, K. and Malik, J. (2018). Implicit Maximum
Likelihood Estimation, arXiv:1809.09087v2
[cs.LG] 22 Oct 2018.
[20] Liang, X., Javid, A.M., Skoglund, M. and
Chatterjee, S. (2022). Decentralized learning of
randomization-based neural networks with
centralized equivalence, Applied Soft Computing,
Vol. 115, ISSN 1568-4946,
https://doi.org/10.1016/j.asoc.2021.108030.
[21] Licas. https://licas.sourceforge.io/.
[22] Noorollahi, Y., Aligholian, A. and Golshanfard, A.
(2019). Stochastic energy modeling with
consideration of electrical vehicles and renewable
energy resources - A review, Journal of Energy
Management and Technology (JEMT) Vol. 4, Issue
1, pp. 13 - 25.
[23] Wind Power Generation Data. (2022).
https://www.kaggle.com/jorgesandoval/wind-
power-generation.
Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US
DESIGN, CONSTRUCTION, MAINTENANCE
DOI: 10.37394/232022.2022.2.26