Journal of Information Technology, 19(3 A),
501-513.
[4] Yan, R., Xiao, X., Hu, G., Peng, S., & Jiang,
Y. (2018). New deep learning method to
detect code injection attacks on hybrid
applications. Journal of Systems and
Software, 137, 67-77.
[5] Zhao, G., Zhang, C., & Zheng, L. (2017, July).
Intrusion detection using deep belief network
and probabilistic neural network. In 2017
IEEE international conference on
computational science and engineering (CSE)
and IEEE international conference on
embedded and ubiquitous computing
(EUC), Vol. 1, pp. 639-642.
[6] Vinayakumar, R., Soman, K. P., &
Poornachandran, P. (2017, September).
Evaluating effectiveness of shallow and deep
networks to intrusion detection system.
In 2017 International Conference on Advances
in Computing, Communications and
Informatics (ICACCI), pp. 1282-1289.
[7] Al-Milli, N., & Almobaideen, W. (2019,
April). Hybrid neural network to impute
missing data for IoT applications. In 2019
IEEE Jordan International Joint Conference
on Electrical Engineering and Information
Technology (JEEIT), pp. 121-125.
[8] Martinelli, F., Marulli, F., & Mercaldo, F.
(2017). Evaluating convolutional neural
network for effective mobile malware
detection. Procedia computer science, 112,
2372-2381.
[9] Fiore, U., De Santis, A., Perla, F., Zanetti, P.,
& Palmieri, F. (2019). Using generative
adversarial networks for improving
classification effectiveness in credit card fraud
detection. Information Sciences, 479, 448-455.
[10] Alrawashdeh, K., & Purdy, C. (2016,
December). Toward an online anomaly
intrusion detection system based on deep
learning. In 2016 15th IEEE international
conference on machine learning and
applications (ICMLA), pp. 195-200.
[11] Portnoy, L. (2000). Intrusion detection with
unlabeled data using clustering (Doctoral
dissertation, Columbia University).
[12] Y. A. Al-Khassawneh, "An investigation of
the Intrusion detection system for the NSL-
KDD dataset using machine-learning
algorithms," 2023 IEEE International
Conference on Electro Information
Technology (eIT), Romeoville, IL, USA, 2023,
pp. 518-523, doi:
10.1109/eIT57321.2023.10187360.
[13] Goodfellow, I., Pouget-Abadie, J., Mirza, M.,
Xu, B., Warde-Farley, D., Ozair, S.,& Bengio,
Y. (2020). Generative adversarial
networks. Communications of the
ACM, 63(11), 139-144
[14] Yadav, S., & Subramanian, S. (2016, March).
Detection of Application Layer DDoS attack
by feature learning using Stacked
AutoEncoder. In 2016 international
conference on computational techniques in
information and communication technologies
(ICCTICT), pp. 361-366.
[15] Ola Surakhi,Antonio García,Mohammed
Jamoos,Mohammad Alkhanafseh, "The
Intrusion Detection System by Deep Learning
Methods: Issues and Challenges", The
International Arab Journal of Information
Technology (IAJIT) ,Vol. 19, Number 3A, pp.
501 - 513, Special Issue 2022, doi:
10.34028/iajit/19/3A/10.
[16] Shi, Y., Sagduyu, Y., & Grushin, A. (2017,
April). How to steal a machine learning
classifier with deep learning. In 2017 IEEE
International symposium on technologies for
homeland security (HST), pp. 1-5.
[17] Rao, Y. N., & Suresh Babu, K. (2023). An
imbalanced generative adversarial network-
based approach for network intrusion
detection in an imbalanced
dataset. Sensors, 23(1), 550.
[18] Dunmore, A., Jang-Jaccard, J., Sabrina, F., &
Kwak, J. (2023). A Comprehensive Survey of
Generative Adversarial Networks (GANs) in
Cybersecurity Intrusion Detection. IEEE
Access.
[19] Al-Milli, N., Hudaib, A., & Obeid, N. (2021).
Population diversity control of genetic
algorithm using a novel injection method for
bankruptcy prediction problem.
Mathematics, 9(8), 823.
[20] Poongodi, M., & Hamdi, M. (2023). Intrusion
detection system using distributed multilevel
discriminator in GAN for IoT
system. Transactions on Emerging
Telecommunications Technologies, vol. 34
(11), e4815, https://doi.org/10.1002/ett.4815.
[21] Goodfellow, I., Pouget-Abadie, J., Mirza, M.,
Xu, B., Warde-Farley, D., Ozair, S., &
Bengio, Y. (2020). Generative adversarial
networks. Communications of the
ACM, 63(11), 139-144.
[22] Hamandi, H. R. (2022). Modeling and
Enhancing Deep Learning Accuracy in
Computer Vision Applications. Wayne State
University, 29254756.
WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2024.12.27
Nabeel Refat Al-Milli, Yazan Alaya Al-Khassawneh