[20]. B. Doh, D. Zhang, Y. Shen, F. Hussain, R. F.
Doh and K. Ayepah, "Automatic Citrus Fruit
Disease Detection by Phenotyping Using
Machine Learning," 2019 25th International
Conference on Automation and Computing
(ICAC), pp. 1-5,2019. doi:
10.23919/IConAC.2019.8895102.
[21]. Inkyu Sa, Zongyuan Ge, Feras Dayoub, Ben
Upcroft, Tristan Perez, Chris McCool,
“DeepFruits: A Fruit Detection System Using
Deep Neural Networks” sensors, vol.16, No. 08,
pp. 1-23, 2016.
https://doi.org/10.3390/s16081222.
[22]. Heena Shaikh, Yashashree Wagh, Siddhesh
Shinde, Shankar M. Patil, “Classification of
Affected Fruits using Machine Learning”,
International Journal of Engineering Research &
Technology (IJERT), vol.9, no.7, pp. 1541-
1547,2021.
[23]. Jamil Ahmad , Bilal Jan , Haleem Farman ,
Wakeel Ahmad and Atta Ullah, “Disease
Detection in Plum Using Convolutional Neural
Network under True Field Conditions”, Sensors,
Vol. 20, no.9, pp. 1–18, 2020.
https://doi.org/10.3390/s20195569
[24]. Ganeshan Mudaliar, Rashmi Priyadarshini B.K,
“A Machine Learning Approach for Predicting
Fruit Freshness Classification”, International
Research Journal of Engineering and Technology
(IRJET), Vol. 08, no. 05 , pp. 2979-2983,2021.
[25]. Guichao Lin, Yunchao Tang, Xiangjun Zou,
Jiabing Cheng, Juntao Xiong, “Fruit detection in
natural environment using partial shape matching
and probabilistic Hough transform”, Precision
Agriculture, Vol.21, pp. 160–177, 2020.
https://doi.org/10.1007/s11119-019-09662-w.
[26]. Alexey Bochkovskiy, Chien-Yao Wang, Hong-
Yuan Mark Liao, “YOLOv4: Optimal Speed and
Accuracy of Object Detection”,
arXiv:2004.10934v1,2020.
[27]. Shaoqing Ren, Kaiming He, Ross Girshick, Jian
Sun, Faster R-CNN: Towards Real-Time Object
Detection with Region Proposal Networks,
arXiv:1506.01497v3, pp 1-14,2016.
[28]. Protik, Adban & Hossain, Amzad & Siddique,
Shahnewaz,“Real-time Personal. Protective
Equipment (PPE) Detection Using YOLOv4 and
TensorFlow”, 2021 IEEE Region 10 Symposium
(TENSYMP), pp. 1-6, 2021. DOI:
10.1109/TENSYMP52854.2021.9550808.
[29]. Anna Kuznetsova, Tatiana Maleva and
Vladimir Soloviev, Using YOLOv3 Algorithm
with Pre- and Post-Processing for Apple
Detection in Fruit-Harvesting Robot”,
Agronomy, Vol. 10, no. 1016, pp. 1-19, 2020.
doi:10.3390/agronomy10071016.
[30]. WenYu Feng,1 YuanFan Zhu,2 JunTai Zheng,1
and Han Wang, “Embedded YOLO: A Real-
Time Object Detector for Small Intelligent
Trajectory Cars “Mathematical Problems in
Engineering, vol. 2021, Article, pp. 1-11, 2021.
https://doi.org/10.1155/2021/6555513.
[31]. Dongwei Guo, Lufei Cheng, Meng
Zhang,Yingying Sun, “Garbage detection and
classification based on improved YOLOV4”,
Journal of Physics: Conference Series, 2024
012023, pp. 1-8, 2021. doi:10.1088/1742-
6596/2024/1/012023.
[32]. Zicong Jiang1 , Liquan Zhao , Shuaiyang Li
And Yanfei Jia, “Real-Time Object Detection
Method based on improved YOLOv4-tiny”,
Computer vision and pattern recognition, pp.1-
11, 2020.
https://doi.org/10.48550/arXiv.2011.04244 .
[33]. Silva, L.A.; Sanchez San Blas, H.; Peral García,
D.; Sales Mendes, A.; Villarubia González, G.
“An Architectural Multi-Agent System for a
Pavement Monitoring System with Pothole
Recognition in UAV Images”, Sensors vol. 20,
no. 21, pp. 1-23. 2020,
https://doi.org/10.3390/s20216205.
Contribution of individual authors to
the creation of a scientific article
(ghostwriting policy)
Priyanka Kanupuru contributed for the execution of
algorithms and analysis of results.
N V Uma Reddy contributed for the analysis of
results.
Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)
This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US
WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2022.10.10
Priyanka Kanupuru, N. V. Uma Reddy