Applications, vol. 102, pp. 158–178, Jul. 2018,
DOI: 10.1016/j.eswa.2018.02.039.
[11] X. Wang, J. Zhang, A. Zhang and J. Ren,
‘TKRD: Trusted kernel rootkit detection for
cybersecurity of VMs based on machine
learning and memory forensic analysis’,
Mathematical Biosciences and Engineering,
vol. 16, no. 4, pp. 2650–2667, 2019, DOI:
10.3934/mbe.2019132.
[12] T. Panker and N. Nissim, ‘Leveraging
malicious behavior traces from volatile
memory using machine learning methods for
trusted unknown malware detection in Linux
cloud environments’, Knowledge-Based
Systems, vol. 226, p. 107095, Aug. 2021, DOI:
10.1016/j.knosys.2021.107095.
[13] S. Lyles, M. Desantis, J. Donaldson, M.
Gallegos, H. Nyholm, C. Taylor and K.
Monteith, ‘Machine Learning Analysis of
Memory Images for Process Characterization
and Malware Detection’, in 2022 52nd Annual
IEEE/IFIP International Conference on
Dependable Systems and Networks Workshops
(DSN-W), Baltimore, MD, USA, Jun. 2022,
pp. 162–169. DOI: 10.1109/DSN-
W54100.2022.00035.
[14] A. S. Bozkir, E. Tahillioglu, M. Aydos, and I.
Kara, ‘Catch them alive: A malware detection
approach through memory forensics, manifold
learning and computer vision’, Computers &
Security, vol. 103, p. 102166, Apr. 2021, DOI:
10.1016/j.cose.2020.102166.
[15] G. Karantzas and C. Patsakis, ‘An Empirical
Assessment of Endpoint Detection and
Response Systems against Advanced
Persistent Threats Attack Vectors’, JCP, vol.
1, no. 3, pp. 387–421, Jul. 2021, DOI:
10.3390/jcp1030021.
[16] E. M. Hutchins, M. J. Cloppert, and R. M.
Amin, ‘Intelligence-Driven Computer
Network Defense Informed by Analysis of
Adversary Campaigns and Intrusion Kill
Chains’, Leading Issues in Information
Warfare & Security Research, vol. 1, no. 1, p.
14, 2011.
[17] A. Hariyani, J. Undavia, N. Vaidya, and A.
Patel, ‘Forensic Evidence Collection From
Windows Host Using Python Based Tool’, in
2022 IEEE 4th International Conference on
Cybernetics, Cognition and Machine Learning
Applications (ICCCMLA), Goa, India: IEEE,
Oct. 2022, pp. 85–90. DOI:
10.1109/ICCCMLA56841.2022.9989295.
[18] A. M. A. Hameed, M. Daley, and L. Espinosa-
Anke, ‘A Machine Learning Approach for
Memory Forensic Investigation’, Cardiff
University, 2020.
[19] N. Miramirkhani, M. P. Appini, N.
Nikiforakis, and M. Polychronakis, ‘Spotless
Sandboxes: Evading Malware Analysis
Systems Using Wear-and-Tear Artifacts’, in
2017 IEEE Symposium on Security and
Privacy (SP), San Jose, CA, USA, May 2017,
pp. 1009–1024. DOI: 10.1109/SP.2017.42.
[20] A. Géron, Hands-on machine learning with
Scikit-Learn, Keras, and TensorFlow:
Concepts, tools, and techniques to build
intelligent systems, 2nd ed. Sebastopol, CA:
O’Reilly Media, Inc, 2019.
[21] B. Lachine, ‘Machine Learning Introduction’,
Kingston, Ontario, Oct. 13, 2020, [Online].
https://moodle.rmc.ca (Accessed Date:
October 13, 2021).
[22] F. T. Liu, K. M. Ting, and Z.-H. Zhou,
‘Isolation Forest’, in 2008 Eighth IEEE
International Conference on Data Mining,
Pisa, Italy, Dec. 2008, pp. 413–422. DOI:
10.1109/ICDM.2008.17.
[23] A. Sutera, G. Louppe, V. A. Huynh-Thu, L.
Wehenkel, and P. Geurts, ‘From global to
local MDI variable importances for random
forests and when they are Shapley values’, in
Advances in Neural Information Processing
Systems, Curran Associates, Inc., 2021, pp.
3533–3543, arXiv:2111.02218 [Online].
https://proceedings.neurips.cc/paper/2021/hash
/1cfa81af29c6f2d8cacb44921722e753-
Abstract.html (Accessed Date: January 23,
2023)
[24] T. Yiu, ‘Understanding Random Forest: How
the Algorithm Works and Why it is So
Effective’, Towards Data Science, [Online].
https://towardsdatascience.com/understanding-
random-forest-58381e0602d2 (Accessed:
March 23, 2022).
[25] J. Cervantes, F. Garcia-Lamont, L. Rodríguez-
Mazahua, and A. Lopez, ‘A comprehensive
survey on support vector machine
classification: Applications, challenges and
trends’, Neurocomputing, vol. 408, pp. 189-
215, Sep. 2020, DOI:
10.1016/j.neucom.2019.10.118.
[26] S. Khalid, T. Khalil, and S. Nasreen, ‘A
survey of feature selection and feature
extraction techniques in machine learning’,
Proceedings of 2014 Science and Information
Conference, SAI 2014, London, UK, pp. 372-
378, Oct. 2014, DOI:
10.1109/SAI.2014.6918213.
WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2024.12.33
Mathieu Drolet, Vincent Roberge