
The results show that the best performance was
achieved at a distance of 2.45 mm at the initial
operating temperature of 30 °C.
Analyzing the heat released by two specific distances
shows that the system where the distance was 9.45
mm releases more heat to produce the same amount
of hydrogen in comparison with that, with a distance
of 2.45 mm. At 2.3 V an increase in current density
was of approximately 89%.
The result of this work demonstrates that modifying
specific configuration conditions, a greater
production of hydrogen is obtained making use of the
same amount of energy.
In connection with the two roughnesses analyzed, a
more detailed study should be carried out since the
method used to construct the channel is the electro
discharge machining. This method promotes
significant changes on the surface. The dimension
and nature of these changes are determined by the
machining conditions and the heat applied on the
surface generated by the electric energy. These
changes (microstructural, chemical,
microgeometrical, surface integrity and mechanical)
are the ones that have to be studied in the future for
better understanding the behavior of the systems.
References:
[1] C. Acar, I. Dincer, Comprehensive Energy
Systems, Elsevier Editorial, 2018.
[2] S. Fuss, J. G. Canadell, G. P. Peters, M. Tavoni,
R. M. Andrew, P. Ciais, R. B. Jackson, C. D.
Jones, F. Kraxner, N. Nakicenovic, C. Le Quéré,
M. R. Raupach, A. Sharifi, P. Smith, Y.
Yamagata; Betting on negative emissions, Nature
Climate Change, Vol. 4, No. 10, 2014, pp. 850-
853.
[3] G. Plessmann, M. Erdmann, M. Hlusiak, C.
Breyer, Global energy storage demand for a
100% renewable electricity, Energy Procedia
Vol.46, 2014, pp. 22 – 31.
[4] M. Lehner, R. Tichler, H. Steinmüller, M. Koppe,
Power-to-Gas: Technology and Business Models,
Springer International Publishing, 2014.
[5] F. Vidal Vázquez, J. Koponen, V.
Ruuskanen, C. Bajamundi, A. Kosonen, P.
Simell, J. Ahola, C. Frilund, J. Elfving,
M.Reinikainen, N. Heikkinen, J. Kauppinen,
P. Piermartini, Power-to-X technology using
renewable electricity and carbon dioxide
from ambient air: SOLETAIR proof-of-
concept and improved process concept,
Journal of CO2 Utilization, Vol. 28, 2018,
pp. 235-246.
[6] C. Wulf, J. Linssen, P. Zapp, Hydrogen
Supply Chain: Design, Deployment and
Operation, Elsevier Science, 2018.
[7] G. Tjarks, A. Gibelhaus, F. Lanzerath, M.
Müller, A. Bardow, D. Stolten,
Energetically-optimal PEM electrolyzer
pressure in power-to-gas plants, Applied
Energy, Vol. 218, 2018, pp. 192-198.
[8] H. Sidhom, F. Ghanem, T. Amadou, G.
Gonzalez, C. Braham, Effect of electro discharge
machining (EDM) on the AISI316L SS white
layer microstructure and corrosion resistance,
International Journal of Advanced
Manufacturing Technology, Vol. 65, 2013, pp.
141-153.
[9] F. Ghanem, C. Braham, M. E. Fitzpatrick, H.
Sidhom; Effect of Near-Surface Residual Stress
and Microstructure Modification From
Machining on the Fatigue Endurance of a Tool
Steel, Journal of Materials Engineering and
Performance, Vol. 11, No. 6, 2002, pp. 631-639.
[10] S. Ahn, I. Choi, H. Park, S. Hwang, S. Yoo, E.
Cho, H. Kim, D. Henkensmeier, S. Nam, S. Kim,
J. Jang, Effect of morphology of electrodeposited
Ni catalysts on the behavior of bubbles generated
during the oxygen evolution reaction in alkaline
water Electrolysis, Chemical Communications,
Vol. 49, No. 81, 2013, pp. 9323-9325.
[11] S. Ahn, S. Hwang, S. Yoo, I. Choi, H. Kim, J.
Jang, S. Nam, T. Lim, T. Lim, S. Kim, J. Kim,
Electrodeposited Ni dendrites with high activity
and durability for hydrogen evolution reaction in
alkaline water electrolysis, Journal of Material
Chemistry, Vol. 22, No. 30, 2012, pp. 15153-
15159.
[12] P. Vermeiren, W. Adriansens, J. Moreels, R.
Leysen, Evaluation of the Zirfon® separator for
use in alkaline water electrolysis and Ni-H2,
batteries, International Journal of Hydrogen
Energy, Vol. 23, No. 5, 1998, pp. 321-324.
[13] M. T. de Groot, A. W. Vreman, Ohmic resistance
in zero gap alkaline electrolysis with a Zirfon
Diaphragm, Electrochimica Acta, Vol. 369, 2021,
137684.
[14] M. J. Lavorante, R. Diaz Bessone, S. Saiquita, G.
M. Imbrioscia, E. Ramirez Martinez, Electrodes
for Alkaline Water Electrolysers with Triangle
Shape Topology, Jordan Journal of Electrical
Engineering, Vol. 6, No. 3, 2020, pp. 237-252.
[15] M. J. Lavorante, J. I. Franco; Performance of
stainless steel 316L electrodes with modified
surface to be use in alkaline water electrolyzers,
International Journal of Hydrogen Energy, Vol.
41, No. 23, 2016, pp. 9731-9737.
[16] R. Chaudhari, J. J. Vora, V. Patel, L. N. López de
Lacalle, D. M. Parikh; Surface Analysis of Wire-
Electrical-DischargeMachining-Processed
DESIGN, CONSTRUCTION, MAINTENANCE
DOI: 10.37394/232022.2022.2.15
María José Lavorante, Rodrigo Diaz Bessone,
Samanta Saiquita, Ricardo Martin Aiello,
Erica Alejandra Ramírez Martínez
Shape-Memory Alloys, Materials, Vol. 13, 2020,
530.