11 and 12, to detect instability and its scale se-
lection. This is demonstrated with an initial so-
lution containing unstable wavenumbers for early
time explosion of numerical solution. It is not nec-
essary to use such initial condition for instability,
as the round-o error inherent in computing, will
have the seed of the unstable wavenumber, capa-
ble of triggering the eventual instability in long
time solution.
The present work shows unequivocally that
RK3, RK4 time integration schemes are manda-
tory in using Fourier spectral method for spa-
tial discretization in order to ensure the necessary
condition of numerical stability for high Reynolds
number ow computations. For required accuracy
in DNS, one must thereafter investigate for the
sucient condition of ensuring negligible disper-
sion error, as given in Eqn. (10). In future, de-
tailed analysis considering errors due to phase and
signal propagation will be performed in order to
ne tune the simulation parameters for both the
necessary and sucient conditions.
Declaration of Interests
The authors report no conict of interest.
References:
[1] Beale J. T., Kato T., & Majda A., Remarks
on the breakdown of smooth solutions for the
3-D Euler equations, Commun. Math. Phys.,
94, 61-66 (1984)
[2] Bhaumik S., & Sengupta T. K., Precursor of
transition to turbulence: Spatiotemporal wave
front, Phys. Rev. E, 89(4), 043018 (2014)
[3] Bracco A., & McWilliams J. C., Reynolds-
number dependency in homogeneous, sta-
tionary two-dimensional turbulence, J. Fluid
Mech., 646, 517-526 (2010)
[4] Buaria D., Bodenschatz E., & Pumir A., Vor-
tex stretching and enstrophy production in
high Reynolds number turbulence, Phys. Rev.
Fluids, 5(10), 104602 (2020)
[5] Buaria D., Pumir A. & Bodenschatz E., Self-
attenuation of extreme events in Navier–Stokes
turbulence, Nat. Commun., 11, 5852 (2020)
[6] Buaria D., & Sreenivasan K. R., Dissipation
range of the energy spectrum in high Reynolds
number turbulence, Phys. Rev. Fluids, 5(9),
092601 (2020)
[7] Choi Y., Kim B., & Lee C., Alignment of ve-
locity and vorticity and the intermittent distri-
bution of helicity in isotropic turbulence, Phys.
Rev. E. 80(1), 017301 (2009)
[8] David Cl., Sagaut P., & Sengupta T., A lin-
ear dispersive mechanism for numerical error
growth: spurious caustics, Euro. J. Mech. -
B/Fluids, 28(1), 146-151 (2009)
[9] Doering C. R., The 3D Navier-Stokes problem,
Ann. Rev. Fluid Mech., 41, 109-128 (2009)
[10] Donzis D. A., & Yeung P. K., Resolution ef-
fects and scaling in numerical simulations of
passive scalar mixing in turbulence, Physica
D: Nonlinear Phenomena, 239(14), 1278-1287
(2010)
[11] Donzis D. A., Yeung P. K., & Sreenivasan
K. R., Dissipation and enstrophy in isotropic
turbulence: Resolution eects and scaling in
direct numerical simulations, Phys. Fluids.
20(4), 045108 (2008)
[12] Eswaran V., & Pope S. B., An examination of
forcing in direct numerical simulations of tur-
bulence, Computers & Fluids, 16(3), 257-278
(1988)
[13] Frisch U., Turbulence: The Legacy of A.
N. Kolmogorov, Cambridge Univ. Press, UK
(1995)
[14] Ishihara T., Gotoh T., & Kaneda Y., Study of
high–Reynolds number isotropic turbulence by
direct numerical simulation, Ann. Rev. Fluid
Mech., 41, 165-180 (2009)
[15] Ishihara T., Morishita K., Yokokawa M.,
Uno A. & Kaneda Y., Energy spectrum in
high-resolution direct numerical simulations of
turbulence, Phys. Rev. Fluids, 1(8), 082403
(2016)
[16] Kaneda Y., Ishihara T., Yokokawa M.,
Itakura K., & Uno A., Energy dissipation rate
and energy spectrum in high resolution direct
numerical simulations of turbulence in a peri-
odic box, Phys. Fluids, 15(2), L21-L24 (2003)
[17] Lamorgese A. G., Caughey D. A., & Pope
S. B., Direct numerical simulation of homo-
geneous turbulence with hyperviscosity, Phys.
Fluids, 17(1), 015106 (2005)
[18] Moin P., & Mahesh K., Direct numerical sim-
ulation: A tool in turbulence research, Ann.
Rev. Fluid Mech., 30, 539-578 (1998)
[19] Orszag S., & Patterson G., Numerical
Simulation of three-dimensional homogeneous
isotropic turbulence, Phys. Rev. Lett., 28(2),
76-79 (1972)
WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2022.10.2
Tapan K. Sengupta, Vajjala K. Suman,
Prasannabalaji Sundaram, Aditi Sengupta