
Detecting Plagiarism in Student Assignments using Source Code 

Analysis 

 
SERHII MYRONENKO, YELYZAVETA MYRONENKO 

System Design Department, Institute for Applied System Analysis, 
National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", 

 37, Peremohy Ave, Kyiv, 03056,  
UKRAINE 

 
Abstract: - The issue of accurately detecting semantically equivalent code remains a current problem for 
students, teachers, and researchers. The goal of this article was to develop an alternative method for checking 
software code for plagiarism using abstract syntax trees. To achieve this, an analysis of existing modern 
methods of automatic comparison of original and modified program code for plagiarism detection was 
conducted, focusing on abstract syntax trees, approaches based on machine learning, and token-based analysis. 
Systems such as MOSS, JPlag, Codequiry, and Plaggie were reviewed. As a result of this work, it can be noted 
that the proposed methods have sufficiently high indicators in the range of 79-85% for semantically equivalent 
code and 93-95% similarity in cases demonstrating hash violation problems, which shows their potential 
effectiveness in solving various tasks related to the detection of software code plagiarism. The practical value 
of the research lies in the possibility of using the proposed method for checking small student assignments for 
originality. Future research on this topic could include adding functionality for document collection, reducing 
the time required for document verification, expanding the number of programming languages, and improving 
system efficiency while operating large code fragments. 
 
Key-Words: - Source Code Plagiarism, BERT, Code2Vec, PLP, Transformers, AST. 
 
Received: January 19, 2024. Revised: July 2, 2024. Accepted: August 1, 2024. Published: September 4, 2024.     
 
 
1   Introduction 
Currently, the problem of plagiarism in student’s 
works at higher educational institutions is quite 
serious. This is linked to the fact that, as indicated in 
articles, [1], [2], [3], the majority of experienced 
students do not consider "borrowing" someone else's 
work without citation as a violation of academic 
integrity. Furthermore, some students rely on the 
notion that information should be free and can be 
"reused." As a result, learning, which is already 
advantaged by a large number of practical and 
laboratory works, becomes significantly time-
saving, even if it involves copying articles from the 
Internet, which only takes a few minutes compared 
to independent problem analysis, [4]. Another 
argument for indulging in plagiarism for a student is 
the awareness that their peers are also copying 
works and receiving high grades for it. 

To effectively assess the scale of the problem of 
appearances in student works, existing research on 
this topic was analyzed, which fully demonstrates 
the problem's relevance. Several sociological 
experiments, which were conducted both for 
students and for lecturers at higher educational 
institutions, were analyzed. Also were analyzed 

articles, [2], [3], [5], [6], [7], which are dedicated to 
the study of student psychology and their attitude 
towards the problem of plagiarism. Several key 
thoughts of the authors, which underline the 
seriousness of the problem of plagiarism and, as a 
consequence, the relevance of this work, will be 
presented. 

In the work, [5], the author considers that 
plagiarism and cheating are natural, and people are 
not particularly distinguished in using such a 
deception tactic to gain a competitive advantage. At 
the same time, the author points out that "reasonable 
intervention" in this process is possible, and 
numerous resources for lecturers can help create a 
culture of integrity. The authors, [2], present similar 
thoughts, and list several reasoned causes that lead 
to the violation of academic integrity rules: 

 Lack of time; 
 Helping another in completing a task; 
 The student does not understand the scope 

of work required and is overwhelmed with 
the task; 

 External pressure (for example, parents 
pushing for high grades); 

WSEAS TRANSACTIONS on COMPUTER RESEARCH 
DOI: 10.37394/232018.2024.12.36 Serhii Myronenko, Yelyzaveta Myronenko

E-ISSN: 2415-1521 367 Volume 12, 2024



 The student is unable to complete the task 
independently; 

 Laziness; 
 The belief is that all other students are also 

cheating. 
The authors emphasize that the problem of 

plagiarism needs to be solved at several levels – 
from plagiarism detection systems to appropriate 
normative acts and official rules and procedures. It 
is also worth paying attention to the article, [2], 
which describes in detail the students' point of view 
on the problem of plagiarism. The authors of this 
work fully share the higher education thoughts and 
assertions and also present several key aspects: 

 Students do not always clearly understand what 
constitutes plagiarism. A comparable observation 
was also noted in the article, [8];  

 In different countries, there are different 
understandings of plagiarism (Thus, without clear 
rules, a student may not fully understand what is 
considered plagiarism in one educational 
institution). 

 In this study, a sociological investigation was 
conducted to understand students' perceptions of 
what constitutes plagiarism in programming code. 
The findings revealed that a significant number of 
students do not fully grasp the concept of 
plagiarism. For instance, according to materials 
from the article, more than 50% of experienced 
students believe that taking program code from a 
book and rewriting it in another language is not 
plagiarism. However, 94% of respondents 
acknowledge that directly copying program code 
from a book violates academic integrity rules. 

After analyzing various articles, [2], [3], [5], [6], 
[7], the following conclusions can be drawn (all 
statistical data are taken from the materials of the 
works): 

 A large number of students significantly 
underestimate the number of plagiarism incidents in 
other works, which encourages them to violate 
academic integrity rules; 

 The majority of experienced students (more 
than 85%) are neutral or positive towards the 
practice of copying other works; 

 Nearly 70% (mostly first-year students) support 
the absence of punishment for plagiarism or limited 
verbal warnings; 

According to information from the article, [9], 
most educators, and specifically 97% of experienced 
ones, do not react to instances of academic 
dishonesty in practice, with 60% of participants 
limiting their response to verbal warnings. 
Moreover, only 5% of experienced participants 

allow the use of additional printed materials during 
exams and other types of assessment works, 
confirming the effectiveness of this practice in 
combating plagiarism. 

To highlight the prevalence of code plagiarism in 
recent years, the following statistics from 
researchers are provided: 

 From the information from the article, [10], it 
was confirmed that whereas in the 1940s only 20% 
of college students admitted to cheating, nowadays 
the percentage has increased to 75 - 98%. 

 Approximately 42% of computer science 
students admitted to copying code from other 
students – that is the result of the survey, [11]. 

 Moreover, according to the article, [12], it was 
proven that from 50% to 79% of students will 
plagiarize at least once in their academic career. 

As a premise, it can be concluded that the issue 
of plagiarism in student works requires detailed 
attention. The main justifications for performing this 
research are maintaining academic integrity and the 
potential support of academic institutions.  

In the field of Information Technology (IT), 
plagiarism can be broadly categorized into two 
groups: 

 Text plagiarism; 
 Source code plagiarism. 
A more detailed classification of plagiarism 

types is presented in Figure 1, based on the 
materials of works, [13], [14]. 

Notably, this work will focus on one of these 
plagiarism groups, specifically source code 
plagiarism. Further, more detailed descriptions of 
the subgroups of program code plagiarism will be 
provided. These include: 

 Refactoring of structure: The developer 
changes the order of functions and/or modifies the 
syntax without altering the program's source. 

 Addition of additional tabulation, spaces, and 
comments, and further development of the work as 
their own. 

 Change of programming language: The 
programmer rewrites the code in another 
programming language without acknowledging the 
authors of the original program code. 

To prepare for this study, several works of other 
researchers on the topic of code plagiarism detection 
were analyzed. After careful studying of the selected 
works, it is worth mentioning some of them, 
particularly, [15], [16], [17] in more detail. The first 
work for analysis was an article, [15], about the 
DeepSim system. After analysis of this work, it can 
be stated that the main advantages of this system are 
feature learning, scalability, and generalization.  

WSEAS TRANSACTIONS on COMPUTER RESEARCH 
DOI: 10.37394/232018.2024.12.36 Serhii Myronenko, Yelyzaveta Myronenko

E-ISSN: 2415-1521 368 Volume 12, 2024



  
 

 
Fig. 1: Classification of plagiarism types 

 

On the other hand, the main disadvantages of 
this system are overfitting, interpretability, and 
robustness. 

In the article, [16], the use of natural language 
processing methods was explored. The main pros of 
this work are code reusability, semantic 
comprehension, and context relevance. At the same 
time, the cons of this research are domain 
specificity, limited vocabulary, and semantic gap. 

It is also worth noting research, [17]. The 
authors of this article studied the use of different 
embedding techniques to represent code snippets in 
a continuous vector space for efficient code 
plagiarism detection. The main concerns for this 
study are data quality, hyperparameter tuning, and 
interpretability, whereas, on the other hand, the 
potential benefits of this work are semantic 
understanding, efficiency, scalability, and 
robustness.   

The objective of this research was to propose an 
alternative method for verifying program code for 
plagiarism using abstract syntax trees and neural 
networks. Consequently, the following tasks of this 
research were identified: 

 To analyze popular systems for analyzing 
program code for plagiarism and identify the most 
effective among them; 

 To determine the most effective system in 
terms of versatility (if possible); 

 To propose an alternative approach for solving 
the task of detecting plagiarism in program code 
using abstract syntax trees and neural networks; 

 To compare the results obtained from the 
analysis. 
 

 

2   Methodology 
This research is based on data collected from 
existing systems and methods for detecting 
similarities in program code, necessary for 
analyzing their effectiveness in identifying 
plagiarism in program code. The work employs and 
combines a range of theoretical research methods: 
logical method, analysis, synthesis, classification, 
generalization and analogy, comparison, induction, 
and interpretation. The methodological basis of the 
research consists of modern methodologies aimed at 
model structures designed for detecting plagiarism 
in program code. 

In general, the procedure of this research can be 
divided into the following main stages: 

1. Formation of a selection of existing systems 
for comparison; 

2. Conducting a general comparative analysis of 
the possibilities of the systems; 

3. Analysis of the results obtained with the 
subsequent selection of the two best systems; 

4. Conducting a comparative analysis of the 
selected systems for accuracy in detecting program 
code plagiarism; 

Types of plagiarism

Text plagiarism

Intellectual

Self-plagiarism

Mosaic paraphrase

Plagiarism of an idea, approach,etc

Plagiarism with the use of metaphors

Plagiarism from illegitimate sources

Paraphrase

Literal

Copying/duplication

Source code plagiarism

Structure refactoring

Adding additional tabs, indents, 
spaces, etc

Change of programming language

WSEAS TRANSACTIONS on COMPUTER RESEARCH 
DOI: 10.37394/232018.2024.12.36 Serhii Myronenko, Yelyzaveta Myronenko

E-ISSN: 2415-1521 369 Volume 12, 2024



5. Analysis of the results of the comparison, 
identifying potential shortcomings of the systems; 

6. Proposing alternative methods for detecting 
program code plagiarism and their practical 
comparison; 

7. Analysis of the obtained results and 
conclusions. 

As can be seen from Table 1, for comparison, we 
selected 4 existing systems currently designated for 
checking source code for plagiarism: MOSS, JPlag, 
Codequiry, and Plaggie.  

The choice of MOSS, JPlag, Codequiry, and 
Plaggie for comparative analysis with other 
plagiarism detection systems can be justified based 
on several key factors that make these tools 
particularly relevant and representative in the 
context of code plagiarism detection: 

 

2.1  Various Methodologies 
Each of these systems employs different algorithms 
and methods for detecting similarities in code. This 
diversity allows for a comprehensive understanding 
of various approaches to detecting plagiarism in 
programming. To highlight the contrast between the 
selected systems, it is worth mentioning that MOSS 
uses a hash-comparison algorithm for detecting 
matches, whereas JPlag is based on searching for 
structural similarity, [18]. Whilst the Codequiry 
system browses a large library of samples, which 
includes web resources as well, Plaggie proposes 
customizable algorithms for code similarity 
detection, [19]. 

 
2.2  Popularity and Usage 
The plagiarism checker software used for this study 
is reputable and applied in different educational 
institutions. For example, MOSS is becoming a 
benchmark in universities because of its reliability, 
which is a crucial point in any kind of study. 

 
2.3  Support for Various Languages 
The selected systems can be called versatile and 
applicable to a large variety of academic tasks due 
to their multiple programming language support. 
For example, JPlag is a solid choice for 
programming courses with a free selection of coding 
language, because the system is known for its 
“language independence”, [18]. 

 
2.4  Accessibility and Transparency 
Transparency is one of the most important criteria 
for academic studies, due to the importance of 
detection procedure and its value to the whole 
learning process. 

Moreover, the free accessibility of plagiarism 
detection tools which provide transparent results, 
makes them effective options for practical research 
and improvement of the educational process. 

 
2.5 Different Target Audiences and Usage 

  Scenarios 
All the above mentioned tools are eligible for 
particular tasks and work environments.  

To elaborate on the previous point, the 
Codequiry system can effectively evaluate modern 
programming assignments due to its focus on deep 
analysis and document comparison to the vast 
library of sources, [20]. 

Clear knowledge of each system functioning in 
different cases can significantly help educators and 
developers choose a plagiarism detection system 
according to their needs.  

To summarize, the comparison of MOSS, JPlag, 
Codequiry, and Plaggie is based on the next 
important characteristics: 

 Multiple programming languages support; 
 Transparency; 
 Ability to adapt to different use-case 

 scenarios; 
 Prevalence of use; 
 variety of methodologies.  
This comparison study will give educators and 

developers a comprehension of plagiarism detection 
tools as well as an understanding on methods of 
improving the educational process. 
 
 
3   Results 
As a part of this study, a comparative analysis of 
source code plagiarism systems was held based on 
selected criteria that can help evaluate the efficiency 
of the selected system. The study focuses on the 
following characteristics: ease of use, template code 
exclusion, scalability, clear and understandable 
results, capability to be used as a web service, 
support for multiple programming languages, and 
open source code availability. Definitions of the 
selected criteria are provided below. 

Ease of Use 

One of the most important criteria for plagiarism 
detection systems. Consequentially, systems with 
user-friendly and intuitive interfaces will be the 
obvious choice for teachers and students. As a 
result, ease of use greatly contributes to the 
increasing efficiency of the learning process and 
time-saving. 

 
 

WSEAS TRANSACTIONS on COMPUTER RESEARCH 
DOI: 10.37394/232018.2024.12.36 Serhii Myronenko, Yelyzaveta Myronenko

E-ISSN: 2415-1521 370 Volume 12, 2024



 
 
Template Code Exclusion 

This function helps to ensure the accuracy of the 
code check and significantly reduces the number of 
false positives. Template code removal is especially 
useful for student assignment control as such tasks 
often include some generic code, [21]. 

Scalability  

In our digital era, working with the large 
volumes of data is not a fancy feature, it is a 
necessity. The ability to work with large sets of 
documents simultaneously, fast adapting to different 
data sizes, and ensuring that the required 
computational power is provided are the necessary 
characteristics of an effective plagiarism detection 
system. 

Clear and Understandable Results 

Clear and understandable results are among the 
most vital sources of information for educators. 
Well-structured results provide the necessary 
feedback for teachers, which greatly helps to 
improve the educational process. 

Capability to be used as a web service  

A plagiarism detection system, that can be used 
as a web service provides great opportunities for 
people who work in different places. For example, 
such a system is a convenient choice for teachers 
who are regularly checking student assignments at 
home. Usually, web services are always highly 
maintained to stay up-to-date. 

Support for Multiple Programming Languages 

Support of multiple programming languages 
makes the plagiarism detection system more 
versatile and, as a result, it can be applied to a rather 
wide variety of educational tasks. Furthermore, it 
allows educational establishments to use a single 
plagiarism detection system for their work. 

Open Source Code Availability in Plagiarism 

Detection Systems 

Plagiarism detection systems with the open 
source code are a proper choice for educational 
institutions that value potential adaptability and 
transparency. Furthermore, the availability of the 
system’s source code can help to evaluate its 
effectiveness, along with motivating the community 
to improve existing functionality and deliver new 
features. 

Table 1 demonstrates the results of the 
comparative study. 

 
To sum it up, after examining the obtained 

results, it can be ascertained that, according to the 
selected characteristics, the MOSS system is the 
most efficient.  

Unfortunately, one of the candidates for 
evaluation, the Codequiry tool, could not be fully 
tested due to the absence of certain system functions 
in open access. 

The next step in the comparative analysis is to 
compare the two best systems based on the results 
of the previous evaluation (MOSS and JPlag) for 
accuracy in detecting plagiarism (including all types 
of code similarity). The results of this comparison 
are presented in Table 2. 

 
Table 1. Results of the Comparative Analysis of selected Plagiarism Detection Systems (MOSS, JPlag, 

Codequiry, Plaggie) according to the chosen criteria 
№  Characteristics of the comparison MOSS JPlag Codequiry Plaggie 
1 Ease of use Yes Yes Yes (free functional 

was checked)  
No 

2 Template code exclusion Yes Yes Yes Yes 
3 Scalability No No No No 
4 Clear and understandable results; 

result demonstration 
Yes, meets all requirements Yes, meets all 

requirements 
Yes (free functional 

was checked) 
Yes, meets all 
requirements 

5 Capability to be used as a web 
service 

Yes Yes No Yes 

6 Open source code availability Absent, but several projects are 
using MOSS algorithm 

Absent Absent Absent 

7 Support for multiple programming 
languages  

23 6 More than 20 1 

 
Table 2. Results of the Comparative Analysis of the Two Best Systems (MOSS and JPlag) for Accuracy in 

Detecting Plagiarism 
Type of source code similarity MOSS JPlag 

Identical code fragments 100 % 100 % 
Changed variable names and/or their types 100 % 100 % 

Added or removed individual operators 92 % 90 % 
Semantically equivalent code 64 % 55 % 

  

WSEAS TRANSACTIONS on COMPUTER RESEARCH 
DOI: 10.37394/232018.2024.12.36 Serhii Myronenko, Yelyzaveta Myronenko

E-ISSN: 2415-1521 371 Volume 12, 2024



 
From the comparative table, it is evident that 

both systems effectively handle the detection of the 
1st and 2nd types of code similarity. The 3rd type of 
code similarity was also detected quite effectively, 
but the MOSS system showed more precise results. 
Regarding the 4th type of similarity, the detection of 
semantically equivalent code, both systems show 
relatively low accuracy, but MOSS performs 
slightly better than JPlag. 

At first glance, the MOSS system appears quite 
effective in detecting various types of plagiarism, 
but it is not as effective after considering the general 
principles of MOSS's operation and the creation of 
systems that can "deceive" MOSS by using critical 
system vulnerabilities, such as hash collision. The 
problem of hash collision lies in the fact that if a 
token is added to a hash window of length n, it 
significantly reduces the effectiveness of MOSS. In 
general, Mossad can generate up to 12 source code 
variants, and after checking for plagiarism, the 
original and MOSS do not show more than 25% 
similarity. Due to this vulnerability, this work 
proposes variants of program code testing for the 
presence of obfuscation, which would be robust 
against this vulnerability. 

The approach proposed in this work involves a 
shift from the traditional MOSS algorithm to more 
o. The proposed block diagram is shown in Figure 
2. 

For implementing the algorithm depicted in 
Figure 2, two variants of realization for checking the 
presence of obfuscation are proposed. A multilayer 

perceptron was chosen for the first implementation 
that compares vector representations of 
programming code received from Code2Vec, [17], 
[22]. As the second option, the existing TreeBERT 
system, [23], [24], was modified to detect 
plagiarism in source code. TreeBERT system uses 
an enhanced vector representation, [24], [25], [26], 
[27], whereas the first realization is working with 
‘classic’ implementation using standard 
representations received from Code2Vec.Each of 
the selected approaches has its crucial strong points. 
For instance, the first one is suitable for large-scale 
programs as its primary focus is on the semantic 
content of the code. The second one also has its 
benefits: this approach offers more possibilities in 
the field of structural and contextual analysis, which 
is vital for complex plagiarism checks. The key 
difference is that, unlike other systems, the proposed 
models can work with different programming code 
manipulations and coding styles, along with 
ensuring high accuracy of plagiarism detection. 

The choice of the proposed implementations was 
driven by the need for a complex approach that 
contains the main strengths of an effective 
plagiarism detection system: adaptability to 
different plagiarism scenarios, precise document 
checking, and efficiency. 

After implementing both proposed variants, a 
comparative analysis of the effectiveness of 
detecting various types of plagiarism in source code 
was conducted. The results of this analysis are 
presented in Table 3. 

 
 

 
Fig. 2: Proposed Block Diagram of the Algorithm 

 
Table 3. Results of the Comparative Analysis of the Proposed Solutions with the MOSS System 

Type of plagiarism TreeBERT Multilayer perceptron + Code2Vec MOSS 

Identical source code fragments 100 % 100 % 100 % 
Changed variable names and/or their types 95 % 94 % 100 % 

Added or removed individual operators 95 % 95 % 92 % 
Semantically equivalent code 79 % 85 % 64 % 

Example of hash violation problem 93 % 98 % 10 % 
 

WSEAS TRANSACTIONS on COMPUTER RESEARCH 
DOI: 10.37394/232018.2024.12.36 Serhii Myronenko, Yelyzaveta Myronenko

E-ISSN: 2415-1521 372 Volume 12, 2024



It is important to note that the MOSS system is 
present in this experiment to evaluate the 
effectiveness of other proposed methods. It is also 
significant that all analyzed pairs of examples 
during this check contain plagiarism. Therefore, for 
maximum evaluation, which the system can provide, 
we consider 100%. A total of 5 types of situations 
were examined (4 of them demonstrate different 
types of program code plagiarism, and the 5th case 
represents a problem of hash collision). Compared 
to the MOSS system, neither developed method is 
sensitive to the hash collision problem. In cases 
where the MOSS system is vulnerable to this 
problem and shows a similar result of only 10%, the 
proposed methods achieve results of 93% and 98%, 
respectively. Thus, the developed models are better 
at detecting the fourth type of plagiarism, namely 
semantically equivalent code. 

When comparing the two developed models, it 
can be concluded that the multilayer perceptron + 
Code2Vec has better performance indicators. 
 
3.1  Limitations of the Study 
One of the limitations of this study is the incomplete 
testing of the existing Codequiry system due to the 
absence of a free trial version of the system. 
Another limitation is the limited number of 
programming languages for the proposed systems, 
as the research and analysis of these systems' 
performance were conducted using a selection of 
code fragments in the Java programming language. 
Additionally, the study faced limitations related to 
the small size of the program code fragments used 
for training and testing the systems. 
 
 
4   Discussion 
Today, several systems and methods have been 
developed for detecting plagiarism, which helps 
identify fragments of program code that are 
plagiarized, and systems for checking program code 
that can detect semantically equivalent code. 
However, as numerical studies show, current 
systems for detecting program code plagiarism can 
very successfully identify identical program code 
and code with changed variable names and 
constants, and they can quite well identify code 
fragments with added or removed operators. The 
detection of semantically equivalent code is not as 
successful. Another issue is the vulnerability to hash 
collision attacks, which the system fails to recognize 
as plagiarism. This vulnerability is present in one of 
the popular systems for detecting plagiarism, 
MOSS, [28], [29], [30], [31], [32]. The work, [29], 

details the problem of hash collision and how the 
attack works. It was also proven in this work that it 
is possible to generate at least 12 variants of 
program code that, when input into the system, these 
variants will be semantically equivalent to the 
original, and MOSS will not detect plagiarism when 
comparing the original and one of the generated 
code variants. Also, according to work, [32], the 
MOSS system is one of the best systems for 
detecting program code plagiarism, as demonstrated 
by using various data selections and metrics like F-
measures and precision-recall curves. Therefore, 
enhancing systems for detecting program code 
plagiarism is an important task, especially in 
detecting semantically equivalent code and the 
system's resistance to hash collision attacks. 
Research into existing systems and methods has 
proven their effectiveness in identifying identical 
fragments of program code. Methods and techniques 
for detecting plagiarism of semantically equivalent 
code require further refinement, [33]. This study 
focused on models and methods that have recently 
proven to be some of the most effective for 
detecting plagiarism in source code. Particular 
attention was paid to abstract syntax trees, [25], 
[26], neural networks, and the possibilities of their 
practical application in detecting program code 
plagiarism. 

The models analyzed by us demonstrate very 
good results in the range of 79-85% for detecting 
semantically equivalent code and results of 93-95% 
in tests demonstrating the problem of hash collision, 
which strongly indicates their potential effectiveness 
in solving various tasks related to the detection of 
program code plagiarism. Thus, BERT, which was 
presented in the work, [34], and all subsequent 
modifications of this model are among the most 
promising for solving tasks related to the detection 
of program code plagiarism. 
 
 
5 Conclusions and Perspectives for 

 Further Research 
During this research, two methods of checking the 
output program code for the presence of 
obfuscations were proposed – a multilayer 
perceptron + Code2Vec and TreeBert. For the 
TreeBert system, a function of checking for 
similarity was additionally developed, and, 
according to the authors, the main task of this model 
is code generation. In turn, the multilayer 
perceptron + Code2Vec was trained on a dataset 
containing 14 million examples of program code in 
Java. The designated code fragments from the 

WSEAS TRANSACTIONS on COMPUTER RESEARCH 
DOI: 10.37394/232018.2024.12.36 Serhii Myronenko, Yelyzaveta Myronenko

E-ISSN: 2415-1521 373 Volume 12, 2024



selection were pre-processed by Code2Vec to detect 
similarities in vectors. 

After conducting a comparative analysis, it was 
concluded that both proposed models resist the 
problem of hash collision, a major vulnerability of 
the existing MOSS system. It is also worth noting 
that the multilayer perceptron + Code2Vec shows 
better indicators than TreeBert and MOSS, 
especially in working with semantically equivalent 
code and in cases demonstrating the problem of 
hash collision. Since the method of this work was 
developing a more effective method for checking 
program code for plagiarism, the results of the work 
fully meet the set goals. 

As a direction for further development, it is 
possible to highlight the optimization of the 
necessary time for conducting checks, working with 
a collection of documents, expanding the number of 
programming languages with which the system can 
work, and improving the system for analyzing large 
fragments of program code. To experiment with 
accuracy results and feasible results improvement, 
periodically checking the existing datasets is 
recommended. It is also possible to create personal 
datasets for further experiments.  
 

 

References: 

[1] Stephens, J. M. How to Cheat and not Feel 
Guilty: Cognitive Dissonance and its 
Amelioration in the Domain of Academic 
Dishonesty. Theory into Practice. Vol.56, 
No.2, 2017, рр. 111-120, 
https://doi.org/10.1080/00405841.2017.12835
71. 

[2] Sraka, D., & Kaučič, B., Source Code 
Plagiarism. Conference: Information 
Technology Interfaces. Proceedings of the ITI 

2009 31st International Conference, Cavtat, 
Croatia, 2009, 
https://doi.org/10.1109/ITI.2009.5196127. 

[3] Cosma, G., & Joy, M. Source-Code 

Plagiarism: A UK Academic Perspective, 
2006, [Online]. 
https://www.researchgate.net/publication/228
712855_Source-
code_plagiarism_A_UK_academic_perspectiv
e (Accessed Date: October 23, 2023). 

[4] Grimes, P. W. Dishonesty in Academics and 
Business: A Cross-Cultural Evaluation of 
Student Attitudes. Journal of Business Ethics. 
Vol.49, No.3, 2004, рр. 273-290, 
https://doi.org/10.1023/B:BUSI.0000017969.2
9461.30. 

[5] Hard, S. F., Conway, J., & Moran, A. Faculty 
and College Student Beliefs about the 
Frequency of Student Academic Misconduct. 
The Journal of Higher Education. Vol.77, 
No.6, 2006, рр. 1058-1080, 
https://doi.org/10.1353/jhe.2006.0048. 

[6] Cosma, G., & Joy, M. towards a Definition of 
Source-Code Plagiarism. IEEE Transactions 

on Education. Vol.51, No.2, 2008, рр. 195–
200, https://doi.org/10.1109/TE.2007.906776. 

[7] Joy, M., Cosma, G., Yin-Kim Yau, J., & 
Sinclair, J. Source Code Plagiarism – A 
Student Perspective. IEEE Transactions on 

Education. Vol.54, No.1, 2011, рр. 125–132, 
https://doi.org/10.1109/TE.2010.2046664. 

[8] Baron, E. Computer Science Cheating 

Incidents Part оf Widespread Problem: 

Report. Stanford, UC Berkeley, 2017. 
[9] MacGregor, J., & Stuebs, M. To cheat or not 

to Cheat: Rationalizing Academic 
Impropriety. Accounting Education. Vol.21, 
No.3, 2012, рр. 265-287, 
https://doi.org/10.1080/09639284.2011.61717
4. 

[10] Academic Cheating Fact Sheet. (1999) 
Educational Testing Service, [Online]. 
http://www.glass-castle.com/clients/www-
nocheating-
org/adcouncil/research/cheatingfactsheet.html 
(Accessed Date: October 22, 2023). 

[11]  McCabe, D. L., Butterfield, K. D., & 
Treviño, L. K. Cheating in college: Why 
students do it and what educators can do about 
it. Baltimore, Johns Hopkins University Press, 
2012 [Online]. 
https://pure.psu.edu/en/publications/cheating-
in-college-why-students-do-it-and-what-
educators-can-do- (Accessed Date: October 
23, 2023). 

[12] Cheers, H., Lin, Y., & Smith, S. P. Academic 

source code plagiarism detection by 

measuring program behavioural similarity. 
arXiv, 2021, 
https://doi.org/10.48550/arXiv.2102.03995. 

[13] Soeharno, J., Keimpe, A., & van der Schot, D. 
(Eds.). Plagiarism in Academic Research and 
Education. Hague, Association of Universities 
in the Netherlands, 2021, [Online].  
https://www.researchgate.net/publication/354
904254_Plagiarism_in_Academic_Research_
and_Education (Accessed Date: October 23, 
2023). 

[14] Maryono, D., Yuana, R. A., & Hatta, P. The 
Analysis of Source Code Plagiarism in Basic 
Programming Course. Journal of Physics: 

WSEAS TRANSACTIONS on COMPUTER RESEARCH 
DOI: 10.37394/232018.2024.12.36 Serhii Myronenko, Yelyzaveta Myronenko

E-ISSN: 2415-1521 374 Volume 12, 2024

http://dx.doi.org/10.1080/00405841.2017.1283571
http://dx.doi.org/10.1080/00405841.2017.1283571
http://dx.doi.org/10.1109/ITI.2009.5196127
https://www.researchgate.net/publication/228712855_Source-code_plagiarism_A_UK_academic_perspective
https://www.researchgate.net/publication/228712855_Source-code_plagiarism_A_UK_academic_perspective
https://www.researchgate.net/publication/228712855_Source-code_plagiarism_A_UK_academic_perspective
https://www.researchgate.net/publication/228712855_Source-code_plagiarism_A_UK_academic_perspective
http://dx.doi.org/10.1023/B:BUSI.0000017969.29461.30
http://dx.doi.org/10.1023/B:BUSI.0000017969.29461.30
http://dx.doi.org/10.1353/jhe.2006.0048
https://doi.org/10.1109/TE.2007.906776
http://dx.doi.org/10.1109/TE.2010.2046664
http://dx.doi.org/10.1080/09639284.2011.617174
http://dx.doi.org/10.1080/09639284.2011.617174
http://www.glass-castle.com/clients/www-nocheating-org/adcouncil/research/cheatingfactsheet.html
http://www.glass-castle.com/clients/www-nocheating-org/adcouncil/research/cheatingfactsheet.html
http://www.glass-castle.com/clients/www-nocheating-org/adcouncil/research/cheatingfactsheet.html
https://pure.psu.edu/en/publications/cheating-in-college-why-students-do-it-and-what-educators-can-do-
https://pure.psu.edu/en/publications/cheating-in-college-why-students-do-it-and-what-educators-can-do-
https://pure.psu.edu/en/publications/cheating-in-college-why-students-do-it-and-what-educators-can-do-
https://doi.org/10.48550/arXiv.2102.03995
https://www.researchgate.net/publication/354904254_Plagiarism_in_Academic_Research_and_Education
https://www.researchgate.net/publication/354904254_Plagiarism_in_Academic_Research_and_Education
https://www.researchgate.net/publication/354904254_Plagiarism_in_Academic_Research_and_Education


Conference Series, Vol.1193, 2019, paper 
012027, https://doi.org/10.1088/1742-
6596/1193/1/012027 

[15]  Zhao, G., & Huang, J. DeepSim: Deep 
learning code functional similarity. 
ESEC/FSE 2018: Proceedings of the 2018 
26th ACM Joint Meeting on European 
Software Engineering Conference and 
Symposium on the Foundations of Software. 
New York, Association for Computing 
Machinery, 2018, pp. 141–151, 
https://doi.org/10.1145/3236024.3236068.  

[16]  Husain, M. A., Wu, H.-H., Gazit, T., 
Allamanis, M., & Brockschmidt, M. 
CodeSearchNet Challenge: Evaluating the 
State of Semantic Code Search, 2020, 
https://doi.org/10.48550/arXiv.1909.09436. 

[17] Alon, U., Zilberstein, M., Levy, O., & Yahav, 
E. code2vec: Learning Distributed 
Representations of Code, 2018, 
https://doi.org/10.48550/arXiv.1803.09473. 

[18] Prechelt, L., Malpohl, G., & Philippsen, M. 
Finding Plagiarisms among a Set of Programs 
with JPlag. Journal of Universal Computer 
Science. Vol.8, No.11, 2003, pp. 1016-1038, 
[Online]. 
https://www.researchgate.net/publication/283
2828_Finding_Plagiarisms_among_a_Set_of_
Programs_with_JPlag (Accessed Date: 
October 23, 2023). 

[19] Ahtiainen, A., Surakka, S., & Rahikainen, M. 
Plaggie: GNU-licensed Source Code 
Plagiarism Detection Engine for Java 
Exercises. Baltic Sea '06: Proceedings of the 
6th Baltic Sea conference on Computing 
education research: Koli Calling. Uppsala, 
Sweden, 2006, pp. 141–142, 
https://doi.org/10.1145/1315803.1315831. 

[20] Code Plagiarism & Similarity API. 
Codequiry, n.d., [Online]. 
https://codequiry.com/usage/api (Accessed 
Date: October 23, 2023). 

[21] Simon, Karnalim, O., Sheard, J., Dema, I., 
Karkare, A., Leinonen, J., Liut, M., & 
McCauley, R. Choosing Code Segments to 
Exclude from Code Similarity Detection. 
Conference: ITiCSE-WGR '20: The Working 
Group Reports on Innovation and Technology 
in Computer Science Education, Trondheim, 
Norway, 2020, 
https://doi.org/10.1145/3437800.3439201. 

[22] Compton, R., Frank, E., Patros, P., & Koay, 
A. Embedding Java Classes with code2vec: 
Improvements from Variable Obfuscation, 
2020, [Online]. 

https://www.researchgate.net/publication/340
499798_Embedding_Java_Classes_with_code
2vec_Improvements_from_Variable_Obfuscat
ion (Accessed Date: October 23, 2023). 

[23] Vaswani, A., Shazeer, N., Parmar, N., 
Uszkoreit, J., Jones, L., Gomez, A. N., 
Kaiser, Ł., & Polosukhin, I. Attention is аll 
You Need. 31st Conference on Neural 

Information Processing Systems, Long Beach, 
CA, USA, 2017, [Online]. 
https://arxiv.org/pdf/1706.03762.pdf  
(Accessed Date: October 22, 2023). 

[24] Jiang, X., Zheng, Zh., Lyu, Ch., Li, L., & 
Lyu, L. TreeBERT: A Tree-Based Pre-
Trained Model for Programming Language. 
37th Conference on Uncertainty in Artificial 

Intelligence, Online, 2021, [Online]. 
https://arxiv.org/pdf/2105.12485.pdf 
(Accessed Date: October 23, 2023). 

[25] Jones, J. Abstract Syntax Tree Implementation 

Idioms, 2003, [Online]. 
https://www.hillside.net/plop/plop2003/Papers
/Jones-ImplementingASTs.pdf (Accessed 
Date: October 23, 2023). 

[26] Tang, Z., Li, C., Ge, J., Shen, X., Zhu, Z., & 
Luo, B. AST-Transformer: Encoding Abstract 

Syntax Trees Efficiently for Code 

Summarization, 2021, [Online]. 
https://arxiv.org/pdf/2112.01184.pdf 
(Accessed Date: October 23, 2023). 

[27] Kanade, A., & Maniatis, P., Balakrishnan, G., 
& Shi, K. Learning and Evaluating 

Contextual Embedding of Source Code, 2020, 
[Online]. 
https://arxiv.org/pdf/2001.00059v3.pdf 
(Accessed Date: October 23, 2023). 

[28] Yang, D. How MOSS Works, 2019, [Online]. 
https://yangdanny97.github.io/blog/2019/05/0
3/MOSS (Accessed Date: October 22, 2023). 

[29] Devore-McDonald, B., & Berger, E. D. 
Mossad: Defeating Software Plagiarism 
Detection. Proceedings of the ACM on 

Programming Languages, Vol. 4, No. 
OOPSLA, 2020, Article 1, [Online]. 
https://arxiv.org/pdf/2010.01700.pdf 
(Accessed Date: October 23, 2023). 

[30] Moss, A System for Detecting Software 
Similarity. n.d, [Online]. 
https://theory.stanford.edu/~aiken/moss/ 
(Accessed Date: October 23, 2023). 

[31] Schleimer, S., Wilkerson, D. S., & Aiken А. 
Winnowing: Local Algorithms for Document 
Fingerprinting, 2003, SIGMOD '03: 

Proceedings of the 2003 ACM SIGMOD 

International Conference on Management of 

WSEAS TRANSACTIONS on COMPUTER RESEARCH 
DOI: 10.37394/232018.2024.12.36 Serhii Myronenko, Yelyzaveta Myronenko

E-ISSN: 2415-1521 375 Volume 12, 2024

https://doi.org/10.1145/3236024.3236068
https://arxiv.org/search/cs?searchtype=author&query=Gazit,+T
https://arxiv.org/search/cs?searchtype=author&query=Allamanis,+M
https://arxiv.org/search/cs?searchtype=author&query=Brockschmidt,+M
https://doi.org/10.48550/arXiv.1909.09436
https://doi.org/10.48550/arXiv.1803.09473
https://www.researchgate.net/publication/2832828_Finding_Plagiarisms_among_a_Set_of_Programs_with_JPlag
https://www.researchgate.net/publication/2832828_Finding_Plagiarisms_among_a_Set_of_Programs_with_JPlag
https://www.researchgate.net/publication/2832828_Finding_Plagiarisms_among_a_Set_of_Programs_with_JPlag
https://www.researchgate.net/scientific-contributions/Aleksi-Ahtiainen-2012924531?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/scientific-contributions/Sami-Surakka-70093625?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://www.researchgate.net/scientific-contributions/Mikko-Rahikainen-2013198406?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIn19
https://doi.org/10.1145/1315803.1315831
https://codequiry.com/usage/api
https://www.researchgate.net/profile/Oscar-Karnalim?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIiwicHJldmlvdXNQYWdlIjoicHVibGljYXRpb24ifX0
https://www.researchgate.net/profile/Judy-Sheard-2?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIiwicHJldmlvdXNQYWdlIjoicHVibGljYXRpb24ifX0
https://www.researchgate.net/scientific-contributions/Ilir-Dema-2175774266?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIiwicHJldmlvdXNQYWdlIjoicHVibGljYXRpb24ifX0
https://doi.org/10.1145/3437800.3439201
https://www.researchgate.net/profile/Rhys-Compton?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIiwicHJldmlvdXNQYWdlIjoiX2RpcmVjdCJ9fQ
https://www.researchgate.net/scientific-contributions/Eibe-Frank-7303209?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIiwicHJldmlvdXNQYWdlIjoiX2RpcmVjdCJ9fQ
https://www.researchgate.net/profile/Panos-Patros?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIiwicHJldmlvdXNQYWdlIjoiX2RpcmVjdCJ9fQ
https://www.researchgate.net/profile/Abigail-Koay?_tp=eyJjb250ZXh0Ijp7ImZpcnN0UGFnZSI6InB1YmxpY2F0aW9uIiwicGFnZSI6InB1YmxpY2F0aW9uIiwicHJldmlvdXNQYWdlIjoiX2RpcmVjdCJ9fQ
https://www.researchgate.net/publication/340499798_Embedding_Java_Classes_with_code2vec_Improvements_from_Variable_Obfuscation
https://www.researchgate.net/publication/340499798_Embedding_Java_Classes_with_code2vec_Improvements_from_Variable_Obfuscation
https://www.researchgate.net/publication/340499798_Embedding_Java_Classes_with_code2vec_Improvements_from_Variable_Obfuscation
https://www.researchgate.net/publication/340499798_Embedding_Java_Classes_with_code2vec_Improvements_from_Variable_Obfuscation
https://arxiv.org/pdf/1706.03762.pdf
https://arxiv.org/pdf/2105.12485.pdf
https://www.hillside.net/plop/plop2003/Papers/Jones-ImplementingASTs.pdf
https://www.hillside.net/plop/plop2003/Papers/Jones-ImplementingASTs.pdf
https://arxiv.org/pdf/2112.01184.pdf
https://arxiv.org/pdf/2001.00059v3.pdf
https://yangdanny97.github.io/blog/2019/05/03/MOSS
https://yangdanny97.github.io/blog/2019/05/03/MOSS
https://arxiv.org/pdf/2010.01700.pdf
https://theory.stanford.edu/~aiken/moss/


Data, June 2003, pp. 76–85, 
https://doi.org/10.1145/872757.872770. 

[32] Heres, D., & Hage, J. A Quantitative 
Comparison of Program Plagiarism Detection 
Tools. Conference: the 6th Computer Science 

Education Research Conference. New York, 
NY, USA, 2017, pp. 73-82, 
https://doi.org/10.1145/3162087.3162101.  

[33] Karnalim, О., Simon, & Chivers, W. J. 
Preprocessing for Source Code Similarity 
Detection in Introductory Programming. 

Conference: 20th Koli Calling International 

Conference on Computing Education 

Research, Koli, Finland, 2020, pp. 1-10, 
https://doi.org/10.1145/3428029.3428065. 

[34] Arase, Y., & Tsujii, J. 2021. Transfer fine-
tuning of BERT with phrasal paraphrases. 
Computer Speech & Language. Vol.66, 2021, 
paper 101164, 
https://doi.org/10.1016/j.csl.2020.101164. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Contribution of Individual Authors to the 

Creation of a Scientific Article (Ghostwriting 

Policy) 

The authors equally contributed in the present 
research, at all stages from the formulation of the 
problem to the final findings and solution. 
 
Sources of Funding for Research Presented in a 

Scientific Article or Scientific Article Itself 

No funding was received for conducting this study. 
 

Conflict of Interest 

The authors have no conflicts of interest to declare. 
 
Creative Commons Attribution License 4.0 

(Attribution 4.0 International, CC BY 4.0) 

This article is published under the terms of the 
Creative Commons Attribution License 4.0 
https://creativecommons.org/licenses/by/4.0/deed.en
_US 
 

WSEAS TRANSACTIONS on COMPUTER RESEARCH 
DOI: 10.37394/232018.2024.12.36 Serhii Myronenko, Yelyzaveta Myronenko

E-ISSN: 2415-1521 376 Volume 12, 2024

https://doi.org/10.1145/872757.872770
https://doi.org/10.1145/3162087.3162101
http://dx.doi.org/10.1145/3428029.3428065
https://doi.org/10.1016/j.csl.2020.101164
https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US



