3. From the scatter plot of actual vs predicted, it is
evident that the predictions by optimised GPR are
close to the actual observed values for IRI. Hence
optimised GPR model can be effectively used for
accurate prediction of IRI using given parameters.
References:
[1] Inkoom S, Sobanjo J, Barbu A, Niu X (2019)
Pavement Crack Rating Using Machine
Learning Frameworks: Partitioning, Bootstrap
Forest, Boosted Trees, Naïve Bayes, and K -
Nearest Neighbors. J Transp Eng Part B
Pavements 145:04019031.
https://doi.org/10.1061/JPEODX.0000126.
[2] Marcelino P, de Lurdes Antunes M, Fortunato
E, Gomes MC (2020) Transfer learning for
pavement performance prediction. Int J
Pavement Res Technol 13:154–167.
https://doi.org/10.1007/s42947-019-0096-z.
[3] Zeiada W, Dabous SA, Hamad K, et al (2020)
Machine Learning for Pavement Performance
Modelling in Warm Climate Regions. Arab J
Sci Eng 45:4091–4109.
https://doi.org/10.1007/s13369-020-04398-6.
[4] Karballaeezadeh N, Danial MS, Moazemi D,
et al (2020) Smart structural health monitoring
of flexible pavements using machine learning
methods. Coatings 10:1–18.
https://doi.org/doi.org/10.20944/preprints2020
04.0029.v1.
[5] The MathWorks Inc. (2022). MATLAB
version: 9.12.0.2039608 (R2022a) Update 5,
Natick, Massachusetts: The MathWorks Inc.
https://www.mathworks.com
(Accessed: March 25, 2019).
[6] E. Elkins G, Ostrom B (2019) Long-Term
Pavement Performance Information
Management System User Guide,
LTPP_IMS_USER_GUIDE_2019_V8.pdf ,
Available at :
https://infopave.fhwa.dot.gov/InfoPave_Repo
sitory/files/LTPP_IMS_USER_GUIDE_2019
_V8.pdf.
[7] Transportation Officials. (2008). Mechanistic-
empirical pavement design guide: a manual of
practice. AASHTO, available at :
https://fenix.tecnico.ulisboa.pt/downloadFile/
563568428712666/AASHTO08.pdf
(Accessed: March 30, 2019).
[8] Chai T, Draxler RR (2014) Root mean square
error (RMSE) or mean absolute error (MAE)?
-Arguments against avoiding RMSE in the
literature. Geosci Model Dev.
https://doi.org/10.5194/gmd-7-1247-2014.
[9] Botchkarev A (2019) A New Typology
Design of Performance Metrics to Measure
Errors in Machine Learning Regression
Algorithms. Interdiscipl. J Information,
Knowledge, Manag 14:045–076.
https://doi.org/10.28945/4184.
[10] Krijnen WP (2006) Some results on mean
square error for factor score prediction.
Psychometrika. https://doi.org/10.1007/s
11336-004-1220-7.
[11] Miles J (2014) R Squared, Adjusted R
Squared. In: Wiley StatsRef: Statistics
Reference Online
[12] Ziegler A, König IR (2014) Mining data with
random forests: Current options for real-
world applications. Wiley Interdiscip Rev
Data Min Knowl Discov.
https://doi.org/10.1002/widm.1114.
[13] Sharma A, Sachdeva SN, Aggarwal P (2021)
Predicting IRI Using Machine Learning
Techniques. Int J Pavement Res Technol.
https://doi.org/10.1007/s42947-021-00119-w
[14] Sollazzo G, Fwa TF, Bosurgi G (2017) An
ANN model to correlate roughness and
structural performance in asphalt pavements.
Constr Build Mater 134:684–693.
https://doi.org/10.1016/j.conbuildmat.2016.12
.186.
[15] Abdelaziz N, Abd El-Hakim RT, El-Badawy
SM, Afify HA (2020) International
Roughness Index prediction model for
flexible pavements. Int J Pavement Eng
21:88–99.
https://doi.org/10.1080/10298436.2018.14414
14.
Contribution of Individual Authors to the
Creation of a Scientific Article (Ghostwriting
Policy)
-Ankit Sharma collected data and carried out model
preparation
-Praveen Aggarwal helped in finalising the
manuscript
Sources of Funding for Research Presented in a
Scientific Article or Scientific Article Itself
No external source of funding
Conflict of Interest
The authors have no conflict of interest to declare.
Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en
_US
WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2023.11.10
Ankit Sharma, Praveen Aggarwal