
Using Generative Adversarial Networks in Classification Tasks with

Very Small Amounts of Training Data

GOFUR HALMURATOV, ARNOŠT VESELÝ

Department of Information Engineering,
Czech University of Life Sciences,

Kamýcká 129, 165 00 Praha - Suchdol,
CZECH REPUBLIC

Abstract: - Deep learning algorithms are incredibly powerful and have achieved impressive results in various
classification tasks. However, one of their limitations is their dependence on large amounts of training data.
When there is limited training data available, the standard approach is to increase the dataset size by using data
augmentation and training a neural network on the expanded dataset. This method can be effective, but it
requires significant computational resources and may not always be feasible. In our work, we proposed a new
approach to address the problem of limited training data. Instead of relying solely on increasing the dataset size,
we train Generative Adversarial Networks (GANs) to generate distributions of individual categories. The
classification of the unknown element is then performed using distributions generated by trained GAN
networks. We proposed four methods that compare the unknown element with the elements generated by
trained GAN networks and establish estimates of the conditional probabilities of the unknown element
belonging to individual categories. These conditional probabilities are then used for the classification of the
unknown element into individual categories. This approach enables us to make informed decisions and achieve
accurate classification results even when dealing with limited training data.

Key-Words: - Preparing data, Deep learning algorithms, Latent space, Generative adversarial network(GAN),

Variational autoencoder(VAE)

Received: June 28, 2022. Revised: May 19, 2023. Accepted: June 23, 2023. Published: July 19, 2023.

1 Introduction
Classification is a fundamental task in machine
learning and computer vision, aimed at predicting
the class label of input data based on a pre-defined
set of categories, [1]. The performance of a
classifier heavily relies on the quality and size of the
available training data, [2]. However, in many real-
world scenarios, the amount of training data is
limited, posing challenges such as overfitting or
underfitting that can significantly impact the
classifier's performance, [3], [4]. To address the
limitations of small training datasets, researchers
have proposed various techniques, including data
augmentation, transfer learning, and ensemble
methods, [5], [6], [7]. In recent years, generative
adversarial networks (GANs) have gained
significant attention due to their ability to generate
new data samples that closely resemble the original
training data, [8]. By augmenting the training
dataset, GANs have shown promise in improving
the performance of classifiers when faced with
limited training data, [9], [10]. However, traditional
approaches often focus on expanding the dataset

size, requiring substantial computational resources,
and may not always be feasible. In this article, we
propose a novel approach to address the problem of
limited training data. Instead of solely relying on
increasing the dataset size, we leverage trained
GAN networks in the decision-making phase.
During this phase, the trained GAN networks
simulate the conditional probabilities of individual
categories, enabling us to estimate the conditional
probabilities of unknown elements and make
informed classification decisions, [11]. We present
two methods based on trained GAN networks, along
with their two modifications. The first modification
involves using GAN networks trained for individual
categories to train a Variational Autoencoder
(VAE), [12]. The VAE can generate conditional
distributions of all individual categories, and in the
decision-making phase, only the variational
autoencoder is utilized, [13]. The second
modification utilizes GAN networks trained for
individual categories to transform the decision
process into the latent space of the autoencoder,
[14]. By leveraging the learned representations in
the latent space, the decision-making process

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2023.11.12 Gofur Halmuratov, Arnošt Veselý

E-ISSN: 2415-1521 135 Volume 11, 2023

becomes more efficient and effective, [15]. By
employing these methods, we aim to achieve
accurate classification results even with limited
training data. The proposed approach offers an
alternative to traditional data augmentation
techniques, reducing the reliance on dataset size
expansion and providing a more efficient solution
for classification tasks, [16]. In the following
sections, we provide a detailed description of the
proposed methods and present experimental results
to validate their effectiveness. By leveraging the
power of GAN networks and incorporating them
into the decision-making process, we can overcome
the limitations of limited training data and enhance
the performance of classifiers in real-world
scenarios.

2 Data
The MNIST handwritten digits database was
utilized in the training and evaluation of our
proposed methods. The MNIST dataset contains 10
distinct categories of handwritten digits. To properly
train and evaluate our methods, we shuffled the
MNIST database and selected a small subset of the
data for training. We conducted experiments with
various numbers of training data, including 1, 2, 5,
10, and 100 per category, and evaluated the
performance of our proposed methods using 100
testing data samples per category (Figure.1).

Fig. 1: Training data sample

3 Methodology
The basic way of using GANs in a classification
task is as follows. Suppose, we classify vectors
𝑥 𝜖 𝑋 into 𝑘 disjoint classes 𝐶1,  𝐶2 , … , 𝐶𝑘. First,
we will create a neural network with GAN
architecture. We then train this network 𝑘 times on
the data of individual categories 𝐶𝑖. We thus obtain
𝑘 trained networks 𝐺𝐴𝑁𝑖 that simulate probability
distributions of individual categories 𝑃𝐶𝑖

(𝑥)

(Figure.2). We then use the discriminators of the
trained networks 𝐺𝐴𝑁𝑖 for classification by
inserting the classified vectors 𝑥 into the input of the
discriminator and treating the output of the
discriminator as a probability estimate P(𝑥 𝜖 𝐶𝑖) .
This is the basic way to proceed.

There is another way. When classifying the
vector 𝑥 , we first approximate individual
probability distributions 𝑃𝐶𝑖

(𝑥) by generating a
certain number of their realizations and then
comparing the vector 𝑥 with these approximations.
In this work, we have proposed several methods by
which this comparison can be made.

Fig. 2: Training of the network 𝐺𝐴𝑁𝑖

Method 1(M1): Classifies an unknown vector 𝑥 in
the following way:

1) For each distribution 𝑃𝐶𝑖
(𝑥),  𝑖 = 1, … , 𝑘 the

method
a. Generates 𝑚 vectors 𝑥1,   … ,  𝑥𝑚

with the help of trained GAN for
category 𝐶𝑖.

b. Determines distance values
𝑑1 = |𝑥  − 𝑥1|,   … ,  𝑑𝑚 = |𝑥  − 𝑥𝑚|

c. Sorts the values 𝑑1,   … ,  𝑑𝑚 in
ascending order.

d. Determines the distance of the
pattern 𝑥 from the category 𝐶𝑖 as
follows: 𝑑(𝑥, 𝐶𝑖) =  

1

𝐿
∑ 𝑑𝑖

𝐿
𝑖=1 ,

where 𝐿 is the optional parameter of
the method.

e. Finally classifies the unknown
vector 𝑥 into that category 𝑗 for
which the value 𝑑(𝑥, 𝐶𝑗), 𝑗 =

1,   … ,  𝑘 is the smallest.
2) Point 1) is repeated 𝑁 times. We denote by

𝑁1,   … ,  𝑁𝑘 the number of classifications of
categories 𝐶1,   … , 𝐶𝑘. 𝑁 = 𝑁1 + ⋯ + 𝑁𝑘 .

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2023.11.12 Gofur Halmuratov, Arnošt Veselý

E-ISSN: 2415-1521 136 Volume 11, 2023

3) Finally, the method estimates each
category 𝐶𝑖,  𝑖 = 1, … , 𝑘 its probability:
𝑃(𝐶𝑖) =

𝑁𝑖

𝑁
,   𝑖 = 1,   … , 𝑘.

Method 2(M2): This method uses the distributions
𝑃𝐶1

(𝑥),   … ,  𝑃𝐶𝑘
(𝑥 ) to train the variational

autoencoder so that it is able, after inserting a vector
𝑥 from any category 𝐶1,   … , 𝐶𝑘 into its input to
reproduce it on its output. The autoencoder can thus
simulate the probability distribution

𝑃𝐶(𝑥),  𝐶 = 𝐶1 ∪ 𝐶2 ∪ … ∪ 𝐶𝑘 ,  𝐶𝑖 ∩ 𝐶𝑗 = ∅ ,

 𝑖, 𝑗 = 1, … , 𝑘
We denote the latent space of the autoencoder by 𝑍 .
The learned autoencoder first transforms the input
vector 𝑥 to 𝑧 𝜖 𝑍 and then transforms 𝑧 into the
output vector 𝑦 ≗ 𝑥 (see Figure.3).

Method 2 uses method 1 above for classification,
but does it in the latent space Z of the autoencoder:

1) For each distribution 𝑃𝐶𝑖
(𝑥):

a. Generates 𝑚 vectors 𝑥1,   … ,  𝑥𝑚
with the help of trained GAN for
category 𝐶𝑖.

b. Determines distance values
𝑑1 = |𝑧 − 𝑧1|,   … ,  𝑑𝑚 = |𝑧 − 𝑧𝑚|,
where 𝑧 is the projection of the
vector 𝑥 into the latent space 𝑍 .

c. Sorts value 𝑑1,   … ,  𝑑𝑚 in ascending
order.

d. Determines the distance of the
vector 𝑥 from the category 𝐶𝑖as
follows: 𝑑(𝑥, 𝐶𝑖) =  

1

𝐿
∑ 𝑑𝑖

𝐿
𝑖=1 ,

where 𝐿 is the optional parameter of
the method.

e. Finally classifies the unknown
vector 𝑥 into the category 𝑗 for
which the value 𝑑(𝑥, 𝐶𝑗),  𝑗 =

1,   … ,  𝑘 is the smallest.

Points 2) and 3) of Method 2 are the same as for
Method 1.

Method 3(M3): This method is a modification of
method 1 (M1):

The method estimates the probabilities
𝑃(𝑥 𝜖 ε(𝑥) |  𝑥 𝜖 𝐶𝑖),  𝑖 = 1, … , 𝑘, where ε(𝑥) is

the ε neighborhood of the vector 𝑥, using
simulation of distributions,
𝑃𝐶1

(𝑥),   … ,  𝑃𝐶𝑘
(𝑥 ),  𝑥 𝜖 𝑋. The neighborhood ε(𝑥)

is defined as:

𝑥 𝜖 ε(𝑥)  <=>  |𝑥 − 𝑥|  <  𝜀.

Suppose we generate for each category 𝑚 vectors.
Let the 𝑛𝑖 vectors from category 𝐶𝑖 , 𝑖 = 1,   … ,  𝑘
fall into ε(𝑥). We can then estimate the probabilities
𝑃(𝑥 𝜖 ε(𝑥) | 𝑥 𝜖 𝐶𝑖 ),  𝑖 = 1, … , 𝑘 as follows:

𝑃(𝑥 𝜖 ε(𝑥) | 𝑥 𝜖 𝐶𝑖) =
𝑛𝑖

𝑚
,  𝑛 = ∑ 𝑛𝑖

𝑘

𝑖=1

From this and Bayes's formula, it follows:

𝑃(𝑥 𝜖 𝐶𝑖  | 𝑥 𝜖 ε(𝑥)) =
 𝑃(𝑥 𝜖 ε(𝑥) |  𝑥 𝜖 𝐶𝑖) 𝑃(𝑥 𝜖 𝐶𝑖)

𝑃(𝑥 𝜖 ε(𝑥))

Since we generated the same number of elements
from each category, 𝑃(𝑥 𝜖 𝐶𝑖) =

1

𝑘
 and since 𝑛

vectors fall into the ε(𝑥) we set (𝑥 𝜖 ε(𝑥))  =  
𝑛

𝑚⋅𝑘
 .

The question arises of how to choose the size of the
ε(𝑥) so that the appropriate number of generated
vectors falls into it. For example, we want that 𝜇 =

𝑛

𝑚⋅𝑘
 be 0.1.

We can proceed as follows:

1) For all categories, we generate 𝑚 vectors
𝑥𝑖 .

2) We determine the distances of generated
vectors 𝑥𝑖 from 𝑥, 𝑑𝑖 = |𝑥 − 𝑥𝑖|, and we
sort them in ascending order.

3) Then we put ε = |𝑥 − 𝑥𝑛| , where 𝑛 = 𝜇 ⋅

𝑚 ⋅ 𝑘

Method 4(M4): We can modify Method 2 in the
same way as Method 3. This will be the method
4(M4).

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2023.11.12 Gofur Halmuratov, Arnošt Veselý

E-ISSN: 2415-1521 137 Volume 11, 2023

Fig. 3: Variational autoencoder that learns 𝑃𝐶𝑖

(𝑥)

4 Results
We experimented with four proposed classification
methods M1, M2, M3, and M4. They were
evaluated using a small number of training data,
specifically 1, 2, 5, 10, and 100 instances per
category from the MNIST handwritten digits
database. The performance of the proposed methods
was measured using a testing dataset consisting of
100 instances per category, totaling 1000 instances.
The Generative Adversarial Network (GAN) is
trained on the MNIST dataset, which is filtered to
only include one digit category, resulting in 10
separate GANs (𝐺𝐴𝑁𝑖). Each GAN consists of two
main components: a generator and a discriminator.
The generator model has a 100-dimensional latent
input layer and is composed of three dense layers
with batch normalization and ReLU activation. On
the other hand, the discriminator model takes an
image of 28x28 pixels as input and is constructed of
three dense layers with ReLU activation, as well as
an output layer with a sigmoid activation (see Model
3.). All models were optimized using binary cross-
entropy loss and Adam optimizer with a learning
rate of 0.0002 and a decay rate of 0.5. The training
of each 𝐺𝐴𝑁𝑖 per digit, the category was carried out
for 30,000 epochs. Due to the limited size of the
training data, the process was efficient and took
around 2-3 hours for each GAN model. 𝐺𝐴𝑁𝑖
generators were trained for individual data variants
of the following 1, 2, 5, 10, and 100 instances per
category. After they have been trained, they can be
used for classification, because the output of
individual 𝐺𝐴𝑁𝑖 we have probability estimates of
individual P(𝑥 𝜖 𝐶𝑖) categories. The results of the
proposed methods M1, M2, M3, and M4 were
compared with the discriminator results of the GAN
model, which was used as a baseline for
comparison. The discriminator's classification
accuracy was 38.2% for 1 training instance per
category, 42.1% for 2 training instances per
category, 56.9% for 5 training instances per
category, 61.2% for 10 training instances per
category, and 89.3% for 100 training instances per
category. These results are summarized in column
‘Discriminator result accuracy’ in Table 1. In the

initial stage of our experiments, we evaluated the
performance of Method 1 with various parameter
combinations. To ensure compatibility with low-
performance computers, we selected the parameters
m=100 and N=1 as a reasonable configuration for
conducting experiments. For the M3, we used
parameters m=100 and = 0.1 . The results of
classification using M1 and M3 were evaluated
using different amounts of training data from each
category of the MNIST handwriting digit dataset.
The classification accuracy of M1 ranged from
41.3% to 66.4% and that of M3 ranged from 41.9%
to 66.7%. The change ratio in percentage compared
to the discriminator's classification result showed
that M1 performed better than the discriminator
with 1-2 training data from each category, but the
performance worsened as the amount of training
data increased. The same trend was observed for
M3, with a slightly better improvement over the
discriminator for all amounts of training data
compared to M1. Overall, the results indicate that
both M1 and M3 performed better than the
discriminator for small amounts of training data, but
as the amount of data increased, their performance
degraded compared to the discriminator's
classification result. After experiments with
methods M1 and M3, we carried out experiments
with M2 and M4. The Variational
autoencoder(VAE) of these methods uses the
MNIST dataset, which contains images of
handwritten digits, as input. The encoder network
maps the input data to a lower-dimensional space
(latent space=32), and the decoder network maps
back from the latent space to the original input data.
The sampling function implements the
reparameterization trick, which is a technique to
ensure that the sampling of the latent code z is
differentiable and can be backpropagated during
training. The VAE encoder network consists of
several Conv2D, Flatten, and Dense layers(see
Model 1.), and the VAE decoder network consists of
several Conv2DTranspose, Reshape, and Dense
layers(See Model 2.).The VAE is trained using the
mean squared error loss. In the initial stage of our
experiments, we evaluated the performance of
Method 2 with various parameter combinations. To
ensure compatibility with low-performance
computers, we selected the parameters m=100 and
N=1 as a reasonable configuration for conducting
experiments. For the modification of M2 (Method
4), we used parameters m=100 and 𝜇 = 0.1 See
Table 1. for more details. The proposed methods
showed better results with smaller training data sets,
but their performance worsened as the number of
training data increased. The modified versions of

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2023.11.12 Gofur Halmuratov, Arnošt Veselý

E-ISSN: 2415-1521 138 Volume 11, 2023

Method 1 (M3) and Method 2 (M4) performed
better than their original forms (M1 and M2)
respectively. The best results were obtained with the
smallest training data sets (1, 2, 5, and 10).
However, the proposed methods performed poorly
with larger training data sets, with the best
performance being 16,75% better and the worst
being 21.16% worse.

5 Discussion
In our article, we propose a new way to use GAN
networks for solving classification tasks for which
we only have a limited amount of training data. The
learned GAN networks are not used to expand the
training set and to subsequently learn a layered
convolutional network. Instead, we will use the
learned GAN networks only in the decision-making
phase to simulate the conditional distributions of
individual categories. Although this simulation is
computationally somewhat more difficult than
obtaining the decision of a trained convolutional
network, it is still manageable. The results we
obtained show that algorithms of this type could
give better results for very small training sets. For
larger data sets, it turns out that the classic method
of expanding the training set and then learning a
classic convolutional neural network on the
expanded training set will probably give better
results. Using a more complex architecture of GAN
and VAE networks and further experimenting with
parameters during their learning would probably
lead to an increase in classification accuracy. The
results of our experiments indicate that the data
generated by the trained GAN has a significant
amount of noise and deviates from the original data.
To overcome this limitation, we propose to
investigate and implement noise removal techniques
in the GAN-generated training data in future work.
Our evaluation of the testing data showed that the
proposed classification methods are ineffective
when applied to rotated data. To resolve this, we
recommend augmenting the training data with
rotations. By adding rotated versions of the training
data, the classification models would have more
exposure to this type of variation and may be better
equipped to handle it. Additionally, it may be useful
to explore other data augmentation techniques
beyond rotations, such as scaling, flipping, or
adding noise, to further improve the robustness of
the models to different types of variations. Overall,
it is important to carefully experiment and evaluate
different approaches to data augmentation to find
the best strategy for improving the performance of
the proposed classification methods.

6 Conclusion
It's good that the proposed classification methods
hold the potential for improving performance when
limited training data is available. Even if they are
not significantly better than the existing GAN
discriminator model, they may still have value in
certain contexts. Regarding the suggestion to
experiment with more complex models and training
parameters, it's important to carefully consider the
trade-offs between model complexity and
generalization performance. Increasing the
complexity of the models and the number of training
parameters can lead to better performance on the
training data, but can also increase the risk of
overfitting and decrease performance on new,
unseen data. Therefore, it's important to evaluate the
performance of the models on both the training and
testing data and use techniques such as cross-
validation to ensure that the models are not
overfitting. Additionally, it may be helpful to
explore other approaches to improving performance,
such as ensemble methods or transfer learning,
which can leverage the strengths of multiple models
and improve generalization performance without
requiring significant increases in model complexity.

7 Future Work
To further improve the performance of classification
methods M2 and M4 we propose to combine the
learning of the autoencoder. VAE with clustering.
Combining clustering of the latent space of the
autoencoder is an interesting idea that could
potentially improve the performance of the proposed
classification methods. By clustering the latent
space, it may be possible to identify more
meaningful and interpretable subgroups of data that
can be used to improve the accuracy of the
classification models. However, it's important to
note that clustering in the latent space can also be
challenging, as it requires selecting appropriate
clustering algorithms, hyperparameters, and
evaluation metrics. Additionally, it may be
necessary to balance the trade-off between
increasing the complexity of the model and
improving its performance, as clustering can add
additional computational costs and may also
increase the risk of overfitting. Overall, the
proposed idea of combining clustering with
classification methods is promising, but it will
require careful experimentation and evaluation to
determine its effectiveness. Lastly, it is
recommended to conduct experiments using higher
computational resources to obtain more accurate and

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2023.11.12 Gofur Halmuratov, Arnošt Veselý

E-ISSN: 2415-1521 139 Volume 11, 2023

reliable results. With more computational resources,
it may be possible to train larger and more complex
models, increase the number of training epochs, and
experiment with a wider range of hyperparameters,
which could lead to better performance and more
robust conclusions. It should be noted that the
experiments were conducted using personal
computers with limited computational resources,
resulting in small training models and a limited
number of training epochs for both GANs and
VAEs. We recommend repeating the experiments
using higher computational resources for better
results.

References:

[1] LeCun, Y., Bengio, Y., & Hinton, G. (2015).
Deep learning. Nature, 521 (7553), p.436-444.

[2] Zhang, C., Bengio, S., Hardt, M., Recht, B., &
Vinyals, O. (2016). Understanding deep
learning requires rethinking generalization.
arXiv preprint arXiv:1611.03530.

[3] Srivastava, N., Hinton, G., Krizhevsky, A.,
Sutskever, I., & Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural
networks from overfitting. The Journal of
Machine Learning Research, 15 (1), p.1929-
1958.

[4] Caruana, R. (2017). Multitask learning. arXiv
preprint arXiv:1706.05098.

[5] Cubuk, E. D., Zoph, B., Shlens, J., & Le, Q.
V. (2019). AutoAugment: Learning
augmentation strategies from data. In
Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp.
113-123.

[6] Yosinski, J., Clune, J., Bengio, Y., & Lipson,
H. (2014). How transferable are features in
deep neural networks? In Advances in neural
information processing systems, pp. 3320-
3328.

[7] Dietterich, T. G. (2000). Ensemble methods in
machine learning. In Multiple classifier
systems, pp. 1-15.

[8] Goodfellow, I., Pouget-Abadie, J., Mirza, M.,
Xu, B., Warde-Farley, D., Ozair, S., ... &
Bengio, Y. (2014). Generative adversarial
nets. In Advances in neural information
processing systems, pp. 2672-2680.

[9] Antoniou, A., Storkey, A., & Edwards, H.
(2017). Data augmentation generative
adversarial networks. arXiv preprint
arXiv:1711.04340.

[10] Karras, T., Aila, T., Laine, S., & Lehtinen, J.
(2019). Analyzing and improving the image

quality of StyleGAN. In Proceedings of the
IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 8110-8119.

[11] Zhang, H., Xu, T., Li, H., Zhang, S., Wang,
X., Huang, X., & Metaxas, D. N. (2018).
StackGAN++: Realistic image synthesis with
stacked generative adversarial networks. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 41 (8), p.1947-1962.

[12] Kingma, D. P., & Welling, M. (2013). Auto-
encoding variational Bayes. arXiv preprint
arXiv:1312.6114.

[13] Chen, T. Q., Li, X., Grosse, R., & Duvenaud,
D. K. (2018). Isolating sources of
disentanglement in variational autoencoders.
In Advances in Neural Information Processing
Systems, pp. 2610-2620.

[14] Radford, A., Metz, L., & Chintala, S. (2015).
Unsupervised representation learning with
deep convolutional generative adversarial
networks. arXiv preprint arXiv:1511.06434.

[15] Hinton, G. E., & Salakhutdinov, R. R. (2006).
Reducing the dimensionality of data with
neural networks. Science, 313 (5786), p.504-
507.

[16] Perez, L., & Wang, J. (2017). The
effectiveness of data augmentation in image
classification using deep learning.
arXiv preprint arXiv:1712.04621.

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2023.11.12 Gofur Halmuratov, Arnošt Veselý

E-ISSN: 2415-1521 140 Volume 11, 2023

Appendix

Model 1. VAE encoder model

Layer(type) Output Shape Param# Connected to

encoder_input(InputLayer) [(None,28,28,1)] 0 []

conv2d(Conv2D) (None,14,14,512) 5120 ['encoder_input[0][0]']

conv2d_1(Conv2D) (None,7,7,1024) 4719616 ['conv2d[0][0]']

flatten(Flatten) (None,50176) 0 ['conv2d_1[0][0]']

dense(Dense) (None,400) 20070800 ['flatten[0][0]']

z_mean(Dense) (None,100) 40100 ['dense[0][0]']

z_log_var(Dense) (None,100) 40100 ['dense[0][0]']

z(Lambda) (None,100) 0 ['z_mean[0][0]','z_log_var[0][0]']

Model 2. VAE decoder model
Layer (type) Output Shape Param #

z_sampling(InputLayer) [(None,100)] 0

dense_1(Dense) (None,50176) 5067776

reshape(Reshape) (None,7,7,1024) 0

conv2d_transpose(Conv2DTranspose) (None,14,14,1024) 9438208

conv2d_transpose_1(Conv2DTranspose)l (None,28,28,512) 4719104

Model 3. Discriminator model of the GAN
Layer (type) Output Shape Param #

Input layer (InputLayer) [(None, 784)] 0

Dense_1 (Dense) (None, 512) 401920

Dense_2 (Dense) (None, 256) 131328

Dense_3 (Dense) (None, 128) 32896

Output_4(Dense) (None, 1) 129

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2023.11.12 Gofur Halmuratov, Arnošt Veselý

E-ISSN: 2415-1521 141 Volume 11, 2023

Table 1. Results of four proposed methods.

Number of

train data

Number of test

data

Discriminator

result Accuracy

Proposed

Method Result

accuracy Ratio in percentage

M1 1 100 38,2 41,3 108,12%

2 100 42,1 43,6 103,56%

5 100 56,9 57,4 100,88%

10 100 61,2 61,8 100,98%

100 100 89,3 66,4 74,36%

M3 1 100 38,2 41,9 109,69%

 2 100 42,1 43,8 104,04%

5 100 56,9 58,3 102,46%

10 100 61,2 61,3 100,16%

100 100 89,3 66,7 74,69%

M2 1 100 38,2 44,6 116,75%

2 100 42,1 47,1 111,88%

5 100 56,9 63,2 111,07%

10 100 61,2 67,4 110,13%

100 100 89,3 71,3 79,84%

M4 1 100 38,2 44,2 115,71%

 2 100 42,1 47,3 112,35%

5 100 56,9 62,9 110,54%

10 100 61,2 67,2 109,80%

100 100 89,3 71,9 80,52%

Contribution of Individual Authors to the Creation

of a Scientific Article (Ghostwriting Policy)

-Ing. Gofur Halmuratov is the main author of the
research, responsible for the formulation of the
problem, development and implementing of the
proposed methods, conducting experiments, analyzing
results, and writing the article.
-Doc. Ing. Arnošt Veselý, CSc. contributed to the
research by providing guidance and support as the
advisor, particularly in the development of the
proposed methods.

Sources of Funding for Research Presented in a

Scientific Article or Scientific Article Itself

No funding was received for conducting this study.

Conflict of Interest

The authors declare no conflicts of interest.

Creative Commons Attribution License 4.0

(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the
Creative Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_
US

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2023.11.12 Gofur Halmuratov, Arnošt Veselý

E-ISSN: 2415-1521 142 Volume 11, 2023

https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

