
Over the last 10 years, the unmanned aerial vehicles (UAV)
market has witnessed rapid evolution and exponential growth
in a wide range of applications such as natural resource man-
agement, site monitoring, etc. Most existing drones these days
should not be operated beyond direct line of sight and therefore
use 2.4 and 5 GHz Wi-Fi for connectivity. Although current
cellular networks were designed to meet the communication
needs of user equipments (UEs) at low altitudes, they also
represent a very promising connectivity solution for UAVs,
as they offer wide coverage, quality broadband and secure
connectivity. However, to further meet the UAV needs, existing
cellular networks (like Long Term-Evolution (LTE) LTE and
5G networks) must integrate evolution to provide them with
even better reliable, flexible and ubiquitous connectivity. To
do so, the third-Generation Partnership Project (3GPP ) has
been developing new key performance indicators (KPIs) for
enhanced LTE Support for Connected Drones [1]–[3]. For
instance, Release-15 studied UAVs-dedicated models for Line
of Sight (LoS) probability, pathloss and shadowing in order to
enable robust and uninterrupted services to drones. Despite the
efficiency of the proposed models in Release-15, integrating
UAVs into the current cellular networks still suffer from
several challenges:

• Current cellular networks are mainly designed to serve
terrestrial users, thus requiring to down-tilt the antennas.
Consequently, some drones may be served by side lobe
of the antenna and may suffer from coverage holes in the
sky due to the nulls in the antennas radiation pattern [4].

• At high altitude, the radio waves channel of BS-drones
travel freely without obstacles. Subsequently, the channel
of BS-drones is LoS with a high probability, and a drone
may receive signals from many neighboring cells with a
strong power level resulting in more interference in the
down-link direction. This interference, if not properly
controlled, may degrade the performance of the wireless
communication network for both terrestrial and aerial
users.

• Ensuring stable and robust connection for a flying drone
represents a major challenge in future mobile networks.
Indeed, depending on its speed and trajectory, a drone
may perform unnecessary additional handovers compared
to ground users that may lead to “ping-pong” between
serving cell, resulting in a loss of radio connectivity,
and deteriorate the Quality of Service (QoS) of BS-
drone connectivity. In such scenario, managing the HOs
among cells becomes an important issue to ensure robust
connectivity.

In this paper, we focus on Reinforcement Learning (RL)
algorithms in order to optimise the number of HOs in different
network environments: Rural, Semi-rural or Urban. To this
end, the drone attempts to minimize the number of HOs
while maximizing the RSRP values. Therefore, the objective
function contains two factors: 1-The RSRP value of the serving
cell and 2- a penalty when performing a HO.
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Abstract: The demand for services provided by Unmanned Aerial Vehicles (UAVs) is increasing pervasively across several 
sectors including potential public safety, economic, and delivery services. As the number of applications using UAVs 
grows rapidly, more and more powerful, quality of service, and power efficient computing units are necessary. Recently, 
cellular technology draws more attention to connectivity that can ensure reliable and flexible communications services for 
UAVs. In cellular technology, flying with a high speed and altitude is subject to several key challenges, such as frequent 
handovers (HOs), high interference levels, connectivity coverage holes, etc. Additional HOs may lead to “ping-pong” 
between the UAVs and the serving cells resulting in a decrease of the quality of service and energy consumption. In order 
to optimize the number of HOs, we develop in this paper a Q-learning-based algorithm. While existing works focus on 
adjusting the number of HOs in a static network topology, we take into account the impact of cells deployment for three 
different simulation scenarios (Rural, Semi-rural and Urban areas). We also consider the impact of the decision distance, 
where the drone has the choice to make a switching decision on the number of HOs. Our results show that a Q-learning-
based algorithm allows to significantly reduce the average number of HOs compared to a baseline case where the drone 
always selects the cell with the highest received signal. Moreover, we also propose which hyper-parameters have the largest 
impact on the number of HOs in the three tested environments, i.e. Rural, Semi-rural, or Urban.  
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ML algorithms have substantially increased in various
research domains and applied fields especially in cellular
technologies. They grow fast and extensively to handle the
mobility management in cellular networks. In [5], the authors
use RL algorithms in order to optimize handovers with user
mobility under a dynamic small-cell network. In [6], the
authors combine fuzzy-based function with the Q-Learning
to control and optimize the HO and load balancing issue. By
considering the velocities and locations of a user, the authors
of [7] attempt to maximize the throughput of the terrestrial
users under a given location and velocity by using RL optimal
HO decision-making policy. The works of [8] implement a
hidden Markov process in order to reduce latency mobile
networks, learn the optimal control for HOs, and predict the
next connected access point.

In [9], the authors propose a novel method to minimize
the interference in a cellular network caused by the drones
on the ground users using deep RL algorithms. In [10],
cell selection and handover measurements are discussed for
drones connected to an LTE in a suburban environment.
Simulations show the increasing in the number of the HOs
while increasing flight altitude. As discussed in the prior
work, mobility challenges pertaining to drone communications
is widely suggested in the literature. While, efficient HOs
optimization for drone has received little attention. To this
end, in this work, a HO mechanism based on Q-learning is
investigated in different topology of cellular connected drone
networks, i.e. Rural, semi-Rural, or Urban. We also suggest
the impact of the hyper-parameters on the average number of
HOs.

In this work, we consider three cellular networks topologies,
each consisting of different number of geo-spatially deployed
ground Base stations (BSs) in order to serve the UAVs. These
latter are supposed to fly in a two-dimensional (2D) trajectory
with a fixed height hUAV . While flying, an UAV may operate
several HOs by switching from a BS to another in order to
maintain reliable connectivity. Several factors may lead to a
HO process such as the BS distribution, the received signal at
the UAV, its speed, height or trajectory.

Let K represent the number of the base stations separated
by a distance dBS , and C represent the number of cells per
base station. Three types of cellular network are considered,
i.e. Rural, Semi-rural, and Urban, with an area of same length
L = {−l/2,+l/2} and width W = {−w/2,+w/2} but
different K and dBS by taking into account the base station
deployment in each environment. Propagation Path Loss (PL)
estimation is an important constraint to formulate and design
cellular networks. Generally, PL can be influenced by terrain
contours, environment (Urban or Rural), propagation medium
(dry or moist air), the distance between the transmitter and the
receiver, and the height and location of antennas. We use two

different definition of the PL, for Rural or Urban environment,
introduced in the 3GPP reference as follows [1]:

PL{Rural} = max(23.9−1.8∗log10(hUAV , 20)∗log10(d3D)+

20 ∗ log10(
40 ∗ π ∗ fc

3
) (1)

PL{Urban} = 28 + 22 ∗ log10(d3D) + 20 ∗ log10(fc) (2)

where hUAV donates the height of the drone, d3D represents
the 3D distance from the drone to the base station, and fc
is the transmission bandwidth. For a more realistic model,
we also consider the standard deviation (σ) of the shadowing
propagation in the environment defined in [1] as follows:

σ{Rural} = 4.2 ∗ exp(−0.0046 ∗ hUAV ) (3)

σ{Urban} = 4.64 ∗ exp(−0.0066 ∗ hUAV ) (4)

To evaluate the quality of the signal, we mainly focus on
the Reference Signals Received Power (RSRP ) as introduced
in [11]:

RSRP = Ptx−10∗ log10(12∗fc)−PL−Sh+GUAV +GK

where Ptx represents the maximum transmit power from the
base station, Sh donates the probability density function of
the shadowing with a standard deviation σ. GUAV and GK

respectively represent the antenna gain of UAV and the BSs.

At first, N drone trajectories are generated in order to train
and test the RL algorithm: 2N/3 are used to train the model
and N/3 for testing.

We note that, the initial location and the destination for
each trajectory are generated in the range of {−l/4, l/4}
and {−w/4, w/4} in order to avoid border effect, dropped
calls, access failures, and dead zones. We suppose that each
trajectory is divided into several waypoints with a distance
dUAV between them. As long as the initial and final location
for each trajectory are randomly generated, then each of them
may have different length with different number of waypoints.
When the initial location of each trajectory has been generated,
the drone selects the shortest path to reach the final location.
In particular, the drone selects a movement direction θs ∈
{r.π/4, r = 0, 1, ..., 7} and moves in a fixed distance dUAV

to get the next waypoint. This procedure is repeated until the
drone reaches its final destination.

Let xs and ys represent the 2D drone’s position, and cs
being the currently connected cell. We subsequently define
s = {xs, ys, θs, cs} as the state of the drone at each waypoint.
Using eq. 3, we can obtain the RSRP value for the k-strongest
cells at each waypoint in the environment in which we define
Cks that contains the k strongest cells at state s.

At each waypoint, the drone has to make an action A
by selecting a serving cell among the k-strongest cells. We
note that decision-making approaches are better in the long
run as compared to the baseline approaches in which the

2. Related Works  

3. System Model 

3.1 Environment Generator

3.2 Drone Trajectory Generator 
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drone always selects the cell with the highest RSRP value.
Indeed, using the RL algorithms, especially the Q-learning,
may significantly reduce the average number of HOs and
prevent the “ping-pong” effect between the drone and serving
cells. Moreover, it improves the Quality of service and reduce
the overall energy consumption.

Reinforcement Learning (RL) is a popular ML algorithm for
sequential decision making in which an agent interacts with its
environment aiming to find the optimal action that maximizes
the reward received from the environment [12]. RL is often
described using a Markov decision process defined by a tuple
(S,A, T,R):

• S donates a finite set of states,
• A donates a finite set of actions,
• T : S × A → Pr(S) is referred to the transition

probability over the states,
• R : is a reward function.

At each time slot, the agent observes the state s ∈ S,
takes an action a, and finally receives the reward r from
the environmental feedback. The main goal of the agent is
to enhance its action a while maximizing the accumulated
reward. With this information, the Markov decision process
can be solved to get the optimal policy, i.e. the action to take at
each time slot that maximizes the expected sum of discounted
rewards. Q-learning [13] is a model-free RL algorithm to learn
the optimal policy in a given state. Let us define the Q-value
Qπ(s, a) for a policy π as the expected rewards when the agent
takes an action a in state s and chooses actions according
to the policy π thereafter. The actions with the highest Q-
values for each state provide the optimal policy [11], [13].
By selecting the action with the highest Q-value, the agent
will eventually learn the optimal policy Q∗(s, a) over time.
Let Qt(s, a) denote the obtained Q-value at time t when the
agent makes an action a in a state s. Therefore, the agent
receives reward rt+1 and transitions to state s′. Therefore, the
new Q-value can be obtained using the following expression:

Qt+1(s, a) = (1−α)∗Qt(s, a)+α[rt+1+λ∗max
a′∈A

Qt(s
′, a′)]

(5)
where α ∈ [0, 1) is the learning rate, λ ∈ [0, 1) gives the
discount factor. Its full procedure is listed in Algorithm 1. The
reward r received at each waypoint may combine between the
RSRP and the HOs. We note that the main goal of the UAV
is not only to reduce the average number of HOs but also
maintain reliable connectivity. Then, the received reward r be
the weighted combination between the RSRP and the HO cost
defined as follows:

r = WRSRP ∗RSRP −WHO ∗ I(HO) (6)

where I(HO) = 1 if the serving cells at the current state and
last one is different, and 0 otherwise. RSRP represents the
obtained RSRP value from the serving cell.

Algorithm 1 Q-learning algorithm to optimize the HOs

1: Input parameters:
2: α, λ, ϵ, WRSRP , WHO

3: cs: represents the currently connected cell at state s,
4: RSRPs: represents the RSRP value of the selected cell at s,
5: ri: represents the obtained reward at the i-th waypoint,
6: Initialization:
7: while done==0 do
8: #done = 1 indicates that the drone arrives to its
9: #destination, and 0 otherwise,

10: if cs ̸= cs′ then
11: HO=1
12: else
13: HO=0
14: end if
15: ri = RSRPs′ .WRSRP −HO.WHO,
16: i = i+ 1,
17: end while
18: for Training step ≤ 2.N

3 do
19: #Generate a random trajectory:
20: T = {(xi, yi, θi) | i = 0, 1, ..., l − 1},
21: State s = {xs, ys, θs, cs},
22: Action a: represents the selected action at state s,
23: while done==0 do
24: if ϵ > ζ (a uniform random variable ∈ [0, 1]) then
25: select a random action a
26: else
27: select the optimal action a∗:
28: a∗ = maxa∈A Qi(s, a)
29: end if
30: Qi(s, a) = (1− α) ∗Qi(s, a) + α[ri+
31: λ ∗maxa′∈A Qi+1(s

′, a′)],
32: s = s′,
33: i = i+ 1,
34: end while
35: end for

We evaluate the performance of the RL-based HO mech-
anism, with different weight, compared to the baseline case
in which the drone always connects to the strongest cell. For
each flight trajectory, we calculate a performance metric called
HO ratio which we define as the ratio of the number of HOs
using the proposed scheme to that for the baseline scheme.

At first, we generate three environments with different
number of BS and distance between BSs d as follows:

• Rural: 9 BSs with a distance dBS = 3000 m between
BSs,

• Semi-Rural: 25 BSs with a distance dBS = 1500 m
between BSs,

• Urban: 100 BSs with a distance dBS = 500 m between
BSs.

where each BS has 3 cells.

3.3 Q-learning

3.4 Experimental Processes 
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Fig. 1: Rural environment: hUAV = 120 m, 9 BSs, dBS = 3000 m

As an illustrative example, Fig. 1 shows the strongest cell
at each waypoint in a Rural environment1.

We compare the number of HOs using the Q-learning
algorithm, with different values of WRSRP and WHO, to the
baseline. Three main cases of weights can be considered:

• WHO = WRSRP

• WHO > WRSRP

• WHO < WRSRP

For the special case when there is no HO cost (i.e. WHO =
0), the proposed RL-based HO scheme is equivalent to the
baseline. As the ratio WHO/WRSRP increases, the number
of HOs decreases and the HO ratio approaches zero.

We simulate the performance using 30000 runs (20000 for
training and 10000 for testing) for the Q-learning. We also set
the Q-learning parameters as follows λ = 0.3, α = 0.5, and ϵ
= 0.2. For each run, the testing route is generated randomly as
explained in Section III-B. We compare the obtained results
with the baseline where the drone always selects the cell with
the highest RSRP value. For each network topology, we also
show the impact of the decision distance d, in which the drone
has the choice to switch to another cell, on the number of HOs.
Indeed, we suppose that the environment is divided into bins
of size d × d m2. For each bin, we obtain the k cells having
the strongest RSRP value in that bin. In total, we collect about
15000 samples of RSRP values for different drone locations at
an altitude of 120 m. RSRP samples are linearly normalized
and transformed to the interval [0, 1]. As the decision distance
increases, the number of HOs decreases.

In this section, we evaluate the performance of the Q-
learning in the three environments (i.e. Rural, Semi-rural,
Urban). We also investigate the impact of the decision distance
on the average number of HOs.

1Fig. 1 shows the RSRP values in each waypoint excluding shadowing in
order to clearly visualize the position of the BSs and easily show the geo-
graphical areas covered by 9 sectored BSs. However, in overall simulations,
we consider the shadowing to generate the different Network Topologies:
Rural, Semi-Rural or Urban.

Fig. 2: Average number of HOs in a Rural environment

In Fig. 2, we plot the average number of HOs for different
weight combinations WHO/WRSRP in a rural environment.
While the proposed scheme is approximately equivalent to the
baseline when there is no HO cost (i.e. WHO = 0), it can
reduce the number of HOs by 85%, compared to the baseline,
when WHO/WRSRP ≥ 1 (see Tab. I).

In Fig. 3, we compare the average number of HOs in three
different types of environment: Rural, Semi-Rural and Urban.
As we can see, the average number of HOs in the Semi-Rural
environment is enhanced by 77% compared to the baseline
in the case of WHO/WRSRP ≥ 1. As well as, in the Urban
environment the average number of HOs in a flight, in the case
of WHO/WRSRP = 1/1 and when WHO/WRSRP = 9/1,
is respectively enhanced by 41% and 29% compared to the
baseline case. As expected, the Q-learning algorithm performs
more efficiently in a Rural environment where there are fewer
cell candidates compared to an Urban one. However, Q-
learning algorithm still have a fundamental role to decrease
the average number of HOs in Rural or Urban environment.

Fig. 4 compares the average number of HOs in the Rural
environment with different decision distance. While in the
baseline case the average number of HOs is significantly
increased with the decision distance, this later could not
affect the HOs using the Q-learning. Indeed, in the case
of WHO/WRSRP ≥ 1, the average number of HOs is
approximately the same for the three decision distance case:
d = 50 m, 100 m, 150 m. Moreover, the average number of

HOs is decreased by 85% compared to the baseline case. We
note that, WHO/WRSRP < 1 represents the worst case in
terms of the average number of HOs.

Fig. 5 shows the average number of HOs in the semi-Rural

TABLE I: Average HOs in the three environment with d = 50 m

Topology Baseline Q-learning
0/1 1/1 9/1

Rural 11.7 12.4 (0%) 1.5 (87%) 1.7 (85%)
Semi-rural 17.8 18,1 (0%) 3.5, (80%) 4.1 (77%)

Urban 24.7 24.7 (0%) 14.5 (41%) 17.6 (29%)

4. Results and Discussion 
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Fig. 3: Compare the average number of HOs in different networks
topology: Rural, Semi-rural, Urban

Fig. 4: Compare the average number of HOs with different decision
distance in the Rural environment

environment with the three different decision distance cases.
While, the average number of HOs in overall cases is increased
compared to the Rural environment, it can be shown that the
average number of HOs for the case of WHO/WRSRP ≥ 1 is
slightly increased for the three decision distance: d = 50 m,
100 m, 150 m.

Finally, Fig. 6 shows the average number of HOs in the
Urban environment in which we notice a significant change
in terms of the average number of HOs for the three different
distance. Moreover, the case of WHO/WRSRP < 1, across
the three decision distance, still represents the worse case and
almost achieves the same average number of HOs as in the
baseline case.

In this work, we have used Q-learning algorithm for HO de-
cision making mechanism to achieve robust drone connectivity
in a cellular-connected drone network. Using 3GPP formulas,
we first generated three representative environments: Rural,
Semi-Rural and Urban. We tested the Q-learning algorithm
in the generated networks for a given flight trajectory. The

Fig. 5: Compare the average number of HOs with different decision
distance in the semi-Rural environment

Fig. 6: Compare the average number of HOs with different decision
distance in the Urban environment

simulation results have revealed that using Q-learning algo-
rithm can significantly reduce the number of HOs in the three
networks while maintaining reliable connectivity, compared to
the baseline HO scheme in which the drone always connects to
the strongest cell. Moreover, we investigated the performance
of Q-learning in the three environments while changing the
decision distance.

In future work, several points can be suggested such as
considering the 3D drone mobility to attempt obtaining even
more realistic simulation. Moreover, considering the case of
the multi-Mobile Network Operators (MNOs) still represents
an important task in order to make the model more realistic
than the case of a single MNO.
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