
Enterprise Malware Detection using Digital Forensic Artifacts and

Machine Learning

MATHIEU DROLET, VINCENT ROBERGE

Electrical and Computer Engineering,
Royal Military College of Canada,

13 General Crerar Crescent, Kingston, ON,
CANADA

Abstract: - Malware detection is a complex task. Numerous log aggregation solutions and intrusion detection
systems can help find anomalies within a host or a network and detect intrusions, but they require precise
calibration, skilled analysts, and cutting-edge technology. In addition, processing host-based data is
challenging, as every log, event, and configuration can be analyzed. In order to obtain trusted information about
a host state, the analysis of a computer’s memory can be performed, but obtaining the data from acquisition and
performing the analysis can be challenging. To address this limitation, this paper proposes to collect artifacts
within a network environment. This approach involves remotely gathering memory-based and disk-based
artifacts from a simulated enterprise network using Velociraptor. The data was then processed using three
machine learning algorithms to detect the malware samples against regular user activity generated with a user
simulation tool for added realism. With this method, Random Forest and Support Vector Machine achieved a
perfect classification of 41 malware samples.

Key-Words: - Digital forensics, Host-based monitoring, Machine learning, Malware, Memory forensics, User
simulation, Volatility, Velociraptor.

Received: January 6, 2024. Revised: April 11, 2024. Accepted: June 13, 2024. Published: July 9, 2024.

1 Introduction
Detecting malware presents a complex challenge
due to its varied forms and ability to target diverse
processes, protocols, and devices. Traditionally,
three main strategies are utilized to defend against
intrusions. The first approach involves identifying
malware as it enters the network or computer, with
significant research focusing on detecting files
downloaded from suspicious URLs or when users
browse malicious websites. However, it is possible
for URLs to be altered to appear less suspicious or
to avoid blacklisted domains. A second strategy
involves monitoring activities within workstations,
such as tracking system calls in the operating system
and identifying launched processes and their parent
processes. This method often incorporates antivirus
software, which compares specific strings and
binary patterns against a database of known
malicious software. However, some types of
malware, such as rootkits, can affect the normal
operation of the OS and hide from antivirus
software, which makes detection difficult. The last
strategy consists of using digital forensics, which
focuses on compromised computer hard drive and
memory, post-exploitation, to better understand how
a specific malware works. This allows for signatures

to be developed so subsequent occurrences of the
intrusion can be detected. Digital forensics is
advantageous because it can provide more context
on the state of the machine when the disk or the
memory capture was collected. Files that have been
deleted or hidden can often be retrieved, thus
leading to malware analysis and a deeper
understanding of the adversary and its intent.
However, this technique is limited by the time
required by a skilled analyst to perform it.

Currently, host-based monitoring solutions, such
as Endpoint Detection and Response (EDR) tools
and antivirus software, use agents, that are running
on different endpoints, and all report back to a
centralized server. Collating this data with network-
based tools remains a challenging task and it can be
difficult for network defenders to maintain
situational awareness. Additionally, EDR tools and
antivirus programs can generate numerous alerts due
to their ability to report on a wide range of events
and logs. Even though EDRs may lack the capacity
for the extensive behavioral analysis needed to
identify new threats, they are adept at detecting
known threats, which constitute the majority faced
by enterprise networks, [1]. Security Operation
Centers (SOC) often rely on supplementary tools

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2024.12.33 Mathieu Drolet, Vincent Roberge

E-ISSN: 2415-1521 336 Volume 12, 2024

like threat-hunting feeds and indicators of
compromises.

Establishing an accurate behavior-based
detection system requires a robust baseline built on
sufficient data samples that capture typical network
and computer activities. However, the evolving
network demands and software usage by individuals
present a challenge in maintaining the baseline's
effectiveness. The primary focus of current digital
forensic approaches is on pinpointing how malware
infiltrated a system to aid in implementing
mitigating strategies. Nonetheless, the valuable
insights obtained from this method are frequently
delayed. The analysis of collected artifacts poses a
considerable challenge due to the vastness of the
dataset. One potential solution to this issue is the
application of machine learning to automate digital
forensic investigations. While existing research
mainly concentrates on extracting forensic artifacts
from individual computer memory captures, Virtual
Machine (VM) memory, or sandboxes, the
applicability of these findings to operational
networks can be complex, [2], [3]. To effectively
transfer the principles and conclusions of these
studies to live networks, the collection and analysis
of artifacts need to occur in near real-time. This
study seeks to overcome this obstacle by proposing
a solution suitable for live enterprise networks.

This research, which is based on a thesis, [4],
introduces four key contributions: identifying
Velociraptor as a valuable tool for generating
features to train a machine learning model for
effective malware detection, developing a
methodology to produce data using a user
simulation tool, pinpointing features capable of
identifying malware presence on an active computer
and comparing three machine learning algorithms in
the context of malware detection.

2 Previous Works
Machine learning has proven to be a valuable tool in
various aspects of computer security. In [5],
research is conducted in network security, focusing
on the identification of anomalous network traffic
through the use of the Isolation Forest algorithm.
Their goal was to detect covert channels, malware
usage, and other anomalies within the network.
Host-based analysis researchers such as in [6] have
used machine learning to analyze features collected
from hosts, such as system traces. In [7], the authors
proposed an anomaly detection approach that used
Isolation Forest and K-means for real-time anomaly
detection using the network traffic logs. In [8], a
Deep Convolutional Neural Network is used to

detect intrusion. Their proposed algorithm achieved
better results compared to other current Intrusion
Detection System (IDS) implementations, such as
Deep Belief Network, while reducing the processing
time. They achieved an F1-Score of 0.97 to 0.98,
depending on the type of tested network attacks.

Machine learning has also been used for digital
forensic research. In their disk-based forensic
research, the authors of [9] looked at machine-
learning techniques for file system forensic analysis.
They aimed at detecting modified files to assist in
timeline reconstruction. Multiple memory forensic
researchers such as in [10], [11] and [12] have used
machine learning to automate and assist in the
detection of malware. In [10], the authors used
machine learning and artifacts found in memory
using Volatility to detect ransomware and Remote
Access Trojan (RAT) in a cloud computing server,
hosting hundreds of virtual machines (VM). Using
Volatility plugins, information found in memory,
such as running processes, the services and DLLs
could be retrieved, and features generated to feed
into a machine learning algorithm. Their approach
had the advantage of enabling detection of fileless
malware, which does not have a presence on the
disk. They used VMware’s vSphere infrastructure to
collect snapshots of the VMs, then extracted the
memory capture from the snapshot files so it could
be analyzed using Volatility. They used a baseline
of 100 snapshots taken at ten-minute intervals, with
100 more snapshots taken for each of the nine ran
programs, benign and ransomware. They used nine
machine learning algorithms for their datasets: J48,
Random Forest (RF), Naïve Bayes (NB), Bayesian
Network (BN), Logistic Regression (LR),
LogitBoost (LB), Sequential Minimal Optimization
(SMO), Bagging, and AdaBoost (AB). Out of their
multiple test cases, RF achieves the best overall
results; this has also been observed by the authors
of [11] who researched kernel-level rootkit using
memory forensic and machine learning with a
similar methodology, but different features. The
authors of [12] performed similar research to detect
unknown malware in Linux cloud environments.
More recently, the authors of [13] used a similar
methodology to detect different types of malware
using a custom Volatility plugin to gather specific
process data. Their test environment was using a
virtual machine from which the memory was
collected. In addition, recent work including [14]
has been focusing on analyzing the memory capture
of potential malware samples using computer vision
techniques by converting the executables into RGB
images and processing them using machine
learning.

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2024.12.33 Mathieu Drolet, Vincent Roberge

E-ISSN: 2415-1521 337 Volume 12, 2024

In their assessments of various EDR solutions,
the authors of [15] tested multiple EDRs, including
Carbon Black, CrowdStrike Falcon, F-Secure
Elements EDR, McAfee Endpoint Protection, and
Symantec Endpoint Protection, in order to assess
their effectiveness against Tactics, Techniques, and
Procedures (TTPs) employed by Advance Persistent
Threat (APT) actors. Their research revealed that
none of the EDR solutions were capable of
identifying all threats. A significant number of the
EDRs examined performed poorly in identifying
DLL Side-loading [15]. EDR solutions are now
incorporating more machine learning algorithms and
processing capabilities in an effort to enhance
detection rates while also keeping false positives at
a minimum and identifying malware at an earlier
stage in the cyber kill chain [16] before significant
damage occurs. The primary focus for EDR vendors
is to identify effective features for evaluation while
ensuring a minimal impact on the host system and
requiring limited bandwidth, in addition to
effectively managing and processing vast amounts
of data [15]. Conversely, in another study, the
authors of [17] concentrate on the utilization of
custom tools, like their Python-based Based Tool,
for gathering artifacts from Windows hosts.

Current research has certain significant
limitations that could be enhanced. The
effectiveness of signature-based monitoring is
constrained by the information stored in its
database, making it more effective in identifying
older threats that have already been scrutinized.
Furthermore, a few current studies, such as those
conducted in [10] and [18], may not be directly
applicable in a real-time setting as the collection of
memory images necessitates the use of snapshots for
analysis. This methodology does not scale
effectively with modern systems that have a large
memory capacity. Outside of the cloud-computing
environment, disk acquisition and memory capture
need to be done computer by computer, which
creates delays and can require a lot of bandwidth if
done remotely. In addition, if sandboxes are used, it
is possible to fool them. Some malware can be
context-aware and change their execution based on
whether they are on a virtual machine or if they
suspect they are executing in a sandbox
environment using sandbox fingerprinting
techniques, [19]. This paper addresses this limitation
by using Velociraptor for data acquisition, which is
more lightweight than performing a full memory
capture, and is applicable to non-virtualized
environments.

Limitations presented in this section are
addressed by collecting digital forensic evidence

using Velociraptor at regular intervals. The
Velociraptor offline collector, running on each
workstation, can gather information about the
system state. Features can then be generated on a
dedicated server. This enables the collection of the
artifacts from all computers in the network
simultaneously and then processing them using a
machine learning algorithm. This process is
transparent to the user and could be applied to an
enterprise network. Using this technique, it is
possible to widen the range of artifacts available to
host-based detection tools by looking at both
volatile and non-volatile digital forensic artifacts. In
addition, to provide a more realistic test
environment, this paper uses an advanced
simulation environment; not simply a virtual
machine, but a complete enterprise network with
simulated user activity.

3 Background Theory
Evaluation of a machine learning algorithm
performance can be achieved through various
metrics, including accuracy, precision, recall, and
F1-Score. These metrics are based on confusion
matrices, which show the frequency of correct and
incorrect predictions made by the classifier
regarding the null hypotheses, [20]. For instance,
when determining whether a data point is malicious,
the confusion matrix consists of True Positive (TP)
for accurate identification as malicious, True
Negative (TN) for accurate identification as non-
malicious, False Positive (FP) or Type I error for
inaccurate malicious classification, and False
Negative (FN) or Type II error for inaccurate benign
classification, [20].

Equation 1 illustrates the concept of accuracy,
which offers insight into a model's performance, as
referenced in [11]. However, relying solely on
accuracy as a metric may be limited in its
usefulness, as it only signifies the percentage of
correctly classified samples. Precision, as depicted
in Equation 2 and as referenced in [10] , serves as a
measure of how many samples identified as
malicious are truly malicious, without considering
missed malware samples. A high precision score
suggests that minimal normal benign data has been
mistakenly classified as anomalous. On the other
hand, recall, outlined in Equation 3 and as shown in
[11], further refines this assessment by indicating
the number of correctly identified malware samples.
An ideal classifier, accurately detecting all malware
samples, would achieve a recall value of 1, without
reflecting the occurrence of FP in the process. The
F1-Score, also known as F-measure, and presented

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2024.12.33 Mathieu Drolet, Vincent Roberge

E-ISSN: 2415-1521 338 Volume 12, 2024

in Equation 4 and as seen in [11], merges precision
and recall to deliver a more holistic evaluation of
the algorithm's overall performance. Computed
through the harmonic mean of precision and recall,
a high F1-Score signifies elevated levels of
precision and recall, [20].

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (1)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3)

𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
=

2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 (4)

The comprehensive machine learning pipeline

encompasses all stages from data acquisition to
result generation. The process involves gathering
raw data, such as logs, and transforming them into a
format suitable for processing by machine learning
algorithms, typically numerical data. Not all features
generated are equally valuable, prompting the need
for careful selection of the most relevant ones. Each
chosen machine learning algorithm undergoes
model training with the data to evaluate its
performance. Optimization strategies involve
adjusting parameters within the selected algorithm
to enhance results. Ultimately, the model is applied
to new data for classification or anomaly detection,
[21]. The steps of the machine learning pipeline are
illustrated in Figure 1.

The following paragraphs will be discussing the
three machine learning algorithms used in this
paper, Isolation Forest, Random Forest and Support
Vector Machines (SVM).

Isolation Forest is a tree-based algorithm that
separates all the data points into different nodes of a
tree, or splits. This process effectively isolates all
data points into different branches of the tree. The
more splits required to reach the data point, the
more normal the point is determined to be;
anomalous data points tend to be easier to isolate
and therefore require fewer splits. This results in
fewer branches and makes the process of walking
back to the top of the tree shorter. The algorithm
repeats this process for multiple trees, creating a
forest, [22]. The anomaly score, which is a value
between 0 and 1, is calculated using Equation 5, as
seen in [20], and express the anomaly score of a
given data point. In Equation 5, E(h(x)) is the
average path length of a point x in the forest, c(n) is
the average path length of any given data point in
the dataset and s(x,n) is the anomaly score of a
given data point x. The closer to 1 s(x,n) is, the more
likely it is to be an anomalous data point, [22].

𝑠(𝑥, 𝑛) = 2
−

𝐸(ℎ(𝑥))

𝐶(𝑛) (5)

where E(h(x)) is the average path length of a point x
in the forest, c(n) is the average path length of any
given data point in the dataset and s(x,n) is the
anomaly score of a given data point x.

Random Forest is a collaborative group of
decision trees in which multiple trees are
constructed in a random manner. This enhances the
diversity of Random Forest compared to traditional
decision tree models. In a typical decision tree, a
node is divided based on the optimal feature for
each split, whereas Random Forest makes the split
based on the best feature from a randomly selected
set of features to introduce variety, utilizing the
feature_importances parameter in SKLearn. The
feature_importances value, also known as Mean
Decrease of Impurity (MDI) importance, is
computed for an individual tree using Equation 6, as
referenced in [23] . Each feature (Xm) in a given tree
T in the forest is assigned a score based on the MDI
of that particular feature. To obtain a more precise
estimation of the impact a specific feature can have
on the machine learning model, the average MDI
value of each tree is determined using Equation 7, as
illustrated in [23] . The prediction made by Random
Forest is essentially the prediction that is most
prevalent among all the trees in the ensemble. This
characteristic enables this algorithm to outperform
other tree-based techniques by minimizing the error
that could be generated by a single tree, [24].

𝐼𝑚𝑝(𝑋𝑚, 𝑇) = ∑ 𝑝(𝑡)∆

𝑡∈𝑇:𝜈(𝑠𝑡)=𝑋𝑚

𝑖(𝑠𝑡 , 𝑡) (6)

𝐼𝑚𝑝(𝑋𝑚) =
1

𝑁𝑇

∑ 𝐼𝑚𝑝(𝑋𝑚, 𝑇)

𝑇

 (7)

SVMs function by attempting to construct a

hyperplane that divides the distinct classes of data
into distinct regions. Two parallel auxiliary
hyperplanes, which intersect the data points nearest
to the initial hyperplane, are identified as the
support vectors. SVMs have the capability to utilize
various kernels in order to establish these
hyperplanes. The kernel serves as the mathematical
representation of the hyperplane. The formula for
the linear SVM kernel, displayed as Equation 8 in
Table 1 of [25], is one of the options. Nevertheless,
this approach may not always be the most effective.
Alternative non-linear approaches, such as the
Gaussian Radial Basis function (RBF) depicted in
Equation 9 of the same reference, can be employed
to better suit the dataset and achieve a more
effective classification.

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2024.12.33 Mathieu Drolet, Vincent Roberge

E-ISSN: 2415-1521 339 Volume 12, 2024

Fig. 1: Machine Learning Pipeline

Fig. 2: Test Environment

The RBF kernel stands out as the most widely

used SVM kernel according to reference, [25]. It has
applications in intrusion detection as well as in
linear and malware detection models as stated in the
same source.

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖

𝑇𝑥𝑗 + 1 (8)
𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝

−
‖𝑥𝑖−𝑥𝑗‖

2

2𝜎2 (9)

During the process of model training, various

methods can be employed to select features. One
such technique is Principal Component Analysis
(PCA), which is a feature reduction approach
grounded in linear algebra. It involves a sequence of
orthogonal transformations designed to retain the
majority of dataset variance while decreasing its
dimensionality, [26].

Feature importance can be assessed using
different tree-based algorithms, such as Random
Forest using the MDI, or feature_importances. Once
a model is fitted using SKLearn functions, the
variable feature_importances can be accessed and
used to select the best features. The higher the MDI
score, the more useful the feature is at predicting the
model, [20].

The Predictive Power Score (PPS) is an
algorithm introduced in 2020, [27], to facilitate the
exploration of a dataset and help find relationships
between the different features and data points. It
looks at the probability that any given column,

which is one of the features of the dataset, can
predict the next column, [28]. Using the PPS
algorithm, features that bring the most predictability
to the model can be selected. The PPS algorithm can
be used to perform the feature selection step by only
retaining the features of a dataset where the PPS
score for the row containing the label is above zero.

A complex problem with machine learning
algorithms is the tuning of an algorithm's various
hyperparameters. These algorithms have two types
of parameters: the parameters, which are determined
automatically during the training of an algorithm,
and the hyperparameters, which need to be provided
to the training method during the training of the
algorithms, [29]. A popular method of tuning the
algorithms is Grid Search. Its goal is to identify, out
of the different possible hyperparameters of an
algorithm, the values that will lead to the best
prediction while minimizing overfitting, which is
when the algorithm is too perfectly tailored to the
training set and has difficulties adapting to the test
set. If both are very similar, the algorithm may find
it difficult to adapt to new data in the future, [30]. A
range of values is specified to the algorithm, for
each hyperparameter, which makes a grid, and each
value is tested exhaustively, [31].

The industry standard tool for memory forensics
is Volatility. The book “The Art of Memory
Forensics”, [32], provides a lot of details about how
to use this tool and how it manages to get its data.
To conduct an investigation, memory forensics is

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2024.12.33 Mathieu Drolet, Vincent Roberge

E-ISSN: 2415-1521 340 Volume 12, 2024

typically performed by capturing the RAM of a
computer before it is shut down. Due to the nature
of computer memory, once the computer is powered
off, the data in memory is lost and an analyst is no
longer able to gather information from it, which
prevents the creation of indicators of compromise
generated from the analysis of the malware behavior
in memory. The analysis of a live system by an
analyst gives an opportunity to monitor the system
behavior over a longer period of time and take more
memory captures if required. However, this can add
risk to the network and to the host, if an adversary is
exfiltrating data from the computer, shutting it down
quickly to avoid further damage may be preferred.
Methods to capture the memory include the use of
virtual machine snapshots Windows hibernation
files, or live-collection software tools such as
Dumpit, [32]. Using VM snapshots is trusted as it
does not depend on the Windows API to gather its
information.

Velociraptor, [33], is an endpoint monitoring and
Digital Forensics, Incident Response (DFIR) tool
that was designed to collect forensic evidence,
monitor events, facilitate enterprise threat-hunting
efforts and help security practitioners respond to an
incident in an enterprise network. Velociraptor has
hundreds of plugins and can be easily extended by
writing new custom plugins that are specifically
tailored to an analyst’s needs, [33]. Velociraptor
uses query language similar to the Structured Query
Language (SQL), the Velociraptor Query Language
(VQL), to analyze the data directly. VQL also
allows parsing of the network computers as if they
were all part of a database.

4 Methodology

4.1 Data Acquisition
To develop the implemented method, a test
environment was created using VMware vSphere.
The environment simulates a small company, which
has ten employees. The company network used for
this research contains the basic infrastructure that
would be required for such a company to operate.
The company users are being simulated using the
Human Actor Like Orchestration (HALO) software,
developed by Field Effect Software, [34]. This tool
was used in the test environment to add realism and
generate background activity within the
environment. The network configuration is depicted
in Figure 2, illustrating the layout of the
environment. Ten Windows 10 workstations,
operating on Version 1909 (build 18363.778), were
configured for the experiment. To confirm the

effectiveness of the implemented method, the
workstations were divided into two groups of five
each, with one group utilizing Velociraptor for
artifact collection and the other employing Volatility
for validation purposes.

HALO replicates user behavior to enhance the
authenticity of the corporate network, encompassing
tasks such as running programs, managing emails,
and browsing the web. This platform facilitates the
establishment of a timetable for automating user
actions. Artifacts from desktops are gathered every
half-hour through a scheduled task. The task
initiates a series of actions, starting with a batch
script that executes the Velociraptor offline collector
on the designated five workstations tracked by
Volatility. Subsequently, a PowerShell script is
activated to transfer all gathered artifacts to the
Windows collection server, serving as a central hub
for data aggregation and subsequent analysis.
Concurrently, memory images are captured at
regular intervals from the five monitored
workstations, with the plugin results being exported
to the Windows server for further processing.

Multiple servers are present in the environment
to ensure the proper functioning of the emulated
users by HALO. These servers include a domain
controller housing the company's DNS server, a file
share, a mail server, and a web server. To replicate
real-world scenarios, a grey infrastructure was
established, which consists of a Grey DNS server
serving as the authoritative DNS server for the
environment and a simulated Internet. The
simulated Internet within the environment
comprises numerous scraped websites to enhance
the authenticity of the simulation. HALO agents can
navigate the simulated web, retrieve actual web
pages, and simulate user activity realistically. For
the execution of malware, a red infrastructure was
necessary, with Kali Linux serving as the attack
platform. All malware samples were prepared from
this workstation, with the C2 connectivity directed
towards it. The initial phase involved collecting a
network baseline by observing user activities
conducted by the HALO users according to their
routines, such as document creation, email
correspondence, etc. A total of 1340 samples were
collected as a baseline over an 11-day period using
the Velociraptor offline collector executable from
all five workstations. Subsequently, each malware
was executed to generate diverse malware datasets.

After the data collection process, machine
learning algorithms were utilized to analyze the data
outside of the original environment. This analysis
was conducted through the implementation of
SKLearn libraries within a Jupyter notebook. The

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2024.12.33 Mathieu Drolet, Vincent Roberge

E-ISSN: 2415-1521 341 Volume 12, 2024

collected data was divided into separate training and
testing sets for further evaluation. Subsequently, the
classification results of the test set were examined
and interpreted. The Velociraptor feature selection
approach drew inspiration from various scholarly
works, including, [9], [10] and [12], which focused
on disk-based and memory forensic investigations.
A total of 76 plugins were identified for potential
use based on insights gleaned from prior research
utilizing tools like Volatility in disk forensic studies.
Furthermore, experimental assessments were carried
out using the Velociraptor graphical user interface
to assess the efficacy of individual plugins in
enhancing detection capabilities concerning specific
types of malware.

Table 1 displays the number of attributes within
each specific domain. In accordance with the
methodology outlined by the authors of [3] for
classifying attributes, Velociraptor plugins were
chosen to achieve a comparable level of host
visibility through examination of Registries, DLLs,
APIs, and Network-related artifacts. In addition to
the four domains identified in their study, two
additional domains were incorporated: a file system
category encompassing all files-based features
generated in a similar fashion [9] and a Windows
event category comprising PowerShell events, and
remote login events, among others. All chosen
Velociraptor attributes align with one of the six
domains listed in Table 1.

In the experimental phase, 14 types of malware
and frameworks were utilized to produce 41 distinct
malware samples. Table 2 outlines the list of
malware and tools employed. The subsequent
section delves into the functionalities of these
programs and their intended impact on the
compromised host.

4.2 Exploratory Data Analysis and Data

Munging
The information was initially standardized through
the application of a min-max scaler. Subsequently,
utilizing the feature_importances function from
SKLearn's Python class for tree-based classifiers,
the most impactful features were determined by
creating a graphical representation of feature
importance to enhance clarity. A selection criterion
was applied to the top 20 features as a method for
reducing features. Another approach to feature
reduction involved utilizing the PPS matrix to
identify features that exhibited a correlation with the
label. This led to a reduced feature set of 15 features
that showed a correlation in predicting the label and
would help classify the data. A third feature

reduction method was to useuse PCA to retain 95%
and 99% of the variance.

4.3 Feature Engineering
During the feature engineering phase, five different
versions of the dataset were used to test the
performance of the algorithm. Those five testing
sets used different features: all the collected
features, using the PPS matrix score to keep only the
features having a positive correlation with the label,
using PCA, to keep 95% and 99% of the variance,
and selecting the top 20 features using the
feature_importances class. Each machine learning
algorithms were tested against each of those five
different datasets to assess performance and the
impact of the feature reduction process.

Table 1. Type of features generated for Velociraptor

Domain Features

Registry 24
DLL 7
API 1
Network 13
File System 18
Events 13

Table 2. Malware executables and tools used

Malware Name Malware Type Samples

CatfishHTTPSExfiltrator Data Exfiltration 1
Lyonfish Ransomware 1
CatfishFileShredder RAT 1
CatfishSocket1 RAT 1
CatfishExplorer RAT 1
CatfishPowerShell1 RAT 1
Metasploit RAT 3
PowerShell Empire RAT 1
Cobalt Strike RAT/Persistence/

Credentials Stealing
19

Living Off The Land [35] Persistence 1
CatfishPersister Credentials Stealing/

Persistence
2

OffensivePH [36] Post-exploitation tool 3
77rootkit [37] Rootkit 1
Hidden [38] Rootkit 5

To conduct cross-validation, the test-train split

method from SKLearn was employed ten times to
create 10 distinct test sets, enhancing the accuracy
of model evaluations. The datasets were divided
equally, with half allocated to the training set and
the other half to the test set, given the varied types
of malware samples and resulting artifacts. This
partitioning was necessitated by the limited
availability of only 41 malware collections,
resulting in approximately 20 to 21 samples per set.

4.4 Model Learning and Evaluation
After data collection, the machine learning models
underwent training with Isolation Forest, Random
Forest, and SVM algorithms. Each algorithm was
utilized to create 11 different sets of trained models

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2024.12.33 Mathieu Drolet, Vincent Roberge

E-ISSN: 2415-1521 342 Volume 12, 2024

through three tuning methods: default parameters of
the algorithm, Grid Search, and a manual exhaustive
implementation based on Grid Search with certain
manually chosen values. Furthermore, all algorithms
were trained with each feature selection method.

The specific combinations of feature selection
and tuning methods employed in this study can be
found in Table 3. The default parameters were only
utilized once to compare results with all features
included.

4.5 Validation
In order to validate both the outcomes and the
methodology, the approach of utilizing Velociraptor
and machine learning was compared to the
validation technique involving Volatility and
machine learning. The research utilizing Volatility
closely resembles the implemented method. The
validation technique was devised by replicating an
experiment carried out in previous studies;
characteristics from [10], [11] and [12] were utilized
to create the validation dataset. For the implemented
method, which utilizes Velociraptor, to be deemed
successful, it needed to surpass the performance of
the Volatility method. The same malware samples
were employed, and the gathering of artifacts with
Volatility was conducted using Dumpit and a
Volatility executable, at the same time interval as
the implemented method. A key advantage of the
implemented method is that Velociraptor is
significantly more efficient and does not necessitate
a memory capture.

Table 3. Trained Machine Learning model

combination
Features Selection Tuning Method

All features Default parameters
Grid Search
Exhaustive

Positive PPS correlation Grid Search
Exhaustive

PCA with 95% variance retained Grid Search
Exhaustive

PCA with 99% variance retained Grid Search
Exhaustive

Top 20 features with feature_importances Grid Search
Exhaustive

5 Results
The findings indicate that the implemented approach
utilizing Velociraptor and machine learning is more
efficient in malware detection compared to the use
of Volatility and machine learning. In this section,
the two methodologies are defined as Velociraptor
and Volatility, respectively.

Each model underwent testing using the test
dataset. The model evaluation was repeated ten
times, with different random splits between training
and testing sets, in order to achieve a more precise
outcome; the performance could vary based on the
selection of malware for the training set. The results
from the model with the highest F1-score for each
methodology and algorithm are presented in

Table 4.
The standard deviation of the F1-Scores between

each of these ten runs of the algorithm is also
displayed in

Table 4. SVM emerged as the most effective and
consistent model, with a standard deviation of
0.008%; there was only one false positive in two test
cases.

Isolation Forest did not prove to be the most
successful algorithm for both methods. The
Velociraptor methodology yielded a lower F1-Score
compared to Volatility but achieved a higher recall.
In the Velociraptor method, the model that
demonstrated the best performance utilized all
features with manual exhaustive tuning. With
Random Forest, the optimum models for both
methods successfully detected all malware
instances. For Velociraptor, all models, with the
exception of those using PCA, achieved a flawless
or nearly flawless classification, while the four
PCA-based models detected none of the malware.
Utilizing SVM, the optimal models for the
Velociraptor method attained a perfect
classification, whereas the optimal models for the
Volatility method were able to identify the majority
of the malware samples.

Both the Random Forest and SVM algorithms
utilizing Velociraptor characteristics exhibited
instances of flawless classification or very poor
classification. Possible reasons for this variability
include a class imbalance in the dataset, where there
were significantly fewer malicious samples
compared to benign samples for both Velociraptor
and Volatility. This imbalance, with malicious to
benign sample ratios of 0.031 and 0.015
respectively, could have influenced the
classification results. To address this issue, two
common techniques are suggested: under-sampling
the majority class and oversampling the minority
class, [39]. Additionally, mixing baseline samples
with malware samples during training may have
impacted the outcomes. Future studies should
explore training methods with different datasets,
potentially focusing solely on baseline data.
Overfitting is also a concern with perfect
classification results, and alternative approaches
such as employing bagging or boosting techniques

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2024.12.33 Mathieu Drolet, Vincent Roberge

E-ISSN: 2415-1521 343 Volume 12, 2024

through algorithms like bagging trees or AdaBoost
can help mitigate this issue.

When it comes to validation, the method
incorporating Velociraptor and machine learning
surpassed the validation method using Volatility for
both Random Forest and SVM. This approach is
noted for being more efficient and less resource-
intensive, as Velociraptor eliminates the need for
memory capture and reduces the need for memory
structure scanning.

The detection rates for each algorithm utilizing
Velociraptor in the proposed method are detailed in
Table 5. The optimal models for Random Forest and
SVM resulted in a 100 percent detection rate,
however, Isolation Forest exhibited shortcomings in
detecting certain types of malware, such as
CatfishPersister operating at the user-level privilege,
data exfiltration attempts, and some RATs samples
like CatfishPowershell1, CatfishExplorer, Cobalt
Strike process injection, and screenshot capture.

Table 6 presents the validation method results
which closely align with findings from similar
studies. The outcomes obtained from the validation
method, particularly in experiments with RATs and
Ransomware conducted by the authors of [10] as
well as [11], are compared. This study demonstrated
a higher recall value compared to previous research
[10] and [11] and a slightly lower F1-Score. These
results validate the effectiveness of this study's
validation method utilizing Volatility and its ability
to evaluate the performance of the implemented
method with Velociraptor.

6 Conclusion
This paper introduced an innovative approach for
identifying malware present in a corporate network
by utilizing digital forensics artifacts gathered
through Velociraptor and analyzed through machine
learning. This paper presented a novel methodology
to detect malware within an enterprise network
using digital forensics artifacts collected using
Velociraptor and analyzed using machine learning.
A total of 41 malicious samples and 1340 benign
samples were tested against three machine learning
algorithms. It was determined that Random Forest
and SVM were the most effective classifiers for the
used dataset, detecting all malicious samples on all
occurrences with no or minimal false positives, with
an F1-Score of 1.0 for both algorithms and with a
minimal standard deviation between the test
occurrences. In order to validate this work, this
method was compared to a validation methodology
based on [10], [11], and [12] using artifacts
collected with the memory forensic tool Volatility

and machine learning at detecting malware in an
enterprise network. The method proposed in this
paper achieved the best results, which validated both
work and methodology and showed that
Velociraptor is an effective tool for this domain of
research.

This paper solves the limitation of live forensics
data collection. Previous methods relying on
memory forensics required VMs to be suspended to
collect the memory image. The proposed method
addresses this by performing the data collection
using the Velociraptor Offline collector, which can
also collect some volatile data typically recovered
using memory forensics. This method is more
lightweight and does not require the suspension of
the user workstation. In addition, it enables the
collection of live data from an enterprise network
and can be applicable to non-virtualized
environments. It also enables a faster incident to
investigation time delay as data can be processed
rapidly once the model has been trained.

Table 4. Comparison of Volatility and Velociraptor

methodologies mean results, for each algorithm,
after ten occurrences

Method ML Acc. Recall F1-

Score

Std. Dev.

Volatility IF 0.978 0.390 0.525 0.122
Velociraptor IF 0.973 0.637 0.418 0.065
Volatility RF 0.998 1.000 0.919 0.056
Velociraptor RF 1.000 1.000 1.000 0.017
Volatility SVM 0.997 0.955 0.879 0.082
Velociraptor SVM 1.000 1.000 1.000 0.008

Table 5. Velociraptor malware type detection, by
algorithms

Table 5. Comparison of the results obtained with

Volatility with the works from [10] and [11]

This paper contributes significantly in four key

areas. Firstly, it recognizes Velociraptor as a
powerful tool for generating features to train a

 Sample Detected

Malware Type Number of Malware IF RF SVM

Credentials Stealing 2 1 2 2
Data Exfiltration 1 0 1 1
Persistence 7 7 7 7
Post-exploitation tool 3 3 3 3
RAT 21 17 21 21
Ransomware 1 1 1 1
Rootkit 6 6 6 6

Features Malware

Type(s)

M

L

Recal

l

F1-

Score

This Paper Multiple RF 1.000 0.919

From [10] Ransomwa
re

RF 0.923 0.924

From [10] RAT RF 0.927 0.947

From [11] Rootkit RF 0.984 0.986

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2024.12.33 Mathieu Drolet, Vincent Roberge

E-ISSN: 2415-1521 344 Volume 12, 2024

machine-learning model for malware detection.
Secondly, it presents an effective approach for data
generation using a user simulation tool, HALO.
Thirdly, it identifies features that can identify
malware presence on an active computer. Lastly, it
compares the performance of three machine learning
algorithms in the context of malware detection.

In future works, the Velociraptor server could be
utilized in a live setting to monitor and identify
threats, replacing the Velociraptor offline collector.
This would enhance the speed of defensive actions
by network defenders, facilitating direct response
actions such as quarantining or terminating
malicious processes on infected hosts. Although the
Velociraptor Server is not tailored for automated
analysis, a bespoke program leveraging the
Velociraptor API would be necessary for querying
and processing features. The detection model could
still be trained using the methodology outlined in
this paper. Furthermore, to enhance the model's
effectiveness, conducting experiments with a larger
array of malware samples through acquiring more
binary data or data augmentation methods is
recommended.

In terms of future research, alternative
algorithms could be explored for analyzing similar
data. While Random Forest and SVM yielded
positive outcomes in this study, future investigations
could delve into the utilization of deep learning
algorithms like neural networks. With Velociraptor
being a dynamically evolving and customizable
tool, the creation of new plugins for detecting
specific types of malware could be considered.

Declaration of Generative AI and AI-assisted

Technologies in the Writing Process

During the preparation of this work the authors used
myessaywriter.ai in order to improve the readability
and language of the manuscript. After using this
tool/service, the authors reviewed and edited the
content as needed and take full responsibility for the
content of the publication.

References:

[1] Securus360, ‘EDR is great, but its Limitations
can leave you open to Cyberattacks’, [Online].
https://www.securus360.com/blog/edr-is-
great-but-its-limitations-can-leave-you-open-
to-cyberattacks (Accessed Date: April 8,
2022).

[2] Periyadi, G. A. Mutiara, and R. Wijaya,
‘Digital forensics random access memory
using live technique based on network

attacked’, in 2017 5th International

Conference on Information and

Communication Technology (ICoIC7),
Melaka, Malaysia, May 2017, pp. 1–6. DOI:
10.1109/ICoICT.2017.8074695.

[3] M. Murthaja, B. Sahayanathan, A. N. T. S.
Munasinghe, D. Uthayakumar, L. Rupasinghe,
and A. Senarathne, ‘An Automated Tool for
Memory Forensics’, in 2019 International

Conference on Advancements in Computing

(ICAC), Malabe, Sri Lanka, Dec. 2019, pp. 1–
6. DOI: 10.1109/ICAC49085.2019.9103416.

[4] M. Drolet, ‘Enterprise Malware Detection
Using Digital Forensic Artifacts And Machine
Learning’, M.A.Sc. Thesis, Royal Military
College of Canada, Kingston, Ontario, 2022,
[Online].
https://espace.rmc.ca/jspui/bitstream/11264/54
2/1/Thesis_Drolet_Completed.pdf (Accessed
Date: April 13, 2024).

[5] D. Spiekermann and J. Keller, ‘Unsupervised
packet-based anomaly detection in virtual
networks’, Computer Networks, vol. 192, p.
108017, Jun. 2021, DOI:
10.1016/j.comnet.2021.108017.

[6] E. Aghaei and G. Serpen, ‘Host-based
anomaly detection using Eigentraces feature
extraction and one-class classification on
system call trace data’, Journal of Information

Assurance & Security, vol. 14, no. 4, p. 11,
2019. arXiv:1911.11284

[7] M. T. R. Laskar, J. Huang, V. Smetana, C.
Stewart, K. Pouw, A. An, S. Chan and L. Liu,
‘Extending Isolation Forest for Anomaly
Detection in Big Data via K-Means’, ACM

Trans. Cyber-Phys. Syst., vol. 5, no. 4, pp. 1–
26, Oct. 2021, DOI: 10.1145/3460976.

[8] R. Mendonça, A. Teodoro, R. Rosa, Renata M.
Saadi, D. C. Melgarejo, P. Nardelli and D.
Rodríguez, ‘Intrusion Detection System Based
on Fast Hierarchical Deep Convolutional
Neural Network’, IEEE Access, vol. 9, pp.
61024–61034, 2021, DOI:
10.1109/ACCESS.2021.3074664.

[9] R. M. A. Mohammad and M. Alqahtani, ‘A
comparison of machine learning techniques
for file system forensics analysis’, Journal of

Information Security and Applications, vol.
46, pp. 53–61, Jun. 2019, DOI:
10.1016/j.jisa.2019.02.009.

[10] A. Cohen and N. Nissim, ‘Trusted detection of
ransomware in a private cloud using machine
learning methods leveraging meta-features
from volatile memory’, Expert Systems with

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2024.12.33 Mathieu Drolet, Vincent Roberge

E-ISSN: 2415-1521 345 Volume 12, 2024

https://www.securus360.com/blog/edr-is-great-but-its-limitations-can-leave-you-open-to-cyberattacks
https://www.securus360.com/blog/edr-is-great-but-its-limitations-can-leave-you-open-to-cyberattacks
https://www.securus360.com/blog/edr-is-great-but-its-limitations-can-leave-you-open-to-cyberattacks
https://espace.rmc.ca/jspui/bitstream/11264/542/1/Thesis_Drolet_Completed.pdf
https://espace.rmc.ca/jspui/bitstream/11264/542/1/Thesis_Drolet_Completed.pdf

Applications, vol. 102, pp. 158–178, Jul. 2018,
DOI: 10.1016/j.eswa.2018.02.039.

[11] X. Wang, J. Zhang, A. Zhang and J. Ren,
‘TKRD: Trusted kernel rootkit detection for
cybersecurity of VMs based on machine
learning and memory forensic analysis’,
Mathematical Biosciences and Engineering,
vol. 16, no. 4, pp. 2650–2667, 2019, DOI:
10.3934/mbe.2019132.

[12] T. Panker and N. Nissim, ‘Leveraging
malicious behavior traces from volatile
memory using machine learning methods for
trusted unknown malware detection in Linux
cloud environments’, Knowledge-Based

Systems, vol. 226, p. 107095, Aug. 2021, DOI:
10.1016/j.knosys.2021.107095.

[13] S. Lyles, M. Desantis, J. Donaldson, M.

Gallegos, H. Nyholm, C. Taylor and K.

Monteith, ‘Machine Learning Analysis of
Memory Images for Process Characterization
and Malware Detection’, in 2022 52nd Annual

IEEE/IFIP International Conference on

Dependable Systems and Networks Workshops

(DSN-W), Baltimore, MD, USA, Jun. 2022,
pp. 162–169. DOI: 10.1109/DSN-
W54100.2022.00035.

[14] A. S. Bozkir, E. Tahillioglu, M. Aydos, and I.
Kara, ‘Catch them alive: A malware detection
approach through memory forensics, manifold
learning and computer vision’, Computers &

Security, vol. 103, p. 102166, Apr. 2021, DOI:
10.1016/j.cose.2020.102166.

[15] G. Karantzas and C. Patsakis, ‘An Empirical
Assessment of Endpoint Detection and
Response Systems against Advanced
Persistent Threats Attack Vectors’, JCP, vol.
1, no. 3, pp. 387–421, Jul. 2021, DOI:
10.3390/jcp1030021.

[16] E. M. Hutchins, M. J. Cloppert, and R. M.
Amin, ‘Intelligence-Driven Computer
Network Defense Informed by Analysis of
Adversary Campaigns and Intrusion Kill
Chains’, Leading Issues in Information

Warfare & Security Research, vol. 1, no. 1, p.
14, 2011.

[17] A. Hariyani, J. Undavia, N. Vaidya, and A.
Patel, ‘Forensic Evidence Collection From
Windows Host Using Python Based Tool’, in
2022 IEEE 4th International Conference on

Cybernetics, Cognition and Machine Learning

Applications (ICCCMLA), Goa, India: IEEE,
Oct. 2022, pp. 85–90. DOI:
10.1109/ICCCMLA56841.2022.9989295.

[18] A. M. A. Hameed, M. Daley, and L. Espinosa-
Anke, ‘A Machine Learning Approach for

Memory Forensic Investigation’, Cardiff
University, 2020.

[19] N. Miramirkhani, M. P. Appini, N.
Nikiforakis, and M. Polychronakis, ‘Spotless
Sandboxes: Evading Malware Analysis
Systems Using Wear-and-Tear Artifacts’, in
2017 IEEE Symposium on Security and

Privacy (SP), San Jose, CA, USA, May 2017,
pp. 1009–1024. DOI: 10.1109/SP.2017.42.

[20] A. Géron, Hands-on machine learning with

Scikit-Learn, Keras, and TensorFlow:

Concepts, tools, and techniques to build

intelligent systems, 2nd ed. Sebastopol, CA:
O’Reilly Media, Inc, 2019.

[21] B. Lachine, ‘Machine Learning Introduction’,
Kingston, Ontario, Oct. 13, 2020, [Online].
https://moodle.rmc.ca (Accessed Date:
October 13, 2021).

[22] F. T. Liu, K. M. Ting, and Z.-H. Zhou,
‘Isolation Forest’, in 2008 Eighth IEEE

International Conference on Data Mining,
Pisa, Italy, Dec. 2008, pp. 413–422. DOI:
10.1109/ICDM.2008.17.

[23] A. Sutera, G. Louppe, V. A. Huynh-Thu, L.
Wehenkel, and P. Geurts, ‘From global to
local MDI variable importances for random
forests and when they are Shapley values’, in
Advances in Neural Information Processing

Systems, Curran Associates, Inc., 2021, pp.
3533–3543, arXiv:2111.02218 [Online].
https://proceedings.neurips.cc/paper/2021/hash
/1cfa81af29c6f2d8cacb44921722e753-
Abstract.html (Accessed Date: January 23,
2023)

[24] T. Yiu, ‘Understanding Random Forest: How
the Algorithm Works and Why it is So
Effective’, Towards Data Science, [Online].
https://towardsdatascience.com/understanding-
random-forest-58381e0602d2 (Accessed:
March 23, 2022).

[25] J. Cervantes, F. Garcia-Lamont, L. Rodríguez-
Mazahua, and A. Lopez, ‘A comprehensive
survey on support vector machine
classification: Applications, challenges and
trends’, Neurocomputing, vol. 408, pp. 189-
215, Sep. 2020, DOI:
10.1016/j.neucom.2019.10.118.

[26] S. Khalid, T. Khalil, and S. Nasreen, ‘A
survey of feature selection and feature
extraction techniques in machine learning’,
Proceedings of 2014 Science and Information

Conference, SAI 2014, London, UK, pp. 372-
378, Oct. 2014, DOI:
10.1109/SAI.2014.6918213.

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2024.12.33 Mathieu Drolet, Vincent Roberge

E-ISSN: 2415-1521 346 Volume 12, 2024

https://moodle.rmc.ca/
https://proceedings.neurips.cc/paper/2021/hash/1cfa81af29c6f2d8cacb44921722e753-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/1cfa81af29c6f2d8cacb44921722e753-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/1cfa81af29c6f2d8cacb44921722e753-Abstract.html
https://towardsdatascience.com/understanding-random-forest-58381e0602d2
https://towardsdatascience.com/understanding-random-forest-58381e0602d2

[27] J. H. Moedjahedy and G. Pramudya, ‘Student
Achievement Classification using Power
Predictive Score with Machine Learning’, in
2021 3rd International Conference on

Cybernetics and Intelligent System (ICORIS),
Makasar, Indonesia, Oct. 2021, pp. 1–6. DOI:
10.1109/ICORIS52787.2021.9649467.

[28] F. Wetschoreck, ‘RIP correlation. Introducing
the Predictive Power Score’, Towards Data
Science, [Online].
https://towardsdatascience.com/rip-
correlation-introducing-the-predictive-power-
score-3d90808b9598 (Accessed: March 17,
2022).

[29] L. Yang and A. Shami, ‘On Hyperparameter
Optimization of Machine Learning
Algorithms: Theory and Practice’,
Neurocomputing, vol. 415, pp. 295–316, Nov.
2020, DOI: 10.1016/j.neucom.2020.07.061.

[30] X. Ying, ‘An Overview of Overfitting and its
Solutions’, J. Phys.: Conf. Ser., vol. 1168, no.
2, p. 022022, Feb. 2019, DOI: 10.1088/1742-
6596/1168/2/022022.

[31] P. Liashchynskyi and P. Liashchynskyi, ‘Grid
Search, Random Search, Genetic Algorithm:
A Big Comparison for NAS’, Computing

Research Repository, vol. abs/1912.06059,
Dec. 2019, arXiv:1912.06059, [Online].
http://arxiv.org/abs/1912.06059 (Accessed
Date: March 28, 2022).

[32] M. H. Ligh, The Art of Memory Forensics.
Indianapolis, IN: Wiley, 2014.

[33] Rapid7, ‘Velociraptor - Dig deeper!’, [Online].
https://docs.velociraptor.app/ (Accessed Date:
February 1, 2021).

[34] Field Effect, ‘Field Effect: The most
sophisticated cyber threat monitoring on the
planet, made simple’, Field Effect Software
Inc., [Online]. https://fieldeffect.com/
(Accessed Date: Marcch 21, 2022).

[35] M. Fischer, ‘Living Off The Land’. Apr. 04,
2022, [Online].
https://github.com/bytecode77/living-off-the-
land (Accessed Date: April 04, 2022).

[36] R. Ancarani, ‘Offensiveph’. Aug. 09, 2021,
[Online].
https://github.com/RiccardoAncarani/Offensiv
ePH (Accessed Date: April 4, 2022).

[37] M. Fischer, ‘r77 Rootkit’. Nov. 04, 2021,
[Online]. https://github.com/bytecode77/r77-
rootkit (Accessed Date: November 04, 2021).

[38] J. Kornev, ‘Hidden’. Apr. 02, 2022, [Online].
https://github.com/JKornev/hidden (Accessed
Date: April 4, 2022).

[39] F. López, ‘Class Imbalance: Random
Sampling and Data Augmentation with
Imbalanced-Learn’, Medium, [Online].
https://towardsdatascience.com/class-
imbalance-random-sampling-and-data-
augmentation-with-imbalanced-learn-
63f3a92ef04a (Accessed Date: June 13, 2022).

Contribution of Individual Authors to the

Creation of a Scientific Article (Ghostwriting

Policy)

The authors equally contributed in the present
research, at all stages from the formulation of the
problem to the final findings and solution.

Sources of Funding for Research Presented in a

Scientific Article or Scientific Article Itself

No funding was received for conducting this study.

Conflict of Interest

The authors have no conflicts of interest to declare.

Creative Commons Attribution License 4.0

(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2024.12.33 Mathieu Drolet, Vincent Roberge

E-ISSN: 2415-1521 347 Volume 12, 2024

https://towardsdatascience.com/rip-correlation-introducing-the-predictive-power-score-3d90808b9598
https://towardsdatascience.com/rip-correlation-introducing-the-predictive-power-score-3d90808b9598
https://towardsdatascience.com/rip-correlation-introducing-the-predictive-power-score-3d90808b9598
https://docs.velociraptor.app/
https://fieldeffect.com/
https://github.com/bytecode77/living-off-the-land
https://github.com/bytecode77/living-off-the-land
https://github.com/RiccardoAncarani/OffensivePH
https://github.com/RiccardoAncarani/OffensivePH
https://github.com/bytecode77/r77-rootkit
https://github.com/bytecode77/r77-rootkit
https://github.com/JKornev/hidden
https://towardsdatascience.com/class-imbalance-random-sampling-and-data-augmentation-with-imbalanced-learn-63f3a92ef04a
https://towardsdatascience.com/class-imbalance-random-sampling-and-data-augmentation-with-imbalanced-learn-63f3a92ef04a
https://towardsdatascience.com/class-imbalance-random-sampling-and-data-augmentation-with-imbalanced-learn-63f3a92ef04a
https://towardsdatascience.com/class-imbalance-random-sampling-and-data-augmentation-with-imbalanced-learn-63f3a92ef04a
https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

