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Abstract: This article delves into using machine learning algorithms for emotion classification via EEG brain
signals. The goal is to discover an accurate model beyond traditional methods, necessitating AI for classifying
emotional EEG signals. This study, motivated by the complex link between emotions and neural activity, employs
Random Forest, Support Vector Machines, and K-Nearest Neighbors. Notably, Random Forest achieves 99%
accuracy, SVM 98%, and KNN 94%. These impressive results, backed by performance metrics like confusion
matrices, reveal each model’s effectiveness in emotion classification. The dataset, rich in varied emotional stimuli
and EEG placements, provides a robust foundation for detailed analysis. This research underscores significant
applications in affective computing and mental health, offering a promising path to understanding the intricate
relationship between EEG signals and human emotions.
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1 Introduction
Emotions, those tricky yet significantly effective
powers that shape our lives, are integral to how
we see, act, and collaborate with our general
surroundings. From the sheer pleasure of a
kid’s giggling to the extraordinary fury of a
tempest, feelings cover a huge range, each shade
fundamentally impacting our responses to various
upgrades. Researchers in psychology, neuroscience,
and artificial intelligence have all been captivated by
this intricate dance of emotions as they attempt to
unravel the complexities of emotional classification.
The drive behind this attempt lies in the commitment
of more profound experiences into human way
of behaving and the improvement of human-PC
cooperation frameworks. A great representation is
the concentrate by [1], which exhibited the adequacy
of half and half profound learning techniques in
limiting arrangement mistakes in weakness location
by means of EEG, featuring the potential for worked
on close to home examination.

Customarily, the feelings are intensely depended
on Electroencephalography (EEG) signals, which
offer an immediate look into the mind’s electrical
movement, [2]. These EEG recordings reveal the
neural bases of emotional states and shed light on

how our brains process feelings. However, it is
difficult to accurately classify emotions using EEG.
Variability and noise obscure meaningful patterns
in the data, which is intrinsically complex, [3].
Besides, the multi-layered nature of feelings makes
it considerably more testing to recognize them
exclusively through brain action.

Basic statistical techniques and straightforward
classifiers are frequently hampered by EEG data’s
inherent noise and high dimensionality. For
example, [1], used half and half profound learning
models to diminish order blunders in weakness
discovery, underscoring the requirement for complex
procedures to explore the complexities of EEG
information. The dynamic and covering attributes
of feelings further muddle these difficulties, as
conventional techniques battle to catch the full range
of human profound experience. Concentrates, for
example, those by [3], have demonstrated the way
that exceptional AI methods can fundamentally
upgrade feeling order execution when applied
to EEG information. These results highlight the
transformative potential of machine learning, which
provides models that are more precise and reliable
than those produced by more conventional methods.
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AI sparkles as an encouraging sign for further
developing feeling grouping from EEG signals, [4].
Machine learning models can discover patterns
in EEG data that correspond to various emotional
states by utilizing advanced algorithms. Machine
learning models are adept at handling noisy and
variable data, thereby reducing the impact of
artifacts and inconsistencies; scalability, allowing
for the efficient processing of large datasets for
real-time applications; and sophisticated feature
extraction, which automatically identifies the
most relevant aspects of EEG signals for emotion
classification. These advantages are numerous and
include improved accuracy, which is achieved by
algorithms such as Random Forest, Support Vector
Machines, and Convolutional Neural Networks.

The down to earth ramifications of this exploration
are tremendous. Affective computing can advance
by improving emotion classification models, making
it possible for systems to respond to users’ emotional
states more naturally. These models offer instruments
for the early detection and monitoring of emotional
disorders in mental health diagnostics, potentially
enhancing treatment outcomes. Adaptive interfaces
could dynamically respond to users’ emotions
in human-computer interaction, enhancing user
engagement and experience. These headways feature
the capability of AI to change functional applications
by conveying more precise and solid models for
feeling characterization.

This article unfurls as follows: Section 2 dives
into the relevant related works, offering a survey of
existing examination and bits of knowledge. The
method used and the datasets used are described
in detail in Section 3. The research findings are
presented in Section 4, where they are examined in
depth. At last, section 5 closes the review, summing
up key perceptions, examining their suggestions, and
proposing expected roads for future exploration.

2 Related Work
Several studies have significantly advanced EEG
research by delving into brainwave patterns for a
range of applications. In [5], the author investigates
discriminative EEG features to categorize brainwave
patterns, especially for human-machine interaction.
The study achieves high classification accuracy
with a reduced feature set using classifiers such as
Bayesian Networks, Support Vector Machines, and
Random Forests. On the other hand, [6], explore
EEG data in everyday scenarios to evaluate user
engagement and enjoyment in tablet-based video
games. They find that frontal theta activity is a strong
predictor of game preference. Additionally, [7],

focus on emotion classification from EEG data,
employing ensemble classifiers to achieve high
accuracy in identifying emotions induced by film
clips. These studies collectively enhance the
understanding of brainwave patterns’ applicability in
technology, emotion classification, and the potential
for improving human-computer interaction.

In their research, [8], present a hybrid labeling
approach combining subjective and objective
elements to recognize emotions from EEG data,
aiming to capture real-time emotional dynamics.
Studies related to emotion recognition suggest that
emotions unfold over extended periods. The authors
in [9], examine emotional patterns that remain
stable over time. The authors in [10], develop an
algorithm to select crucial sub-networks associated
with emotions, focusing on three attributes from
brain functional connectivity networks: connection
strength, clustering coefficient, and centrality
within a feature vector. Experiments using the
SEED database, a publicly available EEG emotion
dataset, highlight the effectiveness of these brain
connectivity network features in differentiating
emotions, with connection strength being the most
indicative feature, achieving an accuracy of 81.53%.
The authors in [11], introduce a model for emotion
recognition based on the dynamics of EEG phase
space and Poincare intersections, quantitatively
analyzing EEG dynamics through the Poincare
plane. The authors in [12], assess traditional machine
learning techniques, including PCA, Naive Bayes,
Logistic Regression, KNN, Support Vector Machine,
and Decision Trees on the DEAP dataset, finding
PCA and SVM to deliver superior results. However,
these outcomes are specific to the datasets and
experimental designs used, and may not generalize
to other contexts. With the rise of deep learning,
more researchers are turning to deep neural networks
for emotional computing tasks using physiological
signals. Through EEG signal analysis, [13], establish
a link between EEG signal variations and changes in
human emotions, evaluating various classifiers such
as KNN, LR, SVM, and DBN in emotion recognition.
Their findings indicate that deep neural networks
outperform traditional machine learning approaches
in emotion computing.

3 Methodology
In this section, we outline the dataset used, introduce
the proposed system model, and discuss the data
preprocessing steps undertaken.

3.1 System Model
Figure 1 illustrates our comprehensive system model.
The data flow initiates from the Dataset module,

WSEAS TRANSACTIONS on COMPUTER RESEARCH 
DOI: 10.37394/232018.2024.12.45

Ali Rachini, Lameea Abbas Hassn, 
Elie El Ahmar, Hani Attar

E-ISSN: 2415-1521 456 Volume 12, 2024



embodying the raw dataset, which encompasses EEG
brain signals alongside emotional stimuli data. This
initial data embarks on a journey through Data
Preprocessing, wherein intricate procedures such as
handling missing values and meticulous data labeling
are executed to cleanse and prime it for subsequent
analysis, [14].

Fig. 1: Proposed system model

Upon completion of preprocessing, the refined
dataset is bifurcated into Train and Test subsets.
Here, 80% of the data is earmarked for training the
machine learning algorithms, while the remaining
20% is reserved to scrutinize their performance.
Within the realm of Machine Learning Algorithms,
an array of techniques, including Random Forest,
SVM, and KNN, are used on the training data to
construct robust predictive models.

Once these models are trained, their prowess
is tested on the Test Data, thereby evaluating their
ability to generalize to new, unseen data. The system
culminates in the Evaluation of Model Performance,
employing a spectrum of metrics such as accuracy,
precision, recall, and the F1-score, to ensure the
effective classification of emotions derived from
EEG brain signals. Each phase in this intricate
flow diagram is pivotal, orchestrating a symphony
of processes aimed at achieving precise emotion
classification through the synergy of machine
learning and EEG data analysis.

3.2 Dataset
In this paper, we harnessed an EEG brainwave dataset
processed through a specialized technique pioneered
by [5]. This method involved the extraction of
intricate statistical features from the EEG data,
enabling a profound exploration of the neural
correlates of emotions. Our dataset was composed of
meticulously chosen participants, representing both
genders, each undergoing EEG recordings to capture
three distinct emotional states: positive, neutral, and
negative.

The recordings, conducted using a Muse EEG
headband equipped with strategically placed dry
electrodes, spanned 3 minutes each. A critical
aspect of our dataset was the inclusion of a 6-minute
recording of resting neutral data, which served as a
baseline reference for assessing emotional responses.
To elicit these emotions, we carefully selected
cinematic stimuli, featuring scenes from movies
such as ”Marley and Me” and ”La La Land.” This
meticulously curated dataset formed the bedrock of
our research, facilitating an investigation into the
neural underpinnings of emotional states elicited by
cinematic stimuli.

This dataset contains 2,549 columns and 2,132
rows, it is offering a good of information. The
substantial volume of data points provides a robust
foundation for our research, enabling in-depth
analyses of EEG brainwave patterns and their
correlations with various emotional states. This
dataset is significant to the understanding the relation
between neural activity and human emotions.

3.3 Data Pre-Processing
In this article, we undertook an extensive examination
aimed at detecting and resolving null and duplicate
values within the dataset, highlighting the paramount
importance of data preprocessing and quality
assurance, [15]. This meticulous process is vital
for safeguarding data integrity, minimizing the risk
of missing critical information, and upholding data
quality by addressing duplicate entries. Clean data
is indispensable for producing reliable analytical
outcomes, as it mitigates bias and enhances the
precision of statistical measures andmachine learning
algorithms. The absence of null and duplicate values
in the dataset, as revealed through our scrupulous
examination, underscores the thoroughness of our
data collection and preprocessing efforts, paving the
way for confident analysis and exploration.

In the realm of data preprocessing, our detailed
examination sought to identify and rectify null and
duplicated values within the dataset, a crucial step for
ensuring data integrity and quality. Remarkably, our
scrutiny revealed that the dataset is free from such
issues, attesting to the meticulous nature of our data
collection and preprocessing. Subsequently, data
encoding emerged as a pivotal task, involving
the assignment of numeric codes (0, 1, and
2) to represent categorical labels (NEGATIVE,
NEUTRAL, and POSITIVE). This step is essential
for ensuring algorithm compatibility, preserving
distinctions between categories, and bolstering model
performance, [16]. Our encoding scheme provides
a straightforward yet effective representation of
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emotional states within the dataset, facilitating
seamless data processing and analysis. Figure 2
illustrates the count of each class within the dataset.

Fig. 2: Proposed system model

Balancing the dataset is a widely adopted
technique to rectify class imbalances; however, it
may not be necessary in our context, [17]. Οn the
other hand, the dataset is already balanced, with
each class has approximately the same number of
instances. This balance minimizes the risk of model
bias and bolsters overall model performance.The
significance of evaluating dataset characteristics and
selecting preprocessing techniques that are precisely
aligned with the specific requirements of the data
and the objectives of the analysis. In another term,
we select the main features that are mainly positive
affect the accurcy of detection using the correlation
matrix. This method ensures that the preprocessing
is both effective and efficient, and has robust and
reliable outcomes.

3.4 Evaluation metrics
3.4.1 Confusion Matrix
In machine learning (ML), a confusion matrix
presents a tabular used to show the performance
of a classification algorithm, especially in binary
classification. It shows the model predictions into
four distinct groups: True Positives (TP), True
Negatives (TN), False Positives (FP), and False
Negatives (FN). These classifications provide good
insights into the model’s performance in accurately
classifying instances. This evaluation facilitates the
assessment and refinement of the model’s predictive
capabilities, [18].

3.4.2 Precision
Precision, a metric used to find the proportion of true
positive predictions, is defined as:

Precision =
TP

TP + FP
(1)

3.4.3 Recall
Recall measures the model’s ability to identify the
correct positive instances and it is calculated as:

Recall =
TP

TP + FN
(2)

3.4.4 F1-Score
The F1-Score, presents a good evaluation metric and
can be computed using the formula:

F1-Score = 2 · Precision · Recall
Precision+ Recall

(3)

3.4.5 Classification Report
The classification report provides a good summary
of the model performance for each class. It presents
metrics like precision, recall, F1-Score, and support
in a tabular format, [19].

4 Simulations and results
In this section, we discuss the algorithms proposed
for our research. They are essential for classifying
EEG data based on various features and patterns.
The algorithms presented in this section are used to
improve the accuracy and efficiency of EEG emotions
classification.

4.1 Random Forest
In order to uncover patterns in vast datasets, data
scientists use a wide range of machine learning
algorithms, providing businesses and organizations
with valuable insights that are essential for making
strategic decisions. Due to its adaptability in handling
both classification and regression tasks, Random
Forest emerges as a favorite among these algorithms.
Presented in the mid 2000s, RF is a critical directed
learning calculation that expands the notable choice
tree method, [20]. Breiman’s development lies in
coordinating a gathering of arbitrary choice trees to
improve expectation execution, utilizing variety to
moderate overfitting and adroitly oversee enormous,
complex datasets.

A fundamental structure in predictive modeling,
decision trees plot a series of decisions based on
data features. As the algorithm chooses the best
features to divide the dataset at each node, the trees
grow recursively. Furthermore, decision trees are
easy to understand and intuitive, but they frequently
suffer from overfitting, making it difficult for them
to adapt to new datasets. Each decision tree is
built by iteratively traversing the training dataset
and choosing the best splits based on predetermined
criteria like the Gini index for classification or the
variance reduction for regression. When all trees are
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developed, the last step involves conglomerating their
expectations to yield a general forecast. This typically
necessitates a majority vote among all tree predictions
in classification, whereas it does so in regression tasks
by averaging predictions. This collection of trees
is the essence of Random Forests and gives them
their ability to predict and adapt. Random Forest
aggregates the forecasts of N individual decision
trees to derive the ultimate prediction:

ẐRF =
1

N

N∑
j=1

Ẑj (4)

Here:
ẐRF denotes the Random Forest forecast. Ẑj signifies
the prediction generated by the jth decision tree.

4.2 The Support Vector Machine (SVM)
The SVM operates by mapping data to a
high-dimensional attribute space, facilitating
classification even when linear separation is
unattainable, [21]. It identifies a separator between
categories, transforming data to align with a
hyperplane for classification. This enables the use of
new data features for predicting group assignments.
The main aim is to allow the algorithm flexibility
in choosing the separation line, accommodating
a margin of error termed ”soft margin”. We will
now detail the Soft Margin Classifiers algorithm,
positioned between Support Vector Machine and
Maximal Margin Classifier.

Soft Margin Classifiers center around the margin
concept, indicating the distance between a separating
line and the nearest observation. To enhance
adaptability, a threshold is introduced dictating
the permissible number of observations within the
margin. The objective remains maximizing the
margin while accommodating observations within
this threshold. By prioritizing margin maximization
over precise classification of points within the
margin, the algorithm exhibits robustness to outliers
and extreme values, fostering a more generalized
classification model. The decision function for SVM
is expressed as:

f(x) = sign

(
n∑

i=1

αiyiK(x, xi) + b

)
(5)

Where:
f(x) denotes the predicted class label. αi represents
the Lagrange multipliers. yi signifies the class label
of the training sample. K(x, xi) stands for the kernel
function. b denotes the bias term.

4.3 K-Nearest Neighbors (KNN)
In supervised learning, an algorithm is provided
with a dataset that includes labeled output values,
serving as the foundation for training and constructing
a predictive model. This trained algorithm can
then be applied to new, unlabeled data to forecast
their respective output values. Among the various
supervised machine learning methods, the KNN
algorithm stands out for its intuitive approach, [22].
Initially, the KNN algorithm involves selecting a
value for K, which represents the number of nearest
neighbors to consider in the classification process.
The algorithm then computes the distance from the
unlabeled point to each of the other data points. Based
on these calculated distances, the K data points closest
to the unlabeled point are identified.

Following the recognizable proof of the K closest
neighbors, the calculation continues to decide the
circulation of classes among these adjoining focuses.
It determines the predominant category within the
chosen group by counting the number of points
for each category. The algorithm assigns the new
unlabeled point to the category with the highest
prevalence among the K nearest neighbors once
the category distribution is established. This step
concludes the arrangement interaction, preparing the
model to make expectations on new information
cases. The anticipated class mark utilizing KNN
depends on the greater part class among the k closest
neighbors:

Ĉ = majority
(
{ci}i∈Nk(x)

)
(6)

Ĉ is the predicted class label. ci represents the
class of the k nearest neighbors of point x.

4.4 Results and Discussion
Table 1 presents the classification reports for our three
different algorithms. Each algorithm is evaluated by
three classes (0, 1, and 2), and by precision, recall and
F1-score.

Table 1. Comparison of Classification Reports
Algorithm Class Precision Recall F1-scoreAccuracy

Random
Forest

0 0.98 0.99 0.98
0.991 1 1 1

2 0.99 0.98 0.98

SVM
0 0.97 0.98 0.97

0.981 1 0.99 0.99
2 0.96 0.96 0.96

KNN
0 0.89 0.99 0.94

0.941 0.97 0.98 0.97
2 0.97 0.84 0.9
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The Random Forest algorithm performs
exceptionally well, with F1-score values, precision,
and recall values that are all above average across
all three classes. This shows its strength in ordering
information focuses precisely. The model’s ability
to accurately predict class labels for the vast
majority of data points is demonstrated by its
impressive accuracy score of 0.99. Likewise, the
SVM calculation exhibits solid execution, with high
accuracy, review, and F1-score values for each class.
An exactness score of 0.98 further approves the
model’s capability in accurately grouping data of
interest. Interestingly, the KNN calculation shows
somewhat lower accuracy, review, and F1-score
values, especially for class 2. This recommends that
KNNmight confront difficulties in precisely ordering
information guides having a place toward class 2
contrasted with different calculations. Regardless of
this, it actually accomplishes a good exactness score
of 0.94, showing generally respectable execution.

On the whole, the outcomes uncover that both RF
and SVM calculations perform the KNN regarding
accuracy and F1-score across all classes. However,
when choosing the best algorithm for a given
classification task, it is essential to take into account
additional aspects like scalability and computational
complexity.

Table 2 provides an exhaustive correlation of
model obtained from different studies, including
earlier exploration papers and our paper. Every
section in the table addresses an alternate report or
examination, exhibiting the presentation of different
characterization calculations.

Table 2. Comparison of Model Accuracies
Model Algorithm Accuracy

Paper, [5],
Bayesian Networks,
Support Vector Machines,
Random Forests

87%

Paper, [6] Deep Belief Network 87.62%
Paper, [7] Random Forest, Deep

Neural Network
∼97.89%,
94.89%

Our paper
Random Forest 0.99
SVM 0.98
KNN 0.94

Using RF, SVM, and KNN models, our study
outperforms previous ones in terms of accuracy. In
particular, RF comes out on top with an impressive
accuracy of 99%, followed by SVM at 98% and KNN
at 94%. This accomplishment not just highlights
RF’s extraordinary accuracy compared to SVM and

KNN. A combination of Bayesian Networks, SVM,
and Random Forests achieved an accuracy of 87%
in [5]; a Deep Belief Network applied, [6], achieved
an accuracy of 87.62%, demonstrating the model’s
proficiency in pattern extraction; and a hybrid
model combining RF and Deep Neural Network,
[7], achieved accuracies of up to 97.89% for RF
and 94.89% for DNN. These comparative insights
demonstrate the advanced performance and potential
of our chosen models, particularly RF.

5 Conclusion
Our research makes substantial strides in the field
of EEG signal classification for emotional state
identification, harnessing the formidable capabilities
of RF, SVM, and KNN models. The results
are striking: RF achieves an accuracy of 99%,
SVM follows closely at 98%, and KNN delivers a
respectable 94%. These outcomes underscore the
potent efficacy of these machine learning algorithms
in managing intricate classification tasks. The
comparative analysis with previous methodologies
further highlights our approach’s superior accuracy
and considerable potential. Looking ahead, future
research should delve into other ML techniques,
which could harness the strengths of multiple
classifiers. Additionally, conducting longitudinal
EEG studies would provide insights into pattern
changes over time, and integrating multimodal data
could offer a more comprehensive understanding of
emotional processing. These steps are crucial for
refining and expanding the capabilities of emotion
classification systems.

6 Declaration of Generative AI and
AI-assisted Technologies in the
Writing Process

During the preparation of this work, the authors used
ChatGPT to check spelling and grammar, and to
extract certain data values from images. After using
this tool, the authors reviewed and edited the content
as needed and take full responsibility for the content
of the publication.
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