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Abstract: Discovering protein biomarkers is one of the important issues in biomedical researches. The enzyme-
linked immunosorbent assay (ELISA) is one of the traditional techniques for protein quantitation. Recently, the 
multiple reaction monitoring (MRM) mass spectrometry has been proposed as a new method for protein 
quantification and has been popular as an alternative to ELISA. However, not many analysis methods are 
available yet to analyse MRM data. Linear mixed models (LMMs) are effective in analysing MRM data. 
MSstats is one of the most widely used tools for MRM data analysis which is based on the LMMs. MSstats is 
well implemented on Skyline program and R programming language. However, LMMs often provide various 
significance results depending on model specification. Thus, sometimes it would be difficult to specify a right 
LMM for the analysis of MRM data. In this paper, we systematically investigated the effect of model 
specification on significance of proteins through simulation studies. Our results provide a practical guideline of 
using LMMs for MRM data analysis. 
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1 Introduction 
Discovering protein biomarkers is one of the 
primary interest in biomedical researches [1]. The 
enzyme-linked immunosorbent assay (ELISA) is 
one of the traditional protein quantitation techniques 
that provide high sensitivity [2]. The result of 
ELISA is treated as the “gold standard” for targeted 
protein quantification [3]. However, recent studies 
discovered many novel proteins and the availability 
of highly qualified ELISAs for those proteins is 
limited [4], which created a need for a different 
technique of protein quantitation. The multiple 
reaction monitoring (MRM) mass spectrometry is a 
new method used in tandem mass spectrometry for a 
systematic development of targeted protein assays 
[1]. As an alternative to ELISA, MRM assays 
become gradually used in systems biology and in 
clinical investigations [6]. For the MRM data 
analysis, two sample t-test or paired t-test was 
applied to identify proteins that would change in 
abundance between two groups [8]. To test for 
multiple groups, one-way analysis of variance 
(ANOVA) was employed [9]. Recently, a linear 
mixed model (LMM) approach was proposed for 
MRM data analysis and implemented in MSstats 
[10] and has been popularly used [11]. The 
proposed LMM approach treats either or both 
subject and run effect as random or fixed. However, 

we observed that the proposed LMM approach often 
provides various p-values for the same data 
depending on which effects are treated as random or 
fixed. Moreover, the data structure also affects the 
performance of LMM approach. If intensity patterns 
of peptides from a protein are heterogeneous, there 
is a loss of power in LMM approach. If intensity 
patterns are homogeneous, there is a power gain in 
LMM approach. 

In this paper, we systematically 
investigated the effect of model specification on 
significance of proteins through simulation studies. 
Our results provide a practical guideline of using 
LMMs for MRM data analysis. 
 
 
2 Methods 
For a given protein, the LMM used in MSstats is 
given as follows: 
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𝑦𝑦𝑖𝑖 ,𝑗𝑗 (𝑖𝑖),𝑘𝑘 ,𝑙𝑙 = 𝜇𝜇 + 𝐺𝐺𝑖𝑖 + 𝑆𝑆(𝐺𝐺)𝑗𝑗 (𝑖𝑖) + 𝐹𝐹𝑘𝑘  
𝑦𝑦𝑖𝑖 ,𝑗𝑗 (𝑖𝑖),𝑘𝑘 ,𝑙𝑙 + 𝑅𝑅𝑙𝑙 + (𝐺𝐺 × 𝐹𝐹)𝑖𝑖,𝑘𝑘  
𝑦𝑦𝑖𝑖 ,𝑗𝑗 (𝑖𝑖),𝑘𝑘 ,𝑙𝑙 + (𝐹𝐹 × 𝑅𝑅)𝑘𝑘,𝑙𝑙 + 𝜖𝜖𝑖𝑖,𝑗𝑗 (𝑖𝑖),𝑘𝑘 ,𝑙𝑙  

(1) 

where 𝑦𝑦𝑖𝑖 ,𝑗𝑗 (𝑖𝑖),𝑘𝑘 ,𝑙𝑙  denotes log2(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑦𝑦) value of 
the j-th subject nested in the i-th group of the k-th 
peptide and the l-th run; 𝜇𝜇 is a global mean, 𝐺𝐺𝑖𝑖  
stands for the i-th group effect; 𝑆𝑆(𝐺𝐺)𝑗𝑗 (𝑖𝑖) stands for 
the j-th subject effect nested in i-th group; 𝐹𝐹𝑘𝑘  
stands for the k-th peptide effect; 𝑅𝑅𝑙𝑙  stands for the 
l-th run effect, (𝐺𝐺 × 𝐹𝐹)𝑖𝑖𝑘𝑘  stands for interaction 
effect of the i-th group and the k-th peptide; 
(𝐹𝐹 × 𝑅𝑅)𝑘𝑘𝑙𝑙  stands for interaction effect of the k-th 
peptide and the l-th run. When all effects are treated 
as fixed, these parameters have the following 
restrictions: ∑ 𝐺𝐺𝑖𝑖2

𝑖𝑖=0 = 0 , ∑ 𝑆𝑆(𝐺𝐺)𝑗𝑗 (𝑖𝑖)
𝐽𝐽
𝑗𝑗=0 = 0 , 

∑ 𝐹𝐹𝑘𝑘𝐾𝐾
𝑘𝑘=1 = 0 , ∑ 𝑅𝑅𝑙𝑙𝐿𝐿

𝑙𝑙=1 = 0 , ∑ (𝐺𝐺 × 𝐹𝐹)𝑖𝑖,𝑘𝑘2
𝑖𝑖=0 = 0 , 

∑ (𝐺𝐺 × 𝐹𝐹)𝑖𝑖 ,𝑘𝑘𝐾𝐾
𝑘𝑘=1 = 0 , ∑ (𝐹𝐹 × 𝑅𝑅)𝑘𝑘 ,𝑙𝑙

𝐾𝐾
𝑘𝑘=1 = 0  and 

∑ (𝐹𝐹 × 𝑅𝑅)𝑘𝑘,𝑙𝑙
𝐿𝐿
𝑙𝑙=1 = 0, and 𝜖𝜖𝑖𝑖,𝑗𝑗 (𝑖𝑖),𝑘𝑘 ,𝑙𝑙~𝑁𝑁(0,𝜎𝜎𝜖𝜖2). Here, 

𝐺𝐺0 stands for the effect of reference group of MRM 
data. When the subject effects and the run effects 
are treated as random, the restrictions of 𝑆𝑆(𝐺𝐺)𝑗𝑗 (𝑖𝑖), 
𝑅𝑅𝑙𝑙  and (𝐹𝐹 × 𝑅𝑅)𝑘𝑘𝑙𝑙  are replaced by 
𝑆𝑆(𝐺𝐺)𝑗𝑗 (𝑖𝑖)~𝑁𝑁(0,𝜎𝜎𝑆𝑆2) , 𝑅𝑅𝑙𝑙~𝑁𝑁(0,𝜎𝜎𝑅𝑅2)  and (𝐹𝐹 ×
𝑅𝑅)𝑘𝑘𝑙𝑙~𝑁𝑁(0,𝜎𝜎𝐹𝐹×𝑅𝑅

2 ), respectively.  
The Model (1) can be equivalently written 

as follows:  
𝑦𝑦𝑖𝑖 = 𝛽𝛽0 + 𝑔𝑔𝑖𝑖′𝛽𝛽𝐺𝐺 + 𝑖𝑖𝑖𝑖′𝛽𝛽𝑆𝑆 + 𝑓𝑓𝑖𝑖′𝛽𝛽𝐹𝐹 
𝑦𝑦𝑖𝑖 + 𝑟𝑟𝑖𝑖′𝛽𝛽𝑅𝑅 + (𝑔𝑔 × 𝑓𝑓)𝑖𝑖′ 𝛽𝛽𝐺𝐺×𝐹𝐹  
𝑦𝑦𝑖𝑖 + (𝑟𝑟 × 𝑓𝑓)𝑖𝑖′ 𝛽𝛽𝑅𝑅×𝐹𝐹 + 𝜖𝜖𝑖𝑖  

Here, 𝑦𝑦𝑖𝑖  is a log2(𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑦𝑦) value of the i-th 
sample; 𝑔𝑔𝑖𝑖  is a (𝐺𝐺 × 1) group indicator variable; 
𝐺𝐺  stands for the number of groups except the 
reference group; 𝑖𝑖𝑖𝑖  is a (𝑁𝑁 × 1) subject indicator 
variable, where 𝑁𝑁  stands for the number of 
subjects except the reference sample; 𝑓𝑓𝑖𝑖  is a 
(𝐾𝐾 − 1 × 1)  peptide indicator variable, where 𝐾𝐾 
stands for the number of peptides; 𝑟𝑟𝑖𝑖  is a 
(𝑅𝑅 − 1 × 1)  run indicator variable, where 𝑅𝑅 
stands for the number of MS runs; (𝑔𝑔 × 𝑓𝑓)𝑖𝑖  is a 
interaction of group and peptide indicator variable; 
(𝑟𝑟 × 𝑓𝑓)𝑖𝑖  is a interaction of run and peptide 
indicator variable; 𝜖𝜖𝑖𝑖  is an error term that follows 
normal distribution with mean 0 and variance 𝜎𝜎𝜖𝜖2. 
𝛽𝛽𝑆𝑆 , 𝛽𝛽𝑅𝑅  and 𝛽𝛽𝑅𝑅×𝐹𝐹  are coefficients of subject, run 
and interaction of run and peptide, respectively. 
These coefficients can be treated either as fixed or 
random. 

In most MRM data analyses, the interest 
lies in determining proteins that differ from groups. 
Thus, the hypothesis of interest is given below for 
comparing two groups: 

 𝐻𝐻0:𝐾𝐾�𝛽𝛽𝐺𝐺(1) − 𝛽𝛽𝐺𝐺(2)� (2) 

𝐻𝐻0: +��𝛽𝛽𝐺𝐺(1)×𝐹𝐹(𝑘𝑘) − 𝛽𝛽𝐺𝐺(2)×𝐹𝐹(𝑘𝑘)�
𝐾𝐾

𝑘𝑘=2

= 0 

where 𝛽𝛽𝐺𝐺(𝑎𝑎) is the coefficient of the group 𝑎𝑎 and 
𝛽𝛽𝐺𝐺(𝑎𝑎)×𝐹𝐹(𝑏𝑏) is the interaction coefficient of group 𝑎𝑎 
and peptide 𝑏𝑏. Here, 𝛽𝛽𝐺𝐺(𝑎𝑎) is equal to 𝐺𝐺𝑎𝑎 − 𝐺𝐺0 +
(𝐺𝐺 × 𝐹𝐹)(𝑎𝑎 ,1) − (𝐺𝐺 × 𝐹𝐹)(0,1)  and 𝛽𝛽𝐺𝐺(𝑎𝑎)×𝐹𝐹(𝑏𝑏)  to 
(𝐺𝐺 × 𝐹𝐹)(𝑎𝑎 ,𝑏𝑏) − (𝐺𝐺 × 𝐹𝐹)(𝑎𝑎 ,1) . Thus, the hypothesis 
(2) is equivalent to 𝐻𝐻0: 𝐺𝐺1 = 𝐺𝐺2 
 
 
3 Simulations 
3.1 Simulation Settings 
We performed simulation studies to investigate the 
performance of LMMs. There are four LMMs 
depending on how to specify the random or fixed 
effect: (i) LMM(FF) with fixed subject effect and 
fixed run effect, (ii) LMM(FR) with fixed subject 
effect and random run effect, (iii) LMM(RF) with 
random subject effect and fixed run effect, and (iv) 
LMM(RR) with random subject effect and random 
run effect. For each simulated data set, the best 
LMM, LMM(best), was selected among four LMMs 
which had the smallest Akaike Information 
Criterion (AIC) value. We generated parameters of 
model (1) either as random or fixed effects. We 
generated random effects from the identical normal 
distribution independently with mean 0  and a 
specific variance. 
 On the other hand, for the fixed effect, we 
generated equally spaced sequence such that the 
average of the sequence is 0  and its squared 
average is the same with the value of the variance 
that we specified to generate random effect. In 
model (1), the global mean, 𝜇𝜇, was set to 15 and 
𝜎𝜎𝜖𝜖2 , the variance of 𝜖𝜖𝑖𝑖,𝑗𝑗 (𝑖𝑖),𝑘𝑘 ,𝑙𝑙 , was set to 0.5 
throughout all simulations. 𝑆𝑆(𝐺𝐺)𝑗𝑗 (𝑖𝑖) , 𝐹𝐹𝑘𝑘 , 𝑅𝑅𝑙𝑙  and 
(𝐹𝐹 × 𝑅𝑅)𝑘𝑘𝑙𝑙  are nuisance parameters to test 
hypothesis (2). Therefore, we fixed their effects 
throughout simulations; their variances for random 
effect or squared averages for fixed effect were set 
to 0.25, 0.1, 0.25 and 0.1 for 𝑆𝑆(𝐺𝐺)𝑗𝑗 (𝑖𝑖) , 𝐹𝐹𝑘𝑘 , 𝑅𝑅𝑙𝑙  
and (𝐹𝐹 × 𝑅𝑅)𝑘𝑘𝑙𝑙 , respectively. The number of 
peptides was assumed to vary from 2 to 5 in order to 
investigate the effect of the number of peptides on 
type I error and power. Various sample sizes, 20, 50 
and 100, were considered with the ratio of case and 
control fixed to 1:1. 
 
 
3.1.1 Settings for Generating Random Effects 
We considered four scenarios for generating the 
group effect and the interaction effect as follows. 
 Scenario 1: 𝐺𝐺2 − 𝐺𝐺1 = 0 and (𝐺𝐺 × 𝐹𝐹)𝑖𝑖𝑘𝑘 = 0 for all i, k 
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 Scenario 2: 𝐺𝐺2 − 𝐺𝐺1 = 1 and (𝐺𝐺 × 𝐹𝐹)𝑖𝑖𝑘𝑘 = 0 for all i, k 
 Scenario 3: 𝐺𝐺2 − 𝐺𝐺1 = 0 and Var{(𝐺𝐺 × 𝐹𝐹)𝑖𝑖𝑘𝑘 } = 0.2 
 Scenario 4: 𝐺𝐺2 − 𝐺𝐺1 = 0.5 and Var{(𝐺𝐺 × 𝐹𝐹)𝑖𝑖𝑘𝑘 } = 0.1 
The first scenario was to investigate the type I error 
rate of LMMs for testing group difference; the 
second to the fourth scenarios were considered to 
evaluate empirical power of LMMs when only 
group effect was present (Scenario 2), only the 
interaction effect was present (Scenario 3), and both 
group and interaction effects were present (Scenario 
4). All simulation data sets were generated 1,000 
times from model (1) and the significance level was 
set to 0.05 through simulations. 
 
 
3.1.2 Settings for Generating Fixed Effects 
Basically, the settings for generating fixed effects 
were identical to those of random effects explained 
in section 3.1.1 except that the fixed sequences were 
used as previously described. That is as follows. 
 Scenario 5: 𝐺𝐺2 − 𝐺𝐺1 = 0 and (𝐺𝐺 × 𝐹𝐹)𝑖𝑖𝑘𝑘 = 0 for all i, k 
 Scenario 6: 𝐺𝐺2 − 𝐺𝐺1 = 1 and (𝐺𝐺 × 𝐹𝐹)𝑖𝑖𝑘𝑘 = 0 for all i, k 
 Scenario 7: 𝐺𝐺2 − 𝐺𝐺1 = 0 and Var{(𝐺𝐺 × 𝐹𝐹)𝑖𝑖𝑘𝑘 } = 0.2 
 Scenario 8: 𝐺𝐺2 − 𝐺𝐺1 = 0.5 and Var{(𝐺𝐺 × 𝐹𝐹)𝑖𝑖𝑘𝑘 } = 0.1 
Here, Var{(𝐺𝐺 × 𝐹𝐹)𝑖𝑖𝑘𝑘 }  stands for the squared 
average of a fixed effect. Since the effects were 
fixed, we could control the interaction effect of 
groups and peptides more easily. We considered 
three types of interaction model (IM). (i) The first 
model IM1 was when the peptide effects between 
two groups are the same, that is, (𝐺𝐺 × 𝐹𝐹)2,1 −
(𝐺𝐺 × 𝐹𝐹)1,1 = ⋯ = (𝐺𝐺 × 𝐹𝐹)2,𝐾𝐾 − (𝐺𝐺 × 𝐹𝐹)1,𝐾𝐾 > 0 . 
The number of peptides was varied from 2 to 5. (ii) 
The second model IM2 was when the number of 
peptides was assumed to be four among which two 
peptides have positive effects andthe other two have 
negative effects. The effect sizes of peptides 
between two groups were assumed to be the same. 
Thus, the interaction effect becomes (𝐺𝐺 × 𝐹𝐹)2,1 −
(𝐺𝐺 × 𝐹𝐹)1,1 = (𝐺𝐺 × 𝐹𝐹)2,2 − (𝐺𝐺 × 𝐹𝐹)1,2 =
(𝐺𝐺 × 𝐹𝐹)1,3 − (𝐺𝐺 × 𝐹𝐹)2,3 = (𝐺𝐺 × 𝐹𝐹)1,4 − (𝐺𝐺 × 𝐹𝐹)2,4 . 
(iii) The third model IM3 was the case when the 
number of positive (𝐺𝐺 × 𝐹𝐹)2,𝑘𝑘 − (𝐺𝐺 × 𝐹𝐹)1,𝑘𝑘  was 
assumed to vary from 1 to 4. Here, the number of 
peptides was assumed to be five. 
 
 
3.2 Simulation Results 
3.2.1 Results for Random Effects 
Figure 1 shows the type I error rate of LMMs when 
the effects were random. Among four models, 
LMMs with random subject effect, LMM(RF) and 
LMM(RR), controlled type I error well, while 
LMMs with fixed subject effect, LMM(FF) and 
LMM(FR), did not. LMM(FR) showed the highest 

type I error rate. The AIC value of LMM(FF) tended 
to be the smallest among four LMMs. Thus, 
LMM(FF) was most frequently selected as the best 
LMM and accordingly its behavior was very similar 
to that of LMM(FF). 
 

 
Figure 1. Type I error rate of LMMs when effects 
were randomly generated.  
The number of peptides was 2 and 5 for the top panel and 
the bottom panel, respectively. The x-axis and y-axis 
represent the number of samples and type I error rate, 
respectively. Grey dotted horizontal line represents the 
significant level. 
 
 
  Regarding the effect of the number of 
peptides on the type I error, there are some 
differences among the models. For LMM(RF) and 
LMM(RR), there is no effect of the number of 
peptides, while LMM(FF) and LMM(FR) showed 
inflated type I error rates. LMM(best) was not 
affected by the number of peptides either. Since 
LMM(FF) and LMM(FR) did not control type I 
error well, their power was higher than those of 
LMM(RF) and LMM(RR) for scenarios 2 to 4, as 
shown in Figure 2. LMM(FR) showed higher power 
than LMM(FF), as similarly observed in Scenario 1. 
LMM(RR) showed relatively higher power than 
LMM(RF). The behaviors of the LMM(best) for 
scenarios 2 to 4 were similar to what we observed in 

Ty
pe

 I 
er

ro
r r

at
e

20 50 100

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Ty
pe

 I 
er

ro
r r

at
e

20 50 100

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

LMM(FF) LMM(FR) LMM(RF) LMM(RR)

DESIGN, CONSTRUCTION, MAINTENANCE 
DOI: 10.37394/232022.2022.2.1 Jongsoo Jun, Taesung Park

E-ISSN: 2732-9984 3 Volume 2, 2022



Scenario 1. Four LMMs showed consistent power 
patterns under all simulated cases for scenarios 2 to 
4. That is, the power of LMMs has the following 
ordering: LMM(FR) > LMM(FF) > LMM(RR) > 
LMM(RF).  
 

 
Figure 2. Estimated empirical power of LMMs when 
effects were randomly generated.  
Top panel (Scenario 2): 𝑮𝑮𝟐𝟐 − 𝑮𝑮𝟏𝟏 = 𝟏𝟏  and 𝐕𝐕𝐕𝐕𝐕𝐕{(𝑮𝑮 ×
𝑭𝑭)𝒊𝒊𝒊𝒊} = 𝟎𝟎. Middle panel (Scenario 3): 𝑮𝑮𝟐𝟐 − 𝑮𝑮𝟏𝟏 = 𝟎𝟎 and 
𝐕𝐕𝐕𝐕𝐕𝐕{(𝑮𝑮 × 𝑭𝑭)𝒊𝒊𝒊𝒊} = 𝟎𝟎.𝟐𝟐 . Bottom panel (Scenario 4): 
𝑮𝑮𝟐𝟐 − 𝑮𝑮𝟏𝟏 = 𝟎𝟎.𝟓𝟓  and 𝐕𝐕𝐕𝐕𝐕𝐕{(𝑮𝑮 × 𝑭𝑭)𝒊𝒊𝒊𝒊} = 𝟎𝟎.𝟏𝟏 . The 
number of peptides was 2. The x-axis and y-axis 
represent the number of samples and estimated empirical 
power, respectively. Grey dotted horizontal line 
represents the significant level. 
 
 

  The effect of sample sizes on power 
depended on the group and interaction effects, but 
showed very consistent patterns for all LMMs. 
When the group effect 𝐺𝐺2 − 𝐺𝐺1 = 1  and the 
interaction effect Var{(𝐺𝐺 × 𝐹𝐹)𝑖𝑖𝑘𝑘 } = 0, the sample 
size 20 yielded power of 0.6, while the sample size 
50 yielded higher than 0.8. When the group effect 
𝐺𝐺2 − 𝐺𝐺1 = 0.5 and the interaction effect Var{(𝐺𝐺 ×
𝐹𝐹)𝑖𝑖𝑘𝑘 } = 0.1, the sample size of 100 yielded power 
higher than 0.6. On the other hand, when the group 
effect 𝐺𝐺2 − 𝐺𝐺1 = 0  and the interaction effect 
Var{(𝐺𝐺 × 𝐹𝐹)𝑖𝑖𝑘𝑘 } = 0.2 , the sample size of 100 
produced power lower than 0.6. 
 
 
3.2.2 Results for Fixed Effects 
Figure 3 shows the type I error rate of LMMs when 
the effects were fixed (Scenario 5). The type I error 
rates of LMMs with fixed effects showed different 
patterns from those of LMMs with random effects. 
All four LMMs controlled type I error well, as 
shown in Figure 3. LMM(RF) and LMM(RR) tend 
to control type I error rate more strongly than 
LMM(FF) and LMM(FR). Regarding the effect of 
the number of peptides on the type I error, there is 
no strong effect of the number of peptides.  
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Figure 3. Type I error rate of LMMs when effects 
were fixedly generated.  
The number of peptides was 2 and 5 for the top panel and 
the bottom panel, respectively. The x-axis and y-axis 
represent the number of samples and type I error rate, 
respectively. Grey dotted horizontal line represents the 
significant level. 
 
  The power comparison results are 
summarized in Figures 4 and 5. The effect of sample 
sizes on power depended on the group and 
interaction effects. Figure 4 shows the results for the 
interaction model IM1, when the number of peptides 
was two. Four LMMs showed consistent power 
patterns under all simulated cases for scenario 6 to 8. 
The power of LMM(FF) and LMM(FR) was 
relatively higher than those of LMM(RF) and 
LMM(RR) for scenarios 6 to 8. LMM(FR) showed 
the highest power among four LMMs. The power of 
LMM(RF) was slightly higher than that of 
LMM(RR).  

 The effect of sample sizes on power 
depended on the group and interaction effects, but 
showed very consistent patterns for all LMMs. 
Sample size 50 yielded power of 0.8 for scenarios 6 
to 8. 
  Figure 5 shows the results for the 
interaction model IM2. Here, the number of 
peptides was assumed to be four; two peptides have 
positive effects and the other two have negative 

effects. As expected, the opposite direction of 
effects dramatically decreased power of all four 
LMMs. 
  Figure 6 shows the results for the 
interaction model IM3. The number of peptides was 
fixed to be five. Here, 𝐺𝐺2 − 𝐺𝐺1 = 0  and the 
squared average of (𝐺𝐺 × 𝐹𝐹)𝑖𝑖𝑘𝑘  was set to 0.2. As 
the number of positive (𝐺𝐺 × 𝐹𝐹)2,𝑘𝑘 − (𝐺𝐺 × 𝐹𝐹)1,𝑘𝑘  
increases, the power of all LMMs increases. The 
increase patterns of LMM(FF) and LMM(FR) are 
different from those of LMM(RF) and LMM(RR). 
The power of LMMs has the following ordering: 
LMM(FR) > LMM(FF) > LMM(RF) > LMM(RR). 
 
 

 
Figure 4. Estimated empirical power of LMMs when 
the effects are fixed and the interaction model is IM1 
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Top panel (Scenario 6): 𝑮𝑮𝟐𝟐 − 𝑮𝑮𝟏𝟏 = 𝟏𝟏  and 𝐕𝐕𝐕𝐕𝐕𝐕{(𝑮𝑮 ×
𝑭𝑭)𝒊𝒊𝒊𝒊} = 𝟎𝟎. Middle panel (Scenario 7): 𝑮𝑮𝟐𝟐 − 𝑮𝑮𝟏𝟏 = 𝟎𝟎 and 
𝐕𝐕𝐕𝐕𝐕𝐕{(𝑮𝑮 × 𝑭𝑭)𝒊𝒊𝒊𝒊} = 𝟎𝟎.𝟐𝟐 . Bottom panel (Scenario 8): 
𝑮𝑮𝟐𝟐 − 𝑮𝑮𝟏𝟏 = 𝟎𝟎.𝟓𝟓  and 𝐕𝐕𝐕𝐕𝐕𝐕{(𝑮𝑮 × 𝑭𝑭)𝒊𝒊𝒊𝒊} = 𝟎𝟎.𝟏𝟏 . The 
number of peptides was 2. The x-axis and y-axis 
represent the number of samples and estimated empirical 
power, respectively. Grey dotted horizontal line 
represents the significant level. 
 

 

Figure 5. Estimated empirical power of LMMs when 
effects are fixed and the interaction models are IM1 
and IM2 
The x-axis represents the sample size and the y-axis 
represents estimated empirical power. The top panel: The 
number of peptides is four with the interaction model 
IM1. The bottom panel: The total number of peptides is 
four with the interaction model IM2. 
 

 

Figure 6. Estimated empirical power of LMMs when 
effects are fixed and the interaction model is IM3 
The x-axis represents the number of positive (𝐺𝐺 ×
𝐹𝐹)2,𝑘𝑘 − (𝐺𝐺 × 𝐹𝐹)1,𝑘𝑘  when the number of peptides was 
five. The y-axis respresents estimated empirical power 
when the sample size was 20. Here, 𝐺𝐺2 − 𝐺𝐺1 = 0 and 
the squared average of (𝐺𝐺 × 𝐹𝐹)𝑖𝑖𝑘𝑘  was set to 0.2.  
 
 
4 Conclusion 
LMMs have been widely used to identify significant 
protein from MRM assay. However, LMM approach 
provides various significance results for the same 
MRM data depending on which effects are treated 
as random or fixed. It is well known properties of 
LMMs that the variance of model parameters are 
underestimated when the fixed effect model is fitted 
when the true effects are random and vice versa 
[14]. As a result, the significance result of LMMs 
may vary depending on whether the true effect is 
random or fixed. Thus, it is important to specify 
correctly the effect as random or fixed.  

We examined the performance of LMMs 
through extensive simulation studies. We utilized 
AIC for the model selection. However, our 
empirical study showed that LMM(FF) has the 
smallest AIC for all simulation settings, which made 
it difficult to use AIC as a model selection criterion.  

Based on our simulation results, we 
suggest the following practical guideline to use 
LMMs for MRM data analysis. First, if there is a 
strong evidence that effects are fixed, then use 
LMM(FR), because it controlled type I error well 
and provided the highest power among four LMMs. 
Second, if there is no evidence that effects are fixed, 
then use LMM(RR), because it controlled type I 
error and showed higher power than LMM(RF). 
Third, when some of peptides in a protein behaved 
oppositely from the others, we found out that LMMs 
did not perform well. Thus, the nonsignificant 
results should be more carefully examined.  
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