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Abstract: - This paper provides an approximate analytical approach leading to the statistical characterization of 
the electric active/reactive power related to the harmonics in the real-time monitoring of a power system 
affected by frequency instability. The effect of additive noise is also included in the analysis. Frequency 
instability of voltage and current waveforms is modeled as a random variable ranging within a given frequency 
interval. Propagation of both the uncertainty sources through the whole measurement process based on analog-
to-digital conversion and discrete Fourier transform is investigated. Power evaluation is performed by proper 
multiplication of waveforms spectra. In fact, the requirement of real-time monitoring prevents the use of 
sophisticated algorithms to cope with the frequency change before spectra multiplication. Analytical 
expressions taking into account the weighting function used against spectral leakage are derived for the bias 
and the standard deviation of the measured power.  
  
Key-Words: - Power measurement; power quality; frequency instability; additive noise; discrete Fourier 
transform; statistical techniques. 

 
1 Introduction 
Modern electrical power systems are characterized 
by increasing complexity mainly due to the so-
called distributed generation (DG) and to the 
widespread use of non-linear loads. In particular, the 
use of time-varying non-linear loads requires a 
continuous real-time monitoring of the harmonic 
content in the waveforms spectra for power quality 
purposes. It is well-known, however, that one of the 
drawbacks of DG is frequency instability/inaccuracy 
of the generated waveforms. Therefore, as the main 
objective of this paper, it is of paramount 
importance to investigate the effect of frequency 
instability on the power measurements performed by 
digital techniques based on analog-to-digital (A/D) 
conversion of the waveforms and the discrete 
Fourier transform (DFT) usually evaluated through 
the fast Fourier transform (FFT) [1]. The impact of 
additive noise is also investigated in order to attain a 
complete characterization of the measurement 
process. In the literature a few attempts have been 
made along this direction. In [2] only the effect of 
additive noise was taken into account with respect to 
measurement of the average power. Active and 
reactive powers at harmonic components were not 
investigated. In other papers (e.g., see [3]-[5]) 
sophisticated algorithms were proposed to face the 

problem of unknown frequency. However, this 
approach is not suited to the need of a continuous 
real-time monitoring.  

The paper is organized as follows. The problem 
statement is provided in Section 2. The 
mathematical derivations leading to the statistical 
characterization of the measured harmonic power 
are provided in Section 3. Numerical validation of 
the analytical results is given in Section 4. Final 
remarks are provided in Section 5. 
 
 
2 Problem Statement 
Power measurements under non-sinusoidal 
conditions can be effectively performed by resorting 
to digital instrumentation based on A/D conversion 
of voltage and current waveforms, and time-to-
frequency transformation through the DFT (with the 
efficient FFT algorithm). Thus, active and reactive 
power at each frequency of interest can be readily 
evaluated by processing the relevant spectral lines.  

Two main sources of uncertainty can be 
identified in the measurement process outlined 
above. First, the fundamental frequency of 
voltage/current waveforms is typically affected by 
random instability. It means that by repeating the 
measurement process, slightly different values of 
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the waveforms fundamental frequency must be 
expected. Such frequency instability is of course 

emphasized for harmonic components. When the 

DFT is applied, the lack of synchronism between 
the waveforms fundamental frequency and the 

sampling frequency (i.e., non-coherent sampling) 

will result in increased uncertainty in the power 

measurements. The second main source of 

uncertainty is additive noise. Indeed, voltage/current 

waveforms are always affected by additive noise 
which propagates through A/D conversion and DFT 

transformation, yielding noisy spectral lines. It is 

expected that the impact of additive noise is larger 
as the amplitude of the involved harmonic spectral 

lines decreases. Therefore, the resulting power 

evaluations should be properly characterized in 
statistical terms by treating each power estimate as a 

random variable (RV). 

The time-domain voltage/current waveforms are 

modelled as a sum of N sine waves and additive 

zero-mean independent noise: 

 

 ���� = √2 ∑ 	
cos �2��
� + �
��
�� + ����� (1) 

 

 ���� = √2 ∑ �
cos �2��
� + �
��
�� + ����� (2) 

 

After A/D conversion of (1)-(2) with sampling 

frequency ��, and weighted time-windowing (�� 
samples in length) against spectral leakage [4], the 

DFT transform provides the estimates of the 

complex Fourier coefficients: 

 

 	�� = √ �!"#$% ∑ �&'()&'(exp�−.2�'� �/⁄ ��!1�2�3 ,  (3) 

 

 �4� = √ �!"#$% ∑ �&'()&'(exp�−.2�'� �/⁄ ��!1�2�3 ,    (4) 

 

where w[k] is the selected time window 

characterized by the related Normalized Peak Signal 

Gain NPSG (see Tab. I where three examples of 

commonly used windows are reported with the 

parameters exploited in this paper). The frequency 

index n is related to the frequency index h in (1)-(2) 

by � × ∆� = �
, where ∆� = �� ��⁄  is the DFT 

frequency resolution. Under non-coherent sampling, 

the relation � × ∆� = �
 is intended as an 

approximate relation where n is the index such that � × ∆� is the discrete frequency closest to �
.  

The estimates of the active and reactive power 

are derived from (3)-(4) as  
 7�
 = 8	�
88�4
8 cos9:;<	�
 − :;<�4
=, ℎ = 1, … , �      �
 ≅ � × ∆�  (5) 

 

C�
 = 8	�
88�4
8 sin9:;<	�
 − :;<�4
=,  ℎ = 1, … , �      �
 ≅ � × ∆�  (6) 

It is worth noticing that each of the RVs F7�
, C�
G
���
 defined by the transformations (5) and 

(6) is given as a function of four RVs  F8	�
8, 8�4
8, :;<	�
, :;<�4
G for which statistical 

uncorrelation cannot be assumed. Indeed, it is well 

known that both 8	�
8 and :;<	�
 are obtained by 

combining the real and the imaginary parts of the 

relevant DFT coefficient 	�
, and the same is true for 8�4
8 and :;<�4
 with respect to the DFT coefficient �4
. It follows that the analytical derivation of the 

statistical properties of the RVs F7�
, C�
G
���
 given 

in the form (5) and (6) cannot be straightforward. In 

the next Section an alternative form for (5) and (6) 

will be provided, such that the statistical 
characterization of active and reactive power can be 

analytically derived through a straightforward 

approach. 
 

 

3 Mathematical Derivations 
In this Section the mathematical derivations will be 

performed with reference to the active power only. 

Similar derivations could be performed for the 

reactive power. Moreover, for the sake of simplicity, 
the frequency index h in (5) will be dropped since 

the proposed approach holds for each specific 

frequency �
.  
The two main sources of uncertainty outlined in 

Section 2 are analyzed in the following subsections. 

 
 

3.1 Frequency Instability 
If the frequency f of a sinusoidal component in the 

voltage/current waveform does not equal one of the 

DFT discrete frequencies (i.e., the integer multiples 

of the frequency resolution ∆�), the related spectral-

line magnitude does not take its ideal value. In fact, 
in this case (i.e., the non-coherent sampling 

condition) the spectral line magnitude is weighted 

by the Fourier transform of the time window )&'( 
used in (3)-(4) against spectral leakage. An 

approximate methodology is here introduced, 

consisting in the approximation of the frequency-

domain behavior of each specific window by a 

parabolic function obtained by setting the constraint 

provided by the window Scallop Loss (SL) (see Fig. 

1), i.e., the maximum attenuation introduced by the 

window at the edges ± ∆� 2⁄  of each DFT bin [6]. 

From Fig. 1, assuming the n-th DFT frequency bin 

as the origin of the frequency axis, the normalized 
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attenuation introduced by the window on a 
waveform spectral line can be readily obtained: 
 
 𝑦𝑦 ≅ 1 − 𝑎𝑎𝑓𝑓2 = 1 − 4(1−𝑆𝑆𝑆𝑆)

∆𝑓𝑓2 𝑓𝑓2 (7) 
 

Such attenuation is applied to both the voltage 
and the current spectral lines at the frequency f. 
Therefore, by defining  

 
 𝑧𝑧 = 𝑦𝑦2 (8) 
 
the active power in (5) can be rewritten as 
 
 𝑃𝑃� = 𝑧𝑧|𝑉𝑉� ||𝐼𝐼|̅cos�𝑎𝑎𝑎𝑎𝑎𝑎𝑉𝑉� − 𝑎𝑎𝑎𝑎𝑎𝑎𝐼𝐼� (9) 
 
where |𝑉𝑉� | and |𝐼𝐼|̅ denote the non-weighted 
frequency-centered spectral lines.  

The frequency f will be treated as a RV 
uniformly distributed within an interval df centered 
on the DFT frequency bin 𝑛𝑛 × ∆𝑓𝑓 (see Fig. 1). It 
follows that also z is a RV whose mean value and 
variance can be estimated using an approximate 
approach based on a Taylor series expansion [7]-[8]: 

 

 𝜇𝜇𝑧𝑧 ≅ 1 − 2
3

(1 − 𝑆𝑆𝑆𝑆) �𝑑𝑑𝑓𝑓
∆𝑓𝑓
�

2
 (10) 

 

 𝜎𝜎𝑧𝑧2 ≅ 0.36(1− 𝑆𝑆𝑆𝑆)2 �𝑑𝑑𝑓𝑓
∆𝑓𝑓
�

4
 (11) 

 
 
3.2 Additive Noise 
By using a well-known trigonometric identity, the 
active power (9) can be rewritten as 
 

𝑃𝑃�
= 𝑧𝑧|𝑉𝑉� | cos�𝑎𝑎𝑎𝑎𝑎𝑎𝑉𝑉�� |𝐼𝐼|̅ cos�𝑎𝑎𝑎𝑎𝑎𝑎𝐼𝐼�
+ 
 

 +𝑧𝑧|𝑉𝑉� | sin�𝑎𝑎𝑎𝑎𝑎𝑎𝑉𝑉�� |𝐼𝐼|̅ sin�𝑎𝑎𝑎𝑎𝑎𝑎𝐼𝐼� = (12) 
 

= 𝑧𝑧Re{𝑉𝑉�}Re{𝐼𝐼}̅ + 𝑧𝑧Im{𝑉𝑉�}Im{𝐼𝐼}̅ 
 

In the literature it has been shown that the real 
and the imaginary parts of a DFT coefficient of a 
noisy waveform can be treated as Gaussian 
uncorrelated RVs, with mean values equal to the 
noise-free mean values, and variances given by [2] 

 
 𝜎𝜎2 = 1

𝑁𝑁𝑠𝑠
𝜎𝜎𝑛𝑛2ENBW (13) 

 

where 𝜎𝜎𝑛𝑛2 is the variance of the additive input noise, 
and ENBW is the Equivalent Noise Bandwidth of 
the selected time window.  
 

 
Fig. 1. Spectral line weighted by the frequency-domain window. 
  

Therefore, for the real and the imaginary parts of 
the voltage DFT coefficients we have: 
 
 𝜎𝜎𝑉𝑉2 = 1

𝑁𝑁𝑠𝑠
𝜎𝜎𝑛𝑛𝑣𝑣

2 ENBW (14) 
 
whereas for the real and imaginary parts of the 
current DFT coefficients we have: 
 
 𝜎𝜎𝐼𝐼2 = 1

𝑁𝑁𝑠𝑠
𝜎𝜎𝑛𝑛𝑖𝑖

2 ENBW (15) 
 
 
3.3 Mean Value and Variance Estimates 
The active power in (12) is a RV given as a function 
of five independent RVs whose mean values and 
variances have been derived in the previous 
subsections. Therefore, the mean value and the 
variance of 𝑃𝑃� can be obtained by means of the 
Taylor expansion approach already used above. The 
first-order partial derivatives can be readily 
evaluated from (12), whereas the second-order 
derivatives are all zero. Thus, the mean value of 𝑃𝑃� is 
given by: 
 

 𝜇𝜇𝑃𝑃� ≅ 𝜇𝜇𝑧𝑧𝑃𝑃 = �1 − 2
3

(1 − 𝑆𝑆𝑆𝑆) �𝑑𝑑𝑓𝑓
∆𝑓𝑓
�

2
� 𝑃𝑃 (16) 

 
which allows the evaluation of the normalized bias 
in the active power measurement: 
 

 𝑏𝑏𝑃𝑃� = 𝜇𝜇𝑃𝑃�−𝑃𝑃
𝑃𝑃

= − 2
3

(1 − 𝑆𝑆𝑆𝑆) �𝑑𝑑𝑓𝑓
∆𝑓𝑓
�

2
 (17) 

 
and the variance is given by: 
 

𝜎𝜎𝑃𝑃�
2 ≅ 𝜎𝜎𝑧𝑧2𝑃𝑃2 + 𝜇𝜇𝑧𝑧2(𝜎𝜎𝑉𝑉2𝐼𝐼2 + 𝜎𝜎𝐼𝐼2𝑉𝑉2) = 

SL 

1 

f frequency 

normalized 
amplitude y 

n×∆f −∆f / 2 

spectral line 
window 

n×∆f n×∆f +∆f / 2 

df 
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 = 0.36(1− 𝑆𝑆𝑆𝑆)2 �𝑑𝑑𝑓𝑓
∆𝑓𝑓
�

2
𝑃𝑃2 + (18) 

+ �1 −
2
3

(1 − 𝑆𝑆𝑆𝑆) �
𝑑𝑑𝑓𝑓
∆𝑓𝑓
�

2

�
2

ENBW
𝑁𝑁𝑠𝑠

�𝜎𝜎𝑛𝑛𝑣𝑣
2 𝐼𝐼2 + 𝜎𝜎𝑛𝑛𝑖𝑖

2 𝑉𝑉2� 

 
TABLE I. 

SOME FIGURES OF MERIT OF THREE COMMON WINDOWS. 
Window NPSG ENBW SL [dB] SL 
Rect. 1 1 3.92 0.637 
Tukey (α=0.5) 0.75 1.22 2.24 0.773 
Hann 0.50 1.50 1.42 0.849 

 
 
such that the normalized standard deviation can be 
written: 
 

𝜎𝜎𝑃𝑃�
𝑃𝑃

== �0.36(1 − 𝑆𝑆𝑆𝑆)2 �
𝑑𝑑𝑓𝑓
∆𝑓𝑓
�

2

+ �1 −
2
3

(1 − 𝑆𝑆𝑆𝑆) �
𝑑𝑑𝑓𝑓
∆𝑓𝑓
�

2

�
2

ENBW
𝑁𝑁𝑠𝑠

𝜎𝜎𝑛𝑛𝑣𝑣
2

𝑉𝑉2 +
𝜎𝜎𝑛𝑛𝑖𝑖

2

𝐼𝐼2

cos2(𝜑𝜑 − 𝜗𝜗) 

(19) 
 

It is interesting to notice in (19) two kinds of 
additive contributions. The first term is strictly 
related to the frequency uncertainty 𝑑𝑑𝑓𝑓 ∆𝑓𝑓⁄  and the 
SL of the window. The second term includes also 
the contribution of the noise-to-signal ratios 𝜎𝜎𝑛𝑛𝑣𝑣

2 𝑉𝑉2⁄  
and 𝜎𝜎𝑛𝑛𝑖𝑖

2 𝐼𝐼2⁄ , showing that higher-order low-
amplitude harmonics result in larger uncertainty. 
The total noise-to-signal ratio is divided by the 
squared power factor cos2(𝜑𝜑 − 𝜗𝜗) which in turn 
can emphasize such contribution for small power 
factors. Moreover, as expected, the total noise-to-
signal ratio is weighted by the ENBW parameter of 
the window, while the action of the number of 
samples 𝑁𝑁𝑠𝑠  is distributing the noise power over the 
DFT frequency bins such that the noise impact 
decreases as 𝑁𝑁𝑠𝑠  increases. Finally, it can be easily 
shown that the above results hold also for the 
reactive power. 
 
 
4 Numerical Simulations 
The analytical results derived in Section 3 have been 
validated by resorting to numerical simulation of the 
whole measurement process. According to (1)-(2), 
voltage and current waveforms consisting of three 
harmonic components have been selected such that 
𝑓𝑓1 = 50 Hz,𝑓𝑓3 = 3𝑓𝑓1,𝑓𝑓5 = 5𝑓𝑓1. The voltage and 
current rms values have been selected as 𝑉𝑉1 =
1,𝑉𝑉3 = 0.1,𝑉𝑉5 = 0.04, 𝐼𝐼1 = 0.5, 𝐼𝐼3 = 0.1, 𝐼𝐼5 = 0.02. 
Phase angles 1 and 3 have been selected at random, 
while phase angles 5 have been given specific 
values since the analytical result (19) has been 
tested for the fifth harmonic component. Time-
domain additive zero-mean Gaussian noise has been 

considered with 𝜎𝜎𝑛𝑛𝑣𝑣 = 𝜎𝜎𝑛𝑛𝑖𝑖 = 0.04. Sampling has 
been performed such that 10 periods of the 
fundamental component are acquired, i.e., a 200 ms 
measurement window were taken. The selection of 
the number of samples 𝑁𝑁𝑠𝑠  defines the corresponding 
sampling frequency. By assuming   𝑁𝑁𝑠𝑠 = 212   the   
corresponding   sampling 

 
Fig. 2. Comparison between analytical (solid lines) and 
numerical (markers) estimates of the normalized standard 
deviation of P5 (see (19)) as a function of the normalized 
frequency range 𝑑𝑑𝑓𝑓 ∆𝑓𝑓⁄  for three different windows. 
 
 

 
Fig. 3. Same as Fig. 2 but with decreased power factor and 
number of samples. 
 
 
frequency is 𝑓𝑓𝑠𝑠 = 20.48 kHz, and the related 
frequency resolution is ∆𝑓𝑓 = 5 Hz. A repeated run 
analysis (104 runs to estimate each average value) 
has been performed by assuming 𝑓𝑓1 taking random 
values with uniform distribution within a frequency 
range df centered on the nominal frequency 50 Hz. 
It is worth noticing that a frequency deviation df in 
the fundamental component results in a frequency 
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deviation 3df in the third harmonic, and 5df in the 
fifth harmonic. In the following, analytical results 

(17) and (19) have been validated for the fifth 

harmonic. In fact, by assuming a maximum XL∆L = 0.2 for the fundamental component, such 

normalized frequency range equals 1 for the fifth 

harmonic. Moreover, the effect of the noise part in 
(19) is emphasized when low-magnitude sine-waves 

are considered.  

In Fig. 2 the normalized standard deviation (19) 

related to 7} is validated against the numerical 

simulations described above. The power factor cos ��} − �}� has been selected equal to 1. The 

contribution of noise in (19) is mainly relevant to 

the first part of the curves, i.e., for small values of v� ∆�⁄ .  

In Fig. 3 the power factor was decreased to 

0.707, and the number of samples was decreased to 

1024. According to (19), decreasing of both the 

parameters emphasizes the contribution of noise 

clearly evident for small values of v� ∆�⁄ . 

 

 

5 Conclusion 
Approximation of the frequency behavior of the 
window used against spectral leakage by a simple 

parabolic function, depending only on the parameter 

SL, provided analytical results in good agreement 

with numerical simulations. The proposed approach 

enables simple and straightforward statistical 

characterization of measured power affected by 

frequency instability and noise. 

Future work will be devoted to extend the 

analytical results to different and possibly non-
symmetrical statistical distributions for the 

frequency instability.  
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