0 500 1000 1500 2000 2500 3000
-1.0
-0.5
0.0
0.5
Steps
LCEs
Figure 8: LE1= 0.001, LE2=−0.124, LE3=
−0.127, LE4=−0.639.
References
[1] A. Lyapunov, G. Bagrinovskaja. On
Methodological Issues in Mathematical
Biology, Mathematical modeling in bi-
ology. - M, pp.5-18,1974.
[2] G.Demidenko, N. Kolchanov, V. Li-
hoshvai, J. Matushkin, S. Fadeev.
Mathematical modeling of regular con-
tours of gene networks, Journal of
computational mathematics and math-
ematical physics, vol.12, 22762295,
2004.
[3] B. D. MacArthur, P. S. Stumpf, R.
O.C.Oreffo. From mathematical mod-
eling and machine learning to clinical
reality, Principles of Tissue Engineer-
ing (Fifth Edition), pp.37-51, 2020.
[4] C. Furusawa, K. Kaneko. A
generic mechanism for adaptive
growth rate regulation. PLoS
Comput Biol 4(1), 2008: e3.
doi:10.1371/journal.pcbi.0040003
[5] H.D. Jong. Modeling and Simulation
of Genetic Regulatory Systems:
A Literature Review, J. Com-
put Biol. 2002;9(1):67-103, DOI:
10.1089/10665270252833208
[6] F. Sadyrbaev, I. Samuilik, V. Sen-
gileyev. On Modelling of Genetic Regu-
latory Networks. WSEAS Transactions
on Electronics, vol. 12, pp. 73-80, 2021
[7] I. Samuilik, F. Sadyrbaev, D.
Ogorelova. Mathematical modeling of
three-dimensional genetic regulatory
networks using logistic and Gompertz
functions, WSEAS Transactions on
systems and control, pp.101-107, 2022.
DOI: 10.37394/23203.2022.17.12
[8] J. Berro. Essentially, all models are
wrong, but some are useful-a cross-
disciplinary agenda for building use-
ful models in cell biology and bio-
physics, Biophysical Review, 10(6), pp.
16371647, 2018. DOI:10.1007/s12551-
018-0478-4.
[9] O. Kozlovska, F. Sadyrbaev. Models
of genetic networks with given prop-
erties, WSEAS Transactions on com-
puter reserch, pp. 43-49, 2022. DOI:
10.37394/232018.2022.10.6
[10] Y.Koizumi et al. Adaptive Virtual Net-
work Topology Control Based on At-
tractor Selection. J. of Lightwave Tech-
nology, (ISSN :0733- 8724), Vol.28
(06/2010), Issue 11, pp. 1720-1731
DOI:10.1109/JLT.2010.2048412.
[11] A.Das, A.B.Roy, Pritha Das. Chaos
in a three dimensional neural net-
work. Applied Mathematical Mod-
elling, 24(2000), 511-522.
[12] I. Samuilik, F. Sadyrbaev, S. Atslega.
Mathematical modelling of nonlinear
dynamic systems, Engineering for Ru-
ral Development, 21, pp. 172-178,2022.
[13] M. Sandri. Numerical calculation of
Lyapunov exponents, The Mathemat-
ica Journal, 1996.
[14] S. Lynch. Dynamical Systems with
Applications Using Mathematica.
Springer, 2017.
[15] I.Samuilik. Genetic engineering-
construction of a network of four
dimensions with a chaotic attractor,
WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2022.10.15