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Abstract: - Deep learning algorithms are incredibly powerful and have achieved impressive results in various 
classification tasks. However, one of their limitations is their dependence on large amounts of training data. 
When there is limited training data available, the standard approach is to increase the dataset size by using data 
augmentation and training a neural network on the expanded dataset. This method can be effective, but it 
requires significant computational resources and may not always be feasible. In our work, we proposed a new 
approach to address the problem of limited training data. Instead of relying solely on increasing the dataset size, 
we train Generative Adversarial Networks (GANs) to generate distributions of individual categories. The 
classification of the unknown element is then performed using distributions generated by trained GAN 
networks. We proposed four methods that compare the unknown element with the elements generated by 
trained GAN networks and establish estimates of the conditional probabilities of the unknown element 
belonging to individual categories. These conditional probabilities are then used for the classification of the 
unknown element into individual categories. This approach enables us to make informed decisions and achieve 
accurate classification results even when dealing with limited training data. 
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1 Introduction 
Classification is a fundamental task in machine 
learning and computer vision, aimed at predicting 
the class label of input data based on a pre-defined 
set of categories, [1]. The performance of a 
classifier heavily relies on the quality and size of the 
available training data, [2]. However, in many real-
world scenarios, the amount of training data is 
limited, posing challenges such as overfitting or 
underfitting that can significantly impact the 
classifier's performance, [3], [4]. To address the 
limitations of small training datasets, researchers 
have proposed various techniques, including data 
augmentation, transfer learning, and ensemble 
methods, [5], [6], [7]. In recent years, generative 
adversarial networks (GANs) have gained 
significant attention due to their ability to generate 
new data samples that closely resemble the original 
training data, [8]. By augmenting the training 
dataset, GANs have shown promise in improving 
the performance of classifiers when faced with 
limited training data, [9], [10]. However, traditional 
approaches often focus on expanding the dataset 

size, requiring substantial computational resources, 
and may not always be feasible. In this article, we 
propose a novel approach to address the problem of 
limited training data. Instead of solely relying on 
increasing the dataset size, we leverage trained 
GAN networks in the decision-making phase. 
During this phase, the trained GAN networks 
simulate the conditional probabilities of individual 
categories, enabling us to estimate the conditional 
probabilities of unknown elements and make 
informed classification decisions, [11]. We present 
two methods based on trained GAN networks, along 
with their two modifications. The first modification 
involves using GAN networks trained for individual 
categories to train a Variational Autoencoder 
(VAE), [12]. The VAE can generate conditional 
distributions of all individual categories, and in the 
decision-making phase, only the variational 
autoencoder is utilized, [13]. The second 
modification utilizes GAN networks trained for 
individual categories to transform the decision 
process into the latent space of the autoencoder, 
[14]. By leveraging the learned representations in 
the latent space, the decision-making process 
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becomes more efficient and effective, [15]. By 
employing these methods, we aim to achieve 
accurate classification results even with limited 
training data. The proposed approach offers an 
alternative to traditional data augmentation 
techniques, reducing the reliance on dataset size 
expansion and providing a more efficient solution 
for classification tasks, [16]. In the following 
sections, we provide a detailed description of the 
proposed methods and present experimental results 
to validate their effectiveness. By leveraging the 
power of GAN networks and incorporating them 
into the decision-making process, we can overcome 
the limitations of limited training data and enhance 
the performance of classifiers in real-world 
scenarios. 
 

 

2 Data 
The MNIST handwritten digits database was 
utilized in the training and evaluation of our 
proposed methods. The MNIST dataset contains 10 
distinct categories of handwritten digits. To properly 
train and evaluate our methods, we shuffled the 
MNIST database and selected a small subset of the 
data for training. We conducted experiments with 
various numbers of training data, including 1, 2, 5, 
10, and 100 per category, and evaluated the 
performance of our proposed methods using 100 
testing data samples per category (Figure.1).  
 

 
Fig. 1: Training data sample 
 
 
3 Methodology 
The basic way of using GANs in a classification 
task is as follows. Suppose, we classify vectors 
𝑥 𝜖 𝑋  into 𝑘 disjoint classes 𝐶1,  𝐶2 , … , 𝐶𝑘. First, 
we will create a neural network with GAN 
architecture. We then train this network 𝑘 times on 
the data of individual categories 𝐶𝑖. We thus obtain 
𝑘 trained networks 𝐺𝐴𝑁𝑖 that simulate probability 
distributions of individual categories 𝑃𝐶𝑖

(𝑥)                        

(Figure.2). We then use the discriminators of the 
trained networks  𝐺𝐴𝑁𝑖 for classification by 
inserting the classified vectors 𝑥 into the input of the 
discriminator and treating the output of the 
discriminator as a probability estimate P(𝑥 𝜖 𝐶𝑖) . 
This is the basic way to proceed. 

There is another way. When classifying the 
vector 𝑥 , we first approximate individual 
probability distributions  𝑃𝐶𝑖

(𝑥) by generating a 
certain number of their realizations and then 
comparing the vector 𝑥 with these approximations. 
In this work, we have proposed several methods by 
which this comparison can be made. 

 

 
Fig. 2: Training of the network 𝐺𝐴𝑁𝑖 

Method 1(M1): Classifies an unknown vector 𝑥 in 
the following way: 

1) For each distribution 𝑃𝐶𝑖
(𝑥),  𝑖 = 1, … , 𝑘 the 

method 
a. Generates 𝑚  vectors 𝑥1,   … ,  𝑥𝑚 

with the help of trained GAN for 
category 𝐶𝑖. 

b. Determines distance values       
𝑑1 = |𝑥  − 𝑥1|,   … ,  𝑑𝑚 = |𝑥  − 𝑥𝑚| 

c. Sorts the values  𝑑1,   … ,  𝑑𝑚 in 
ascending order. 

d. Determines the distance of the 
pattern 𝑥 from the category 𝐶𝑖 as 
follows:  𝑑(𝑥, 𝐶𝑖) =  

1

𝐿
∑ 𝑑𝑖

𝐿
𝑖=1  , 

where 𝐿 is the optional parameter of 
the method. 

e. Finally classifies the unknown 
vector 𝑥 into that category 𝑗 for 
which the value 𝑑(𝑥, 𝐶𝑗), 𝑗 =

1,   … ,  𝑘 is the smallest. 
2) Point 1)  is repeated 𝑁 times. We denote by 

𝑁1,   … ,  𝑁𝑘 the number of classifications of 
categories 𝐶1,   … , 𝐶𝑘. 𝑁 = 𝑁1 + ⋯ + 𝑁𝑘 . 
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3) Finally, the method estimates each 
category 𝐶𝑖,  𝑖 = 1, … , 𝑘 its probability: 
𝑃(𝐶𝑖) =

𝑁𝑖

𝑁
,   𝑖 = 1,   … , 𝑘. 

Method 2(M2): This method uses the distributions 
𝑃𝐶1

(𝑥),   … ,  𝑃𝐶𝑘
(𝑥 ) to train the variational 

autoencoder so that it is able, after inserting a vector 
𝑥 from any category 𝐶1,   … , 𝐶𝑘 into its input to 
reproduce it on its output. The autoencoder can thus 
simulate the probability distribution  

𝑃𝐶(𝑥),  𝐶 = 𝐶1 ∪ 𝐶2 ∪ … ∪ 𝐶𝑘 ,  𝐶𝑖 ∩ 𝐶𝑗 = ∅ ,

 𝑖, 𝑗 = 1, … , 𝑘 
We denote the latent space of the autoencoder by 𝑍 . 
The learned autoencoder first transforms the input 
vector 𝑥 to 𝑧 𝜖 𝑍 and then transforms 𝑧 into the 
output vector 𝑦 ≗ 𝑥 (see Figure.3). 

Method 2 uses method 1 above for classification, 
but does it in the latent space Z of the autoencoder: 

1) For each distribution 𝑃𝐶𝑖
(𝑥): 

a. Generates 𝑚 vectors 𝑥1,   … ,  𝑥𝑚 
with the help of trained GAN for 
category 𝐶𝑖. 

b. Determines distance values       
𝑑1 = |𝑧 − 𝑧1|,   … ,  𝑑𝑚 = |𝑧 − 𝑧𝑚|, 
where 𝑧  is the projection of the 
vector 𝑥 into the latent space  𝑍 . 

c. Sorts value 𝑑1,   … ,  𝑑𝑚 in ascending 
order. 

d. Determines the distance of the 
vector 𝑥 from the category 𝐶𝑖as 
follows: 𝑑(𝑥, 𝐶𝑖) =  

1

𝐿
∑ 𝑑𝑖

𝐿
𝑖=1  ,  

where 𝐿 is the optional parameter of 
the method. 

e. Finally classifies the unknown 
vector 𝑥 into the category 𝑗 for 
which the value 𝑑(𝑥, 𝐶𝑗),  𝑗 =

1,   … ,  𝑘 is the smallest. 

Points 2) and 3) of Method 2 are the same as for 
Method 1. 

Method 3(M3): This method is a modification of 
method 1 (M1): 

The method estimates the probabilities 
𝑃(𝑥 𝜖 ε(𝑥) |  𝑥 𝜖 𝐶𝑖),  𝑖 = 1, … , 𝑘, where ε(𝑥) is 

the ε  neighborhood of the vector 𝑥, using 
simulation of distributions, 
𝑃𝐶1

(𝑥),   … ,  𝑃𝐶𝑘
(𝑥 ),  𝑥 𝜖 𝑋. The neighborhood ε(𝑥) 

is defined as: 

𝑥 𝜖 ε(𝑥)  <=>  |𝑥 − 𝑥|  <  𝜀. 

Suppose we generate for each category 𝑚  vectors. 
Let the 𝑛𝑖 vectors from category 𝐶𝑖 , 𝑖 = 1,   … ,  𝑘   
fall into ε(𝑥). We can then estimate the probabilities 
𝑃(𝑥 𝜖 ε(𝑥) | 𝑥 𝜖 𝐶𝑖 ),  𝑖 = 1, … , 𝑘 as follows: 

𝑃(𝑥 𝜖 ε(𝑥) | 𝑥 𝜖 𝐶𝑖 ) =
𝑛𝑖

𝑚
,  𝑛 = ∑ 𝑛𝑖

𝑘

𝑖=1

 

From this and Bayes's formula, it follows: 

𝑃(𝑥 𝜖 𝐶𝑖  | 𝑥 𝜖 ε(𝑥)) =
 𝑃(𝑥 𝜖 ε(𝑥) |  𝑥 𝜖 𝐶𝑖) 𝑃(𝑥 𝜖 𝐶𝑖)

𝑃(𝑥 𝜖 ε(𝑥))
 

Since we generated the same number of elements 
from each category, 𝑃(𝑥 𝜖 𝐶𝑖) =

1

𝑘
  and since 𝑛 

vectors fall into the ε(𝑥) we set (𝑥 𝜖 ε(𝑥))  =  
𝑛

𝑚⋅𝑘
 . 

The question arises of how to choose the size of the 
ε(𝑥) so that the appropriate number of generated 
vectors falls into it. For example, we want that 𝜇 =

𝑛

𝑚⋅𝑘
  be 0.1.  

We can proceed as follows: 

1) For all categories, we generate 𝑚 vectors 
𝑥𝑖 . 

2) We determine the distances of generated 
vectors 𝑥𝑖 from 𝑥, 𝑑𝑖 = |𝑥 − 𝑥𝑖|, and we 
sort them in ascending order. 

3) Then we put ε = |𝑥 − 𝑥𝑛| , where 𝑛 =  𝜇 ⋅

𝑚 ⋅ 𝑘 

Method 4(M4): We can modify Method 2 in the 
same way as Method 3. This will be the method 
4(M4). 
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Fig. 3: Variational autoencoder that learns 𝑃𝐶𝑖

(𝑥) 
 
 
4 Results 
We experimented with four proposed classification 
methods M1, M2, M3, and M4. They were 
evaluated using a small number of training data, 
specifically 1, 2, 5, 10, and 100 instances per 
category from the MNIST handwritten digits 
database. The performance of the proposed methods 
was measured using a testing dataset consisting of 
100 instances per category, totaling 1000 instances. 
The Generative Adversarial Network (GAN) is 
trained on the MNIST dataset, which is filtered to 
only include one digit category, resulting in 10 
separate GANs (𝐺𝐴𝑁𝑖). Each GAN consists of two 
main components: a generator and a discriminator. 
The generator model has a 100-dimensional latent 
input layer and is composed of three dense layers 
with batch normalization and ReLU activation. On 
the other hand, the discriminator model takes an 
image of 28x28 pixels as input and is constructed of 
three dense layers with ReLU activation, as well as 
an output layer with a sigmoid activation (see Model 
3.). All models were optimized using binary cross-
entropy loss and Adam optimizer with a learning 
rate of 0.0002 and a decay rate of 0.5. The training 
of each 𝐺𝐴𝑁𝑖 per digit, the category was carried out 
for 30,000 epochs. Due to the limited size of the 
training data, the process was efficient and took 
around 2-3 hours for each GAN model. 𝐺𝐴𝑁𝑖 
generators were trained for individual data variants 
of the following 1, 2, 5, 10, and 100 instances per 
category. After they have been trained, they can be 
used for classification, because the output of 
individual 𝐺𝐴𝑁𝑖 we have probability estimates of 
individual P(𝑥 𝜖 𝐶𝑖) categories. The results of the 
proposed methods M1, M2, M3, and M4 were 
compared with the discriminator results of the GAN 
model, which was used as a baseline for 
comparison. The discriminator's classification 
accuracy was 38.2% for 1 training instance per 
category, 42.1% for 2 training instances per 
category, 56.9% for 5 training instances per 
category, 61.2% for 10 training instances per 
category, and 89.3% for 100 training instances per 
category. These results are summarized in column 
‘Discriminator result accuracy’ in Table 1. In the 

initial stage of our experiments, we evaluated the 
performance of Method 1 with various parameter 
combinations. To ensure compatibility with low-
performance computers, we selected the parameters 
m=100 and N=1 as a reasonable configuration for 
conducting experiments. For the M3, we used 
parameters m=100 and = 0.1 . The results of 
classification using M1 and M3 were evaluated 
using different amounts of training data from each 
category of the MNIST handwriting digit dataset. 
The classification accuracy of M1 ranged from 
41.3% to 66.4% and that of M3 ranged from 41.9% 
to 66.7%. The change ratio in percentage compared 
to the discriminator's classification result showed 
that M1 performed better than the discriminator 
with 1-2 training data from each category, but the 
performance worsened as the amount of training 
data increased. The same trend was observed for 
M3, with a slightly better improvement over the 
discriminator for all amounts of training data 
compared to M1. Overall, the results indicate that 
both M1 and M3 performed better than the 
discriminator for small amounts of training data, but 
as the amount of data increased, their performance 
degraded compared to the discriminator's 
classification result. After experiments with 
methods M1 and M3, we carried out experiments 
with M2 and M4. The Variational 
autoencoder(VAE) of these methods uses the 
MNIST dataset, which contains images of 
handwritten digits, as input. The encoder network 
maps the input data to a lower-dimensional space 
(latent space=32), and the decoder network maps 
back from the latent space to the original input data. 
The sampling function implements the 
reparameterization trick, which is a technique to 
ensure that the sampling of the latent code z is 
differentiable and can be backpropagated during 
training. The VAE encoder network consists of 
several Conv2D, Flatten, and Dense layers(see 
Model 1.), and the VAE decoder network consists of 
several Conv2DTranspose, Reshape, and Dense 
layers(See Model 2.).The VAE is trained using the 
mean squared error loss. In the initial stage of our 
experiments, we evaluated the performance of 
Method 2 with various parameter combinations. To 
ensure compatibility with low-performance 
computers, we selected the parameters m=100 and 
N=1 as a reasonable configuration for conducting 
experiments. For the modification of M2 (Method 
4), we used parameters m=100 and 𝜇 = 0.1 See 
Table 1. for more details. The proposed methods 
showed better results with smaller training data sets, 
but their performance worsened as the number of 
training data increased. The modified versions of 
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Method 1 (M3) and Method 2 (M4) performed 
better than their original forms (M1 and M2) 
respectively. The best results were obtained with the 
smallest training data sets (1, 2, 5, and 10). 
However, the proposed methods performed poorly 
with larger training data sets, with the best 
performance being 16,75% better and the worst 
being 21.16% worse.  
 
 
5 Discussion 
In our article, we propose a new way to use GAN 
networks for solving classification tasks for which 
we only have a limited amount of training data. The 
learned GAN networks are not used to expand the 
training set and to subsequently learn a layered 
convolutional network. Instead, we will use the 
learned GAN networks only in the decision-making 
phase to simulate the conditional distributions of 
individual categories. Although this simulation is 
computationally somewhat more difficult than 
obtaining the decision of a trained convolutional 
network, it is still manageable. The results we 
obtained show that algorithms of this type could 
give better results for very small training sets. For 
larger data sets, it turns out that the classic method 
of expanding the training set and then learning a 
classic convolutional neural network on the 
expanded training set will probably give better 
results. Using a more complex architecture of GAN 
and VAE networks and further experimenting with 
parameters during their learning would probably 
lead to an increase in classification accuracy. The 
results of our experiments indicate that the data 
generated by the trained GAN has a significant 
amount of noise and deviates from the original data. 
To overcome this limitation, we propose to 
investigate and implement noise removal techniques 
in the GAN-generated training data in future work. 
Our evaluation of the testing data showed that the 
proposed classification methods are ineffective 
when applied to rotated data. To resolve this, we 
recommend augmenting the training data with 
rotations. By adding rotated versions of the training 
data, the classification models would have more 
exposure to this type of variation and may be better 
equipped to handle it. Additionally, it may be useful 
to explore other data augmentation techniques 
beyond rotations, such as scaling, flipping, or 
adding noise, to further improve the robustness of 
the models to different types of variations. Overall, 
it is important to carefully experiment and evaluate 
different approaches to data augmentation to find 
the best strategy for improving the performance of 
the proposed classification methods. 

6 Conclusion 
It's good that the proposed classification methods 
hold the potential for improving performance when 
limited training data is available. Even if they are 
not significantly better than the existing GAN 
discriminator model, they may still have value in 
certain contexts. Regarding the suggestion to 
experiment with more complex models and training 
parameters, it's important to carefully consider the 
trade-offs between model complexity and 
generalization performance. Increasing the 
complexity of the models and the number of training 
parameters can lead to better performance on the 
training data, but can also increase the risk of 
overfitting and decrease performance on new, 
unseen data. Therefore, it's important to evaluate the 
performance of the models on both the training and 
testing data and use techniques such as cross-
validation to ensure that the models are not 
overfitting. Additionally, it may be helpful to 
explore other approaches to improving performance, 
such as ensemble methods or transfer learning, 
which can leverage the strengths of multiple models 
and improve generalization performance without 
requiring significant increases in model complexity. 
  
 
7 Future Work 
To further improve the performance of classification 
methods M2 and M4 we propose to combine the 
learning of the autoencoder. VAE with clustering. 
Combining clustering of the latent space of the 
autoencoder is an interesting idea that could 
potentially improve the performance of the proposed 
classification methods. By clustering the latent 
space, it may be possible to identify more 
meaningful and interpretable subgroups of data that 
can be used to improve the accuracy of the 
classification models. However, it's important to 
note that clustering in the latent space can also be 
challenging, as it requires selecting appropriate 
clustering algorithms, hyperparameters, and 
evaluation metrics. Additionally, it may be 
necessary to balance the trade-off between 
increasing the complexity of the model and 
improving its performance, as clustering can add 
additional computational costs and may also 
increase the risk of overfitting. Overall, the 
proposed idea of combining clustering with 
classification methods is promising, but it will 
require careful experimentation and evaluation to 
determine its effectiveness. Lastly, it is 
recommended to conduct experiments using higher 
computational resources to obtain more accurate and 
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reliable results. With more computational resources, 
it may be possible to train larger and more complex 
models, increase the number of training epochs, and 
experiment with a wider range of hyperparameters, 
which could lead to better performance and more 
robust conclusions. It should be noted that the 
experiments were conducted using personal 
computers with limited computational resources, 
resulting in small training models and a limited 
number of training epochs for both GANs and 
VAEs. We recommend repeating the experiments 
using higher computational resources for better 
results. 
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Appendix 

 
Model 1. VAE encoder model 

Layer(type) Output Shape Param# Connected to 

encoder_input(InputLayer) [(None,28,28,1)] 0 [] 

conv2d(Conv2D) (None,14,14,512) 5120 ['encoder_input[0][0]'] 

conv2d_1(Conv2D) (None,7,7,1024) 4719616 ['conv2d[0][0]'] 

flatten(Flatten) (None,50176) 0 ['conv2d_1[0][0]'] 

dense(Dense) (None,400) 20070800 ['flatten[0][0]'] 

z_mean(Dense) (None,100) 40100 ['dense[0][0]'] 

z_log_var(Dense) (None,100) 40100 ['dense[0][0]'] 

z(Lambda) (None,100) 0 ['z_mean[0][0]','z_log_var[0][0]'] 

 

 

Model 2. VAE decoder model 
Layer (type) Output Shape Param # 

z_sampling(InputLayer) [(None,100)] 0 

dense_1(Dense) (None,50176) 5067776 

reshape(Reshape) (None,7,7,1024) 0 

conv2d_transpose(Conv2DTranspose) (None,14,14,1024) 9438208 

conv2d_transpose_1(Conv2DTranspose)l (None,28,28,512) 4719104 

 
 

Model 3. Discriminator model of the GAN 
Layer (type) Output Shape Param # 

Input layer (InputLayer) [(None, 784)]  0 

Dense_1 (Dense) (None, 512) 401920 

Dense_2 (Dense) (None, 256) 131328 

Dense_3 (Dense) (None, 128) 32896 

Output_4(Dense) (None, 1) 129 
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Table 1. Results of four proposed methods. 

 

Number of 

train data 

Number of test 

data 

Discriminator 

result Accuracy 

Proposed 

Method Result 

accuracy Ratio in percentage 

M1 1 100 38,2 41,3 108,12% 

 
2 100 42,1 43,6 103,56% 

 
5 100 56,9 57,4 100,88% 

 
10 100 61,2 61,8 100,98% 

 
100 100 89,3 66,4 74,36% 

M3 1 100 38,2 41,9 109,69% 

 2 100 42,1 43,8 104,04% 

 
5 100 56,9 58,3 102,46% 

 
10 100 61,2 61,3 100,16% 

 
100 100 89,3 66,7 74,69% 

M2 1 100 38,2 44,6 116,75% 

 
2 100 42,1 47,1 111,88% 

 
5 100 56,9 63,2 111,07% 

 
10 100 61,2 67,4 110,13% 

 
100 100 89,3 71,3 79,84% 

M4 1 100 38,2 44,2 115,71% 

 2 100 42,1 47,3 112,35% 

 
5 100 56,9 62,9 110,54% 

 
10 100 61,2 67,2 109,80% 

 
100 100 89,3 71,9 80,52% 
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