detection with region proposal networks.
CoRR, 2015, abs.1506.01497.
[5] J. Redmon, A. Farhadi, YOLOv3: An
Incremental Improvement, Computer Vision
and Pattern Recognition Workshops
(CVPRW), 2018, pp.1-8.
[6] J. Song, N. Jung, H. Kang, Container BIC-
code region extraction and recognition
method using multiple thresholding, Journal
of the Korea Institute of Information and
Communication Engineering, Vol.19, No.6,
2015.
[7] J. Huang, V. Rathod, C. Sun, M. Zhu, A.
Korattikara, A. Fathi, I. Fischer, Z. Wojna, Y.
Song, S. Guadarrama, K. Murphy,
Speed/Accuracy Trade-Offs for Modern
Convolutional Object Detectors, Proceedings
of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2017, pp.
7310-731.
[8] T. Szabo, G. Horvath, Finite word length
computational effects of the principal
component analysis networks, IEEE Trans.
Instrum.Meas, Vol.47, No.5, Oct. 1998, pp.
1218–1222.
[9] R. Girshick, J. Donahue, T. Darrell, J. Malik,
Rich feature hierarchies for accurate object
detection and semantic segmentation, In
Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition
(CVPR), 2014, 580–587.
[10] Zhengxia Zou, Keyan Chen, Zhenwei Shi,
Member, IEEE, Yuhong Guo, and Jieping Ye,
Fellow, Object Detection in 20 Years: A
Survey, IEEE Proceedings of the IEEE,
March 2023 Volume: 111, Issue: 3.
[11] Y. Chao, S. Vijayanarasimhan, B. Seybold,
David A. Ross, J. Deng, R. Sukthankar,
Rethinking the Faster R-CNN Architecture for
Temporal Action Localization, arXiv:
1804.07667v1 [cs.CV] 20, Apr 2018.
[12] A. Bochkovskiy, C. Wang, A. Mykhailych,
YOLOv5: Improved Real-Time Object
Detection, Computer Vision and Pattern
Recognition Workshops (CVPRW), 2021, pp.
2290-2298.
[13] X. Zhou, C. Yao, H. Wen, Y. Wang, S. Zhou,
W. He, J. Liang, EAST: An efficient and
accurate scene text detector, Proceedings of
the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017, pp. 5551-
5560.
[14] N. Subramani, A. Matton, M. Greaves, A.
Lam, A Survey of Deep Learning Approaches
for OCR and Document Understanding,
arXiv:2011.13534, 2021.
[15] K. Simonyan, A. Zisserman, Very deep
convolutional networks for large-scale image
recognition, arXiv:1409.1556, Apr. 2015.
[16] V. E. Bugayong, J. Flores Villaverde, N. B.
Linsangan, Google Tesseract: Optical
Character Recognition (OCR) on HDD / SSD
Labels Using Machine Vision, 14th
International Conference on Computer and
Automation Engineering (ICCAE), 2022, pp.
56-60.
[17] J. Singh, B. Bhushan, Real Time Indian
License Plate Detection using Deep Neural
Networks and Optical Character Recognition
using LSTM Tesseract, 2019 International
Conference on Computing, Communication,
and Intelligent Systems (ICCCIS), 2019,
pp.347-352.
[18] B. Shi, X. Bai, C. Yao, An end-to-end
trainable neural network for image-based
sequence recognition. Image-based sequence
recognition and its application to scene text
recognition, IEEE Trans. Pattern Anal. Mach.
Intell, 2017, pp. 2298-2304.
[19] L. Mei, J. Guo, Q. Liu, and P. Lu, A new
framework for containers. A new framework
for code-to-character recognition based on
deep learning and template matching, Conf.
Ind. Informat.-Comput. Technol, Ind. Inf.
(ICIICII), Wuhan, Hubei, China, Dec. 2016,
pp. 78-82.
[20] Y. Lee, P. Moon, A Comparison and Analysis
of Deep Learning Framework, Journal of the
KIECS, Vol.12, 2017, pp.115-122.
[21] Y. Baek, B. Lee, D. Han, S. Yun, H Lee,
Clova AI Research, NAVER Corp. Character
Region Awareness for Text Detection, CVPR
2019 open access
[22] C. Roeksukrungrueang, T. Kusonthammrat,
N. Kunapronsujarit, T. N. Aruwong, and S.
Chivapreecha, Automatic implementation of a
container number recognition system,
Workshop Adv. Image Technol. (IWAIT),
Chiang Mai, Thailand, Jan. 2018, pp.1-4.
[23] Y. Liu, T. Li, L. Jiang, X. Liang, Container-
code recognition system. Container-code
recognition system based on computer vision
and deep neural network, Int. Conf. Adv.
Mater, Mach, Electron, Xi'an, China, Jan.
2018, 20-21.
[24] U. Mittal, P. Chawla, R. Tiwari,
EnsembleNet: a hybrid approach for vehicle
detection and estimation of traffic density
based on faster R-CNN and YOLO models,
WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2023.11.6
Hangseo Choi, Jongpil Jeong,
Chaegyu Lee, Seokwoo Yun,
Kyunga Bang, Jaebeom Byun