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Abstract: - Malware detection is a complex task. Numerous log aggregation solutions and intrusion detection 
systems can help find anomalies within a host or a network and detect intrusions, but they require precise 
calibration, skilled analysts, and cutting-edge technology. In addition, processing host-based data is 
challenging, as every log, event, and configuration can be analyzed. In order to obtain trusted information about 
a host state, the analysis of a computer’s memory can be performed, but obtaining the data from acquisition and 
performing the analysis can be challenging. To address this limitation, this paper proposes to collect artifacts 
within a network environment. This approach involves remotely gathering memory-based and disk-based 
artifacts from a simulated enterprise network using Velociraptor.  The data was then processed using three 
machine learning algorithms to detect the malware samples against regular user activity generated with a user 
simulation tool for added realism. With this method, Random Forest and Support Vector Machine achieved a 
perfect classification of 41 malware samples. 
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1 Introduction 
Detecting malware presents a complex challenge 
due to its varied forms and ability to target diverse 
processes, protocols, and devices. Traditionally, 
three main strategies are utilized to defend against 
intrusions. The first approach involves identifying 
malware as it enters the network or computer, with 
significant research focusing on detecting files 
downloaded from suspicious URLs or when users 
browse malicious websites. However, it is possible 
for URLs to be altered to appear less suspicious or 
to avoid blacklisted domains. A second strategy 
involves monitoring activities within workstations, 
such as tracking system calls in the operating system 
and identifying launched processes and their parent 
processes. This method often incorporates antivirus 
software, which compares specific strings and 
binary patterns against a database of known 
malicious software. However, some types of 
malware, such as rootkits, can affect the normal 
operation of the OS and hide from antivirus 
software, which makes detection difficult. The last 
strategy consists of using digital forensics, which 
focuses on compromised computer hard drive and 
memory, post-exploitation, to better understand how 
a specific malware works. This allows for signatures 

to be developed so subsequent occurrences of the 
intrusion can be detected. Digital forensics is 
advantageous because it can provide more context 
on the state of the machine when the disk or the 
memory capture was collected. Files that have been 
deleted or hidden can often be retrieved, thus 
leading to malware analysis and a deeper 
understanding of the adversary and its intent. 
However, this technique is limited by the time 
required by a skilled analyst to perform it.  

Currently, host-based monitoring solutions, such 
as Endpoint Detection and Response (EDR) tools 
and antivirus software, use agents, that are running 
on different endpoints, and all report back to a 
centralized server. Collating this data with network-
based tools remains a challenging task and it can be 
difficult for network defenders to maintain 
situational awareness. Additionally, EDR tools and 
antivirus programs can generate numerous alerts due 
to their ability to report on a wide range of events 
and logs. Even though EDRs may lack the capacity 
for the extensive behavioral analysis needed to 
identify new threats, they are adept at detecting 
known threats, which constitute the majority faced 
by enterprise networks, [1]. Security Operation 
Centers (SOC) often rely on supplementary tools 
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like threat-hunting feeds and indicators of 
compromises.  

Establishing an accurate behavior-based 
detection system requires a robust baseline built on 
sufficient data samples that capture typical network 
and computer activities. However, the evolving 
network demands and software usage by individuals 
present a challenge in maintaining the baseline's 
effectiveness. The primary focus of current digital 
forensic approaches is on pinpointing how malware 
infiltrated a system to aid in implementing 
mitigating strategies. Nonetheless, the valuable 
insights obtained from this method are frequently 
delayed. The analysis of collected artifacts poses a 
considerable challenge due to the vastness of the 
dataset. One potential solution to this issue is the 
application of machine learning to automate digital 
forensic investigations. While existing research 
mainly concentrates on extracting forensic artifacts 
from individual computer memory captures, Virtual 
Machine (VM) memory, or sandboxes, the 
applicability of these findings to operational 
networks can be complex, [2], [3]. To effectively 
transfer the principles and conclusions of these 
studies to live networks, the collection and analysis 
of artifacts need to occur in near real-time. This 
study seeks to overcome this obstacle by proposing 
a solution suitable for live enterprise networks. 

This research, which is based on a thesis, [4], 
introduces four key contributions: identifying 
Velociraptor as a valuable tool for generating 
features to train a machine learning model for 
effective malware detection, developing a 
methodology to produce data using a user 
simulation tool, pinpointing features capable of 
identifying malware presence on an active computer 
and comparing three machine learning algorithms in 
the context of malware detection.  

 
 

2 Previous Works 
Machine learning has proven to be a valuable tool in 
various aspects of computer security. In [5], 
research is conducted in network security, focusing 
on the identification of anomalous network traffic 
through the use of the Isolation Forest algorithm. 
Their goal was to detect covert channels, malware 
usage, and other anomalies within the network. 
Host-based analysis researchers such as in [6] have 
used machine learning to analyze features collected 
from hosts, such as system traces. In [7], the authors 
proposed an anomaly detection approach that used 
Isolation Forest and K-means for real-time anomaly 
detection using the network traffic logs. In [8], a 
Deep Convolutional Neural Network is used to 

detect intrusion. Their proposed algorithm achieved 
better results compared to other current Intrusion 
Detection System (IDS) implementations, such as 
Deep Belief Network, while reducing the processing 
time. They achieved an F1-Score of 0.97 to 0.98, 
depending on the type of tested network attacks. 

Machine learning has also been used for digital 
forensic research. In their disk-based forensic 
research, the authors of [9] looked at machine-
learning techniques for file system forensic analysis. 
They aimed at detecting modified files to assist in 
timeline reconstruction. Multiple memory forensic 
researchers such as in [10], [11] and [12] have used 
machine learning to automate and assist in the 
detection of malware. In [10], the authors used 
machine learning and artifacts found in memory 
using Volatility to detect ransomware and Remote 
Access Trojan (RAT) in a cloud computing server, 
hosting hundreds of virtual machines (VM). Using 
Volatility plugins, information found in memory, 
such as running processes, the services and DLLs 
could be retrieved, and features generated to feed 
into a machine learning algorithm. Their approach 
had the advantage of enabling detection of fileless 
malware, which does not have a presence on the 
disk. They used VMware’s vSphere infrastructure to 
collect snapshots of the VMs, then extracted the 
memory capture from the snapshot files so it could 
be analyzed using Volatility. They used a baseline 
of 100 snapshots taken at ten-minute intervals, with 
100 more snapshots taken for each of the nine ran 
programs, benign and ransomware. They used nine 
machine learning algorithms for their datasets: J48, 
Random Forest (RF), Naïve Bayes (NB), Bayesian 
Network (BN), Logistic Regression (LR), 
LogitBoost (LB), Sequential Minimal Optimization 
(SMO), Bagging, and AdaBoost (AB). Out of their 
multiple test cases, RF achieves the best overall 
results; this has also been observed by the authors 
of [11] who researched kernel-level rootkit using 
memory forensic and machine learning with a 
similar methodology, but different features. The 
authors of [12] performed similar research to detect 
unknown malware in Linux cloud environments. 
More recently, the authors of [13] used a similar 
methodology to detect different types of malware 
using a custom Volatility plugin to gather specific 
process data. Their test environment was using a 
virtual machine from which the memory was 
collected. In addition, recent work including [14] 
has been focusing on analyzing the memory capture 
of potential malware samples using computer vision 
techniques by converting the executables into RGB 
images and processing them using machine 
learning. 
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In their assessments of various EDR solutions, 
the authors of [15] tested multiple EDRs, including 
Carbon Black, CrowdStrike Falcon, F-Secure 
Elements EDR, McAfee Endpoint Protection, and 
Symantec Endpoint Protection, in order to assess 
their effectiveness against Tactics, Techniques, and 
Procedures (TTPs) employed by Advance Persistent 
Threat (APT) actors. Their research revealed that 
none of the EDR solutions were capable of 
identifying all threats. A significant number of the 
EDRs examined performed poorly in identifying 
DLL Side-loading [15]. EDR solutions are now 
incorporating more machine learning algorithms and 
processing capabilities in an effort to enhance 
detection rates while also keeping false positives at 
a minimum and identifying malware at an earlier 
stage in the cyber kill chain [16] before significant 
damage occurs. The primary focus for EDR vendors 
is to identify effective features for evaluation while 
ensuring a minimal impact on the host system and 
requiring limited bandwidth, in addition to 
effectively managing and processing vast amounts 
of data [15]. Conversely, in another study, the 
authors of [17] concentrate on the utilization of 
custom tools, like their Python-based Based Tool, 
for gathering artifacts from Windows hosts. 

Current research has certain significant 
limitations that could be enhanced. The 
effectiveness of signature-based monitoring is 
constrained by the information stored in its 
database, making it more effective in identifying 
older threats that have already been scrutinized. 
Furthermore, a few current studies, such as those 
conducted in [10] and [18], may not be directly 
applicable in a real-time setting as the collection of 
memory images necessitates the use of snapshots for 
analysis. This methodology does not scale 
effectively with modern systems that have a large 
memory capacity. Outside of the cloud-computing 
environment, disk acquisition and memory capture 
need to be done computer by computer, which 
creates delays and can require a lot of bandwidth if 
done remotely. In addition, if sandboxes are used, it 
is possible to fool them. Some malware can be 
context-aware and change their execution based on 
whether they are on a virtual machine or if they 
suspect they are executing in a sandbox 
environment using sandbox fingerprinting 
techniques, [19]. This paper addresses this limitation 
by using Velociraptor for data acquisition, which is 
more lightweight than performing a full memory 
capture, and is applicable to non-virtualized 
environments. 

Limitations presented in this section are 
addressed by collecting digital forensic evidence 

using Velociraptor at regular intervals. The 
Velociraptor offline collector, running on each 
workstation, can gather information about the 
system state. Features can then be generated on a 
dedicated server. This enables the collection of the 
artifacts from all computers in the network 
simultaneously and then processing them using a 
machine learning algorithm. This process is 
transparent to the user and could be applied to an 
enterprise network. Using this technique, it is 
possible to widen the range of artifacts available to 
host-based detection tools by looking at both 
volatile and non-volatile digital forensic artifacts. In 
addition, to provide a more realistic test 
environment, this paper uses an advanced 
simulation environment; not simply a virtual 
machine, but a complete enterprise network with 
simulated user activity. 

 
 

3 Background Theory 
Evaluation of a machine learning algorithm 
performance can be achieved through various 
metrics, including accuracy, precision, recall, and 
F1-Score. These metrics are based on confusion 
matrices, which show the frequency of correct and 
incorrect predictions made by the classifier 
regarding the null hypotheses, [20]. For instance, 
when determining whether a data point is malicious, 
the confusion matrix consists of True Positive (TP) 
for accurate identification as malicious, True 
Negative (TN) for accurate identification as non-
malicious, False Positive (FP) or Type I error for 
inaccurate malicious classification, and False 
Negative (FN) or Type II error for inaccurate benign 
classification, [20]. 

Equation 1 illustrates the concept of accuracy, 
which offers insight into a model's performance, as 
referenced in [11]. However, relying solely on 
accuracy as a metric may be limited in its 
usefulness, as it only signifies the percentage of 
correctly classified samples. Precision, as depicted 
in Equation 2 and as referenced in [10] , serves as a 
measure of how many samples identified as 
malicious are truly malicious, without considering 
missed malware samples. A high precision score 
suggests that minimal normal benign data has been 
mistakenly classified as anomalous. On the other 
hand, recall, outlined in Equation 3 and as shown in 
[11], further refines this assessment by indicating 
the number of correctly identified malware samples. 
An ideal classifier, accurately detecting all malware 
samples, would achieve a recall value of 1, without 
reflecting the occurrence of FP in the process. The 
F1-Score, also known as F-measure, and presented 
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in Equation 4 and as seen in [11], merges precision 
and recall to deliver a more holistic evaluation of 
the algorithm's overall performance. Computed 
through the harmonic mean of precision and recall, 
a high F1-Score signifies elevated levels of 
precision and recall, [20]. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
      (1)  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                            (2)  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                  (3)  

𝐹1 =
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
=

2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
  (4)  

 
The comprehensive machine learning pipeline 

encompasses all stages from data acquisition to 
result generation. The process involves gathering 
raw data, such as logs, and transforming them into a 
format suitable for processing by machine learning 
algorithms, typically numerical data. Not all features 
generated are equally valuable, prompting the need 
for careful selection of the most relevant ones. Each 
chosen machine learning algorithm undergoes 
model training with the data to evaluate its 
performance. Optimization strategies involve 
adjusting parameters within the selected algorithm 
to enhance results. Ultimately, the model is applied 
to new data for classification or anomaly detection, 
[21]. The steps of the machine learning pipeline are 
illustrated in Figure 1. 

The following paragraphs will be discussing the 
three machine learning algorithms used in this 
paper, Isolation Forest, Random Forest and Support 
Vector Machines (SVM). 

Isolation Forest is a tree-based algorithm that 
separates all the data points into different nodes of a 
tree, or splits. This process effectively isolates all 
data points into different branches of the tree. The 
more splits required to reach the data point, the 
more normal the point is determined to be; 
anomalous data points tend to be easier to isolate 
and therefore require fewer splits. This results in 
fewer branches and makes the process of walking 
back to the top of the tree shorter. The algorithm 
repeats this process for multiple trees, creating a 
forest, [22]. The anomaly score, which is a value 
between 0 and 1, is calculated using Equation 5, as 
seen in [20], and express the anomaly score of a 
given data point. In Equation 5, E(h(x)) is the 
average path length of a point x in the forest, c(n) is 
the average path length of any given data point in 
the dataset and s(x,n) is the anomaly score of a 
given data point x. The closer to 1 s(x,n) is, the more 
likely it is to be an anomalous data point, [22]. 

𝑠(𝑥, 𝑛) = 2
−

𝐸(ℎ(𝑥))

𝐶(𝑛)           (5)  
 
where E(h(x)) is the average path length of a point x 
in the forest, c(n) is the average path length of any 
given data point in the dataset and s(x,n) is the 
anomaly score of a given data point x. 

Random Forest is a collaborative group of 
decision trees in which multiple trees are 
constructed in a random manner. This enhances the 
diversity of Random Forest compared to traditional 
decision tree models. In a typical decision tree, a 
node is divided based on the optimal feature for 
each split, whereas Random Forest makes the split 
based on the best feature from a randomly selected 
set of features to introduce variety, utilizing the 
feature_importances parameter in SKLearn. The 
feature_importances value, also known as Mean 
Decrease of Impurity (MDI) importance, is 
computed for an individual tree using Equation 6, as 
referenced in [23] . Each feature (Xm) in a given tree 
T in the forest is assigned a score based on the MDI 
of that particular feature. To obtain a more precise 
estimation of the impact a specific feature can have 
on the machine learning model, the average MDI 
value of each tree is determined using Equation 7, as 
illustrated in [23] . The prediction made by Random 
Forest is essentially the prediction that is most 
prevalent among all the trees in the ensemble. This 
characteristic enables this algorithm to outperform 
other tree-based techniques by minimizing the error 
that could be generated by a single tree, [24]. 

 
𝐼𝑚𝑝(𝑋𝑚, 𝑇) = ∑ 𝑝(𝑡)∆

𝑡∈𝑇:𝜈(𝑠𝑡)=𝑋𝑚

𝑖(𝑠𝑡 , 𝑡)      (6)  

𝐼𝑚𝑝(𝑋𝑚) =
1

𝑁𝑇

∑ 𝐼𝑚𝑝(𝑋𝑚, 𝑇)

𝑇

                      (7)  
 
SVMs function by attempting to construct a 

hyperplane that divides the distinct classes of data 
into distinct regions. Two parallel auxiliary 
hyperplanes, which intersect the data points nearest 
to the initial hyperplane, are identified as the 
support vectors. SVMs have the capability to utilize 
various kernels in order to establish these 
hyperplanes. The kernel serves as the mathematical 
representation of the hyperplane. The formula for 
the linear SVM kernel, displayed as Equation 8 in 
Table 1 of [25], is one of the options. Nevertheless, 
this approach may not always be the most effective. 
Alternative non-linear approaches, such as the 
Gaussian Radial Basis function (RBF) depicted in 
Equation 9 of the same reference, can be employed 
to better suit the dataset and achieve a more 
effective classification.  
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Fig. 1: Machine Learning Pipeline 

 

 
Fig. 2: Test Environment 

 
The RBF kernel stands out as the most widely 

used SVM kernel according to reference, [25]. It has 
applications in intrusion detection as well as in 
linear and malware detection models as stated in the 
same source. 

 
𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖

𝑇𝑥𝑗 + 1                          (8)  
𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝

−
‖𝑥𝑖−𝑥𝑗‖

2

2𝜎2                    (9)  
 
During the process of model training, various 

methods can be employed to select features. One 
such technique is Principal Component Analysis 
(PCA), which is a feature reduction approach 
grounded in linear algebra. It involves a sequence of 
orthogonal transformations designed to retain the 
majority of dataset variance while decreasing its 
dimensionality, [26]. 

Feature importance can be assessed using 
different tree-based algorithms, such as Random 
Forest using the MDI, or feature_importances. Once 
a model is fitted using SKLearn functions, the 
variable feature_importances can be accessed and 
used to select the best features. The higher the MDI 
score, the more useful the feature is at predicting the 
model, [20]. 

The Predictive Power Score (PPS) is an 
algorithm introduced in 2020, [27], to facilitate the 
exploration of a dataset and help find relationships 
between the different features and data points. It 
looks at the probability that any given column, 

which is one of the features of the dataset, can 
predict the next column, [28]. Using the PPS 
algorithm, features that bring the most predictability 
to the model can be selected. The PPS algorithm can 
be used to perform the feature selection step by only 
retaining the features of a dataset where the PPS 
score for the row containing the label is above zero. 

A complex problem with machine learning 
algorithms is the tuning of an algorithm's various 
hyperparameters. These algorithms have two types 
of parameters: the parameters, which are determined 
automatically during the training of an algorithm, 
and the hyperparameters, which need to be provided 
to the training method during the training of the 
algorithms, [29]. A popular method of tuning the 
algorithms is Grid Search. Its goal is to identify, out 
of the different possible hyperparameters of an 
algorithm, the values that will lead to the best 
prediction while minimizing overfitting, which is 
when the algorithm is too perfectly tailored to the 
training set and has difficulties adapting to the test 
set. If both are very similar, the algorithm may find 
it difficult to adapt to new data in the future, [30]. A 
range of values is specified to the algorithm, for 
each hyperparameter, which makes a grid, and each 
value is tested exhaustively, [31]. 

The industry standard tool for memory forensics 
is Volatility. The book “The Art of Memory 
Forensics”, [32], provides a lot of details about how 
to use this tool and how it manages to get its data. 
To conduct an investigation, memory forensics is 
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typically performed by capturing the RAM of a 
computer before it is shut down. Due to the nature 
of computer memory, once the computer is powered 
off, the data in memory is lost and an analyst is no 
longer able to gather information from it, which 
prevents the creation of indicators of compromise 
generated from the analysis of the malware behavior 
in memory. The analysis of a live system by an 
analyst gives an opportunity to monitor the system 
behavior over a longer period of time and take more 
memory captures if required. However, this can add 
risk to the network and to the host, if an adversary is 
exfiltrating data from the computer, shutting it down 
quickly to avoid further damage may be preferred. 
Methods to capture the memory include the use of 
virtual machine snapshots Windows hibernation 
files, or live-collection software tools such as 
Dumpit, [32]. Using VM snapshots is trusted as it 
does not depend on the Windows API to gather its 
information. 

Velociraptor, [33], is an endpoint monitoring and 
Digital Forensics, Incident Response (DFIR) tool 
that was designed to collect forensic evidence, 
monitor events, facilitate enterprise threat-hunting 
efforts and help security practitioners respond to an 
incident in an enterprise network. Velociraptor has 
hundreds of plugins and can be easily extended by 
writing new custom plugins that are specifically 
tailored to an analyst’s needs, [33]. Velociraptor 
uses query language similar to the Structured Query 
Language (SQL), the Velociraptor Query Language 
(VQL), to analyze the data directly. VQL also 
allows parsing of the network computers as if they 
were all part of a database. 

 
 

4 Methodology 
 
4.1 Data Acquisition 
To develop the implemented method, a test 
environment was created using VMware vSphere. 
The environment simulates a small company, which 
has ten employees. The company network used for 
this research contains the basic infrastructure that 
would be required for such a company to operate. 
The company users are being simulated using the 
Human Actor Like Orchestration (HALO) software, 
developed by Field Effect Software, [34]. This tool 
was used in the test environment to add realism and 
generate background activity within the 
environment. The network configuration is depicted 
in Figure 2, illustrating the layout of the 
environment. Ten Windows 10 workstations, 
operating on Version 1909 (build 18363.778), were 
configured for the experiment. To confirm the 

effectiveness of the implemented method, the 
workstations were divided into two groups of five 
each, with one group utilizing Velociraptor for 
artifact collection and the other employing Volatility 
for validation purposes. 

HALO replicates user behavior to enhance the 
authenticity of the corporate network, encompassing 
tasks such as running programs, managing emails, 
and browsing the web. This platform facilitates the 
establishment of a timetable for automating user 
actions. Artifacts from desktops are gathered every 
half-hour through a scheduled task. The task 
initiates a series of actions, starting with a batch 
script that executes the Velociraptor offline collector 
on the designated five workstations tracked by 
Volatility. Subsequently, a PowerShell script is 
activated to transfer all gathered artifacts to the 
Windows collection server, serving as a central hub 
for data aggregation and subsequent analysis. 
Concurrently, memory images are captured at 
regular intervals from the five monitored 
workstations, with the plugin results being exported 
to the Windows server for further processing. 

Multiple servers are present in the environment 
to ensure the proper functioning of the emulated 
users by HALO. These servers include a domain 
controller housing the company's DNS server, a file 
share, a mail server, and a web server. To replicate 
real-world scenarios, a grey infrastructure was 
established, which consists of a Grey DNS server 
serving as the authoritative DNS server for the 
environment and a simulated Internet. The 
simulated Internet within the environment 
comprises numerous scraped websites to enhance 
the authenticity of the simulation. HALO agents can 
navigate the simulated web, retrieve actual web 
pages, and simulate user activity realistically. For 
the execution of malware, a red infrastructure was 
necessary, with Kali Linux serving as the attack 
platform. All malware samples were prepared from 
this workstation, with the C2 connectivity directed 
towards it. The initial phase involved collecting a 
network baseline by observing user activities 
conducted by the HALO users according to their 
routines, such as document creation, email 
correspondence, etc. A total of 1340 samples were 
collected as a baseline over an 11-day period using 
the Velociraptor offline collector executable from 
all five workstations. Subsequently, each malware 
was executed to generate diverse malware datasets. 

After the data collection process, machine 
learning algorithms were utilized to analyze the data 
outside of the original environment. This analysis 
was conducted through the implementation of 
SKLearn libraries within a Jupyter notebook. The 
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collected data was divided into separate training and 
testing sets for further evaluation. Subsequently, the 
classification results of the test set were examined 
and interpreted. The Velociraptor feature selection 
approach drew inspiration from various scholarly 
works, including, [9], [10] and [12], which focused 
on disk-based and memory forensic investigations. 
A total of 76 plugins were identified for potential 
use based on insights gleaned from prior research 
utilizing tools like Volatility in disk forensic studies. 
Furthermore, experimental assessments were carried 
out using the Velociraptor graphical user interface 
to assess the efficacy of individual plugins in 
enhancing detection capabilities concerning specific 
types of malware. 

Table 1 displays the number of attributes within 
each specific domain. In accordance with the 
methodology outlined by the authors of [3] for 
classifying attributes, Velociraptor plugins were 
chosen to achieve a comparable level of host 
visibility through examination of Registries, DLLs, 
APIs, and Network-related artifacts. In addition to 
the four domains identified in their study, two 
additional domains were incorporated: a file system 
category encompassing all files-based features 
generated in a similar fashion [9] and a Windows 
event category comprising PowerShell events, and 
remote login events, among others. All chosen 
Velociraptor attributes align with one of the six 
domains listed in Table 1. 

In the experimental phase, 14 types of malware 
and frameworks were utilized to produce 41 distinct 
malware samples. Table 2 outlines the list of 
malware and tools employed. The subsequent 
section delves into the functionalities of these 
programs and their intended impact on the 
compromised host. 

 
4.2 Exploratory Data Analysis and Data 

Munging 
The information was initially standardized through 
the application of a min-max scaler. Subsequently, 
utilizing the feature_importances function from 
SKLearn's Python class for tree-based classifiers, 
the most impactful features were determined by 
creating a graphical representation of feature 
importance to enhance clarity. A selection criterion 
was applied to the top 20 features as a method for 
reducing features. Another approach to feature 
reduction involved utilizing the PPS matrix to 
identify features that exhibited a correlation with the 
label. This led to a reduced feature set of 15 features 
that showed a correlation in predicting the label and 
would help classify the data. A third feature 

reduction method was to useuse PCA to retain 95% 
and 99% of the variance. 
 
4.3  Feature Engineering 
During the feature engineering phase, five different 
versions of the dataset were used to test the 
performance of the algorithm. Those five testing 
sets used different features: all the collected 
features, using the PPS matrix score to keep only the 
features having a positive correlation with the label, 
using PCA, to keep 95% and 99% of the variance, 
and selecting the top 20 features using the 
feature_importances class. Each machine learning 
algorithms were tested against each of those five 
different datasets to assess performance and the 
impact of the feature reduction process. 

 
Table 1. Type of features generated for Velociraptor 

Domain Features 

Registry 24 
DLL 7 
API 1 
Network 13 
File System 18 
Events 13 

 
Table 2. Malware executables and tools used 

Malware Name Malware Type Samples 

CatfishHTTPSExfiltrator Data Exfiltration 1 
Lyonfish Ransomware 1 
CatfishFileShredder RAT 1 
CatfishSocket1 RAT 1 
CatfishExplorer RAT 1 
CatfishPowerShell1 RAT 1 
Metasploit RAT 3 
PowerShell Empire RAT  1 
Cobalt Strike RAT/Persistence/ 

Credentials Stealing 
19 

Living Off The Land [35] Persistence 1 
CatfishPersister Credentials Stealing/ 

Persistence 
2 

OffensivePH [36] Post-exploitation tool 3 
77rootkit [37] Rootkit 1 
Hidden [38] Rootkit 5 

 
To conduct cross-validation, the test-train split 

method from SKLearn was employed ten times to 
create 10 distinct test sets, enhancing the accuracy 
of model evaluations. The datasets were divided 
equally, with half allocated to the training set and 
the other half to the test set, given the varied types 
of malware samples and resulting artifacts. This 
partitioning was necessitated by the limited 
availability of only 41 malware collections, 
resulting in approximately 20 to 21 samples per set. 

 
4.4 Model Learning and Evaluation 
After data collection, the machine learning models 
underwent training with Isolation Forest, Random 
Forest, and SVM algorithms. Each algorithm was 
utilized to create 11 different sets of trained models 
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through three tuning methods: default parameters of 
the algorithm, Grid Search, and a manual exhaustive 
implementation based on Grid Search with certain 
manually chosen values. Furthermore, all algorithms 
were trained with each feature selection method. 

The specific combinations of feature selection 
and tuning methods employed in this study can be 
found in Table 3. The default parameters were only 
utilized once to compare results with all features 
included. 

 
4.5 Validation 
In order to validate both the outcomes and the 
methodology, the approach of utilizing Velociraptor 
and machine learning was compared to the 
validation technique involving Volatility and 
machine learning. The research utilizing Volatility 
closely resembles the implemented method. The 
validation technique was devised by replicating an 
experiment carried out in previous studies; 
characteristics from [10], [11] and [12] were utilized 
to create the validation dataset. For the implemented 
method, which utilizes Velociraptor, to be deemed 
successful, it needed to surpass the performance of 
the Volatility method. The same malware samples 
were employed, and the gathering of artifacts with 
Volatility was conducted using Dumpit and a 
Volatility executable, at the same time interval as 
the implemented method. A key advantage of the 
implemented method is that Velociraptor is 
significantly more efficient and does not necessitate 
a memory capture. 

 
Table 3. Trained Machine Learning model 

combination 
Features Selection Tuning Method 

All features Default parameters 
Grid Search 
Exhaustive 

Positive PPS correlation Grid Search 
Exhaustive 

PCA with 95% variance retained Grid Search 
Exhaustive 

PCA with 99% variance retained Grid Search 
Exhaustive 

Top 20 features with feature_importances Grid Search 
Exhaustive 

 
 
5 Results 
The findings indicate that the implemented approach 
utilizing Velociraptor and machine learning is more 
efficient in malware detection compared to the use 
of Volatility and machine learning. In this section, 
the two methodologies are defined as Velociraptor 
and Volatility, respectively. 

Each model underwent testing using the test 
dataset. The model evaluation was repeated ten 
times, with different random splits between training 
and testing sets, in order to achieve a more precise 
outcome; the performance could vary based on the 
selection of malware for the training set. The results 
from the model with the highest F1-score for each 
methodology and algorithm are presented in 

Table 4.  
The standard deviation of the F1-Scores between 

each of these ten runs of the algorithm is also 
displayed in  

Table 4. SVM emerged as the most effective and 
consistent model, with a standard deviation of 
0.008%; there was only one false positive in two test 
cases.  

Isolation Forest did not prove to be the most 
successful algorithm for both methods. The 
Velociraptor methodology yielded a lower F1-Score 
compared to Volatility but achieved a higher recall. 
In the Velociraptor method, the model that 
demonstrated the best performance utilized all 
features with manual exhaustive tuning. With 
Random Forest, the optimum models for both 
methods successfully detected all malware 
instances. For Velociraptor, all models, with the 
exception of those using PCA, achieved a flawless 
or nearly flawless classification, while the four 
PCA-based models detected none of the malware. 
Utilizing SVM, the optimal models for the 
Velociraptor method attained a perfect 
classification, whereas the optimal models for the 
Volatility method were able to identify the majority 
of the malware samples. 

Both the Random Forest and SVM algorithms 
utilizing Velociraptor characteristics exhibited 
instances of flawless classification or very poor 
classification. Possible reasons for this variability 
include a class imbalance in the dataset, where there 
were significantly fewer malicious samples 
compared to benign samples for both Velociraptor 
and Volatility. This imbalance, with malicious to 
benign sample ratios of 0.031 and 0.015 
respectively, could have influenced the 
classification results. To address this issue, two 
common techniques are suggested: under-sampling 
the majority class and oversampling the minority 
class, [39]. Additionally, mixing baseline samples 
with malware samples during training may have 
impacted the outcomes. Future studies should 
explore training methods with different datasets, 
potentially focusing solely on baseline data. 
Overfitting is also a concern with perfect 
classification results, and alternative approaches 
such as employing bagging or boosting techniques 
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through algorithms like bagging trees or AdaBoost 
can help mitigate this issue. 

When it comes to validation, the method 
incorporating Velociraptor and machine learning 
surpassed the validation method using Volatility for 
both Random Forest and SVM. This approach is 
noted for being more efficient and less resource-
intensive, as Velociraptor eliminates the need for 
memory capture and reduces the need for memory 
structure scanning. 

The detection rates for each algorithm utilizing 
Velociraptor in the proposed method are detailed in 
Table 5. The optimal models for Random Forest and 
SVM resulted in a 100 percent detection rate, 
however, Isolation Forest exhibited shortcomings in 
detecting certain types of malware, such as 
CatfishPersister operating at the user-level privilege, 
data exfiltration attempts, and some RATs samples 
like CatfishPowershell1, CatfishExplorer, Cobalt 
Strike process injection, and screenshot capture.  

Table 6 presents the validation method results 
which closely align with findings from similar 
studies. The outcomes obtained from the validation 
method, particularly in experiments with RATs and 
Ransomware conducted by the authors of [10] as 
well as [11], are compared. This study demonstrated 
a higher recall value compared to previous research 
[10] and [11] and a slightly lower F1-Score. These 
results validate the effectiveness of this study's 
validation method utilizing Volatility and its ability 
to evaluate the performance of the implemented 
method with Velociraptor. 

 
 

6 Conclusion 
This paper introduced an innovative approach for 
identifying malware present in a corporate network 
by utilizing digital forensics artifacts gathered 
through Velociraptor and analyzed through machine 
learning. This paper presented a novel methodology 
to detect malware within an enterprise network 
using digital forensics artifacts collected using 
Velociraptor and analyzed using machine learning. 
A total of 41 malicious samples and 1340 benign 
samples were tested against three machine learning 
algorithms. It was determined that Random Forest 
and SVM were the most effective classifiers for the 
used dataset, detecting all malicious samples on all 
occurrences with no or minimal false positives, with 
an F1-Score of 1.0 for both algorithms and with a 
minimal standard deviation between the test 
occurrences. In order to validate this work, this 
method was compared to a validation methodology 
based on [10], [11], and [12] using artifacts 
collected with the memory forensic tool Volatility 

and machine learning at detecting malware in an 
enterprise network. The method proposed in this 
paper achieved the best results, which validated both 
work and methodology and showed that 
Velociraptor is an effective tool for this domain of 
research. 

This paper solves the limitation of live forensics 
data collection. Previous methods relying on 
memory forensics required VMs to be suspended to 
collect the memory image. The proposed method 
addresses this by performing the data collection 
using the Velociraptor Offline collector, which can 
also collect some volatile data typically recovered 
using memory forensics. This method is more 
lightweight and does not require the suspension of 
the user workstation. In addition, it enables the 
collection of live data from an enterprise network 
and can be applicable to non-virtualized 
environments. It also enables a faster incident to 
investigation time delay as data can be processed 
rapidly once the model has been trained. 

 
Table 4. Comparison of Volatility and Velociraptor 

methodologies mean results, for each algorithm, 
after ten occurrences 

Method ML Acc. Recall F1-

Score 

Std. Dev. 

Volatility IF 0.978 0.390 0.525 0.122 
Velociraptor IF 0.973 0.637 0.418 0.065 
Volatility RF 0.998 1.000 0.919 0.056 
Velociraptor RF 1.000 1.000 1.000 0.017 
Volatility SVM 0.997 0.955 0.879 0.082 
Velociraptor SVM 1.000 1.000 1.000 0.008 
 

Table 5. Velociraptor malware type detection, by 
algorithms 

 
Table 5. Comparison of the results obtained with 

Volatility with the works from [10] and [11] 

 
This paper contributes significantly in four key 

areas. Firstly, it recognizes Velociraptor as a 
powerful tool for generating features to train a 

  Sample Detected 

Malware Type Number of Malware IF RF SVM 

Credentials Stealing 2 1 2 2 
Data Exfiltration 1 0 1 1 
Persistence 7 7 7 7 
Post-exploitation tool 3 3 3 3 
RAT 21 17 21 21 
Ransomware 1 1 1 1 
Rootkit 6 6 6 6 

Features Malware 

Type(s) 

M

L 

Recal

l 

F1-

Score 

This Paper Multiple RF 1.000 0.919 

From [10] Ransomwa
re 

RF 0.923 0.924 

From [10] RAT RF 0.927 0.947 

From [11] Rootkit RF 0.984 0.986 
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machine-learning model for malware detection. 
Secondly, it presents an effective approach for data 
generation using a user simulation tool, HALO. 
Thirdly, it identifies features that can identify 
malware presence on an active computer. Lastly, it 
compares the performance of three machine learning 
algorithms in the context of malware detection. 

In future works, the Velociraptor server could be 
utilized in a live setting to monitor and identify 
threats, replacing the Velociraptor offline collector. 
This would enhance the speed of defensive actions 
by network defenders, facilitating direct response 
actions such as quarantining or terminating 
malicious processes on infected hosts. Although the 
Velociraptor Server is not tailored for automated 
analysis, a bespoke program leveraging the 
Velociraptor API would be necessary for querying 
and processing features. The detection model could 
still be trained using the methodology outlined in 
this paper. Furthermore, to enhance the model's 
effectiveness, conducting experiments with a larger 
array of malware samples through acquiring more 
binary data or data augmentation methods is 
recommended. 

In terms of future research, alternative 
algorithms could be explored for analyzing similar 
data. While Random Forest and SVM yielded 
positive outcomes in this study, future investigations 
could delve into the utilization of deep learning 
algorithms like neural networks. With Velociraptor 
being a dynamically evolving and customizable 
tool, the creation of new plugins for detecting 
specific types of malware could be considered. 
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