

Performance Simulation of a Traffic Sign Recognition based Neural

Network on Cadence’s Tensilica Vision P6 DSP using Xtensa Xplorer

IDE

NINAD PATIL1, VANITA AGARWAL2

Department of Electronics and Telecommunication1,2

College of Engineering, Pune1,2

INDIA

Abstract: - Advanced Driver Assistance System (ADAS) technology is currently in an embryonic stage. Many

multinational tech companies and startups are developing a truly autonomous vehicle that will guarantee the

safety and security of the passengers and other vehicles, pedestrians on roads, and roadside structures such as

traffic signal poles, traffic signposts, and other structures. However, these autonomous vehicles have not been

implemented on a large scale for regular use on roads currently. These autonomous vehicles perform many

different object detection/recognition tasks. Examples include traffic sign recognition, lane detection,

pedestrian detection. Usually, the person driving the vehicle performs these detection/recognition tasks. The

main goal of such autonomous systems should be to perform these tasks in real-time. Deep learning performs

these object recognition tasks with very high accuracy. The neural network is implemented on the hardware

device, which does all the computation work. Different vendors have many different hardware choices that suit

the client's needs. Usually, these neural networks are implemented on a CPU, DSP, GPU, FPGA, and other

custom-made AI-specific hardware. The underlying processor forms a vital part of an ADAS. The CNN needs

to process the incoming frames from a camera for real-time object detection/recognition tasks. Real-time

processing is necessary to take appropriate actions/decisions depending on the logic embedded. Hence knowing

the performance of the neural network (in terms of frames processed per second) on the underlying hardware is

a significant factor in deciding the various hardware options available from different vendors, which CNN

model to implement, whether the CNN model is suitable to implement on the underlying hardware depending

upon the system specifications and requirement. In this paper, we trained a CNN using the transfer learning

approach to recognize german traffic signs using Nvidia DIGITS web-based software and analyzed the

performance of this trained CNN (in terms of frames per second) by simulating the trained CNN on Cadence's

Xtensa Xplorer software by selecting Cadence's Tensilica Vision P6 DSP as an underlying processor for

inference.

Key-words - Traffic Sign Recognition (TSR), Convolutional Neural Networks (CNN, ConvNets), Multiply and

Accumulate (MACs), frames per second (fps), Digital Signal Processor (DSP), Graphics Processing Unit

(GPU), Xtensa Neural Network Compiler (XNNC), Xtensa Xplorer, Xtensa Processor Generator (XPG),

Vector Floating Point Unit (VFPU), Graphical User Interface (GUI)

Received: March 14, 2021. Revised: January 15, 2022. Accepted: February 16, 2022. Published: March 24, 2022.

1 Introduction

ADAS enables vehicles to become more aware of

their surroundings and, generally, safer to drive.

ADAS covers a few functions of traffic sign

recognition, automatic parking, adaptive cruise

control, collision avoidance, lane departure, vehicle

to vehicle communication, and Voice and Gesture

Recognition [1]. As the sensors in the vehicle

generate vast amounts of data per second, this data

must be processed in real-time to enable quick and

intelligent decision-making. Integrating all these

functionalities and processing this vast amount of

data is challenging and requires a unique design

approach. Typically, the chips which perform these

functionalities must have high compute performance

(>1000GMA/s), high memory bandwidth (up to

1Gb to support high-resolution image/video

streams), Hi-speed I/O, and providing optimal

power, performance, and area ratio. The figure

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2022.10.5 Ninad Patil, Vanita Agarwal

E-ISSN: 2415-1521 35 Volume 10, 2022

below shows an integrated ADAS SoC

architecture[1].

Fig.1 Integrated ADAS SoC Architecture[1]

To enable a safer driving experience, each vehicle

will need to exchange vast amounts of data in real-

time with other vehicles and roadside units present

in the surroundings. Camera, ultrasound, radar

sensors, and the LiDAR system are strategically

placed inside and around the car. Front/Rear/Side

view monitoring systems and driver monitoring

systems are various safety systems[2]. These

sensors are coupled with sophisticated AI/machine

learning algorithms (deep learning) to aid quick and

intelligent decision-making. Usually, an AI

processor takes care of all the intense computation

requirements of the algorithms.

Fig.2 Various sub-systems within an ADAS

environment[1]

The DSP used in this project is Tensilica’s Vision

P6 DSP. The figure below shows the internal block

diagram of the DSP.

Fig.3 Vision P6 DSP Block Diagram[3]

The Vision P6 DSPs from Cadence is designed to

perform image processing, computer vision & AI-

specific operations efficiently[3]. Features that make

this processor favorable for these tasks are as

follows[3]: -

 Specially tailored Instruction sets for

performing Image processing/AI-specific tasks

(Add, Sub, Compare, Matrix Multiplication,

Divide).

 New instructions which give an increased math

throughput

 An increased number of MAC blocks for

performing MAC operations is required for

Image Processing/Object Recognition & AI-

related tasks

 A high number of MAC operations per second

 64-way 8-bit SIMD width

 More efficient in terms of performance and

power consumption for a typical AI

implementation as compared to GPU’s

 With an improved 8-bit & 16-bit arithmetic, the

Vision P6 DSP improves performance over

convolution, FIR filtering & matrix

multiplication

 32-bit single-precision and 16-bit half-precision

VFPU offers performance improvement

Fig.4 Features of Vision DSPs that enable object

recognition and AI-related tasks to be performed

efficiently[3]

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2022.10.5 Ninad Patil, Vanita Agarwal

E-ISSN: 2415-1521 36 Volume 10, 2022

Fig.5 Energy consumption comparison between

CPU, GPU, and Vision DSP[4]

A CPU or a GPU is used to implement a CNN in

most cases. Compared to these traditional

CPU/GPU, Vision DSPs consume significantly less

energy/frame due to the improvements made in the

architecture of the DSP in terms of memory

bandwidth, Instruction set architecture, Hi-speed I/O

and interconnects, and an increased number of MAC

units which takes care of the high compute-intensive

requirement of image processing/AI-specific

tasks[4].

Cadence’s Tensilica DSPs based on Xtensa

architecture, which are configurable processors and

can be custom-made (adding execution units,

processor I/O interfaces, instruction sets) with the

help of Xtensa Processor Developers Toolkit along

with customized system design, software, and

hardware (RTL) development[5][6]. As the

hardware is automatically generated for the

Tensilica Vision DSPs, we can synthesize these

processors and implement them quickly on an

FPGA. Due to the availability of software

programmability, SoC designers can add elasticity

to their design and improve performance.

Fig.6 Flow diagram for XPG[6]

The Xtensa Processor Generator generates an

RTL code, and along with the EDA scripts, various

activities such as synthesis, block placement,

routing, verification, SoC integration are performed.

The processor also generates other outputs

associated with the system and software

development.

2 Literature Review

CNN is used for object detection/image

recognition tasks owing to their accuracy in

detecting/recognizing objects in the images and the

speed with which they perform these tasks[7]. CNN

consists of different layers connected in a cascaded

manner. Some of the common types of layers are

convolutional layer, fully connected layer, loss

layer, pooling layer. CNN architectures are defined

by the number of different layer types and how

these layers are connected. Some of the common

types of CNN architectures are ResNet, GoogleNet,

AlexNet, MobileNet.

2.1 AlexNet Architecture

Input to AlexNet is an RGB image of size

224*224. AlexNet architecture has eight layers (5

convolutional layers followed by three fully

connected layers in the end)[8]. Some of the

convolution layers are followed by Max Pooling

layers. Rectified Linear Unit (ReLU) f(x) =

max(0,x) is used as an activation function. The three

fully connected layers, in the end, feeds to the

SoftMax classifier[8]. This classifier classifies the

image into one of the classes depending upon the

total classes available.

Fig.7 AlexNet Architecture[8]

2.2 Transfer Learning

It is a technique in which a neural network

previously trained for some tasks is re-used for the

task at hand. This technique saves much time and

compute resources that would have been otherwise

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2022.10.5 Ninad Patil, Vanita Agarwal

E-ISSN: 2415-1521 37 Volume 10, 2022

required for training the neural network from

scratch. In this pre-trained network model, the

weights have already been set. A new dataset is

provided to the network. The only change is in the

classifier, which is present at the end that classifies

the image into one of the several labels present in

the dataset. The classifier is changed depending on

the number of classes present in the dataset. It also

does some fine-tuning on the weights.

2.3 German Traffic Sign Dataset

Training of a neural network requires a large

dataset. The dataset also needs to have various

images of each class, taken in different light and

weather conditions. Due to practical limitations in

obtaining such a huge traffic sign dataset and

variations, we downloaded the German Traffic Sign

Recognition Benchmark (GTSRB) dataset used in

the ICJNN competition[9]. The dataset was

prepared from a video. The dataset consisted of

50,000 plus images of German road traffic signs

divided into 43 classes.

2.4 Caffe

Caffe is a deep learning framework that the

Berkeley Vision and Learning Centre developed at

the University of California, Berkeley. Speed,

expression, and modularity was the main goal

behind creating the Caffe framework. It is prevalent

among research scientists, startups, and academia.

The network definition format is entirely different

from other popular frameworks such as TensorFlow.

No complex coding is required for optimization and

defining the model and is done with the help of a

configuration file. With the help of a single flag, we

can switch between a CPU or GPU for training

purposes. Once the model is trained, a .caffemodel

file is generated. This file consists of floating-point

weights/parameters. Other files required for training

are:- 1) train_val. prototxt – this file is used to

define the network architecture, the path to a binary

proto file, the path to training, and the validation

dataset 2) solver. prototxt – used to specify gradient

descent parameters, learning rate, number of

iterations, step-size, base learning rate, and other

information required for training 3) mean.

binaryproto – It has the mean value of images over a

complete dataset for each channel that needs to be

subtracted from each image[10].

2.5 Nvidia DIGITS

NVIDIA DIGITS provides a graphical user

interface for training a neural network rather than a

command line. DIGITS generates and modifies

other training files. DIGITS is an interactive web-

based tool that helps AI/ML engineers focus on

training and designing the algorithms rather than

debugging and other necessary pre-training tasks.

DIGITS can train the neural network with high

accuracy and rapidly for image recognition, image

segmentation, object detection tasks. DIGITS take

care of all the pre-processing steps that are

performed on a dataset, selecting/uploading a pre-

trained model for transfer learning, training a neural

network from scratch, and providing various

visualizations (in the form of graphs/charts) before,

during, and after training[11]. This simplifies the

training of a neural network. There are multiple

image resizing options available in Nvidia DIGITS.

For example, there is squash, fill (random noise),

crop, half-crop.

2.6 Xtensa Neural Network Compiler

XNNC is a tool used to convert a floating-point

neural network model into a fixed-point, optimized

solution for Xtensa Processors. XNNC helps

optimize the CNN by efficiently converting the

floating-point weights to an optimized fixed-point

weight without losing accuracy[12]. XNNC

supports both standard and custom CNN layers and

major CNN architectures. XNNC quantizes the

input model. XNNC does not have a graphical user

interface (GUI) and uses a command line to take

inputs and generate output.

Files that are given to the input of the XNNC are:-

 Floating-point CNN definition (Accepted file

formats include .caffemodel, .prototxt,

.binaryproto, TensorFlow models)

 Calibration and Validation dataset

Files generated at the output of the XNNC: -

 CNN code optimized for target Xtensa DSP

 Accuracy report and other supporting files

The XNNC reads from a configuration file. In the

file the path is mentioned for the following: 1) the

path to the .caffemodel file is stored. 2) path where

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2022.10.5 Ninad Patil, Vanita Agarwal

E-ISSN: 2415-1521 38 Volume 10, 2022

to store the output 3) path to the calibration and

validation dataset. There are various other

information present in the file such as name of the

CNN architecture used, name of the Xtensa core,

accuracy level to be used, etc., which helps to

configure the XNNC. In order to generate an

optimized, fixed-point version of the neural network

model, the floating-point neural network goes

through a 2-stage process. The first stage analyses

the layer activations of the floating-point network. It

evaluates quantization profiles (min/max ranges of

the outputs from each layer) across a range of

experimental distributions observed in the

calibration and validation image sets given in the

input. Based on this evaluation, scaling factors for

fixed-point conversion of each layer are determined.

The XNNC then takes these quantization parameters

and generates an optimized, fixed-point neural

network. The optimized code and other supporting

software files are provided in a workspace with a

.xws extension. This workspace file can be imported

into Xtensa Xplorer to get a performance report[12].

2.7 Xtensa Xplorer IDE

The Xtensa Xplorer IDE acts as a GUI for the

complete design process. It is the main center for

custom processor development. Using Xtensa

Xplorer IDE, we can do code creation for Xtensa

based processors, perform system analysis,

performance optimization (by addition of instruction

and execution units), identify any hotspots in the

systems, decide configuration options, profiling

applications, and finally generate processor[6]. This

reduces the time-to-market.

Features of Xtensa Xplorer IDE:-

 Efficient Xtensa C/C++ compiler (XCC)

 Xtensa assembler, debugger, linker, GNU

profiler, and other utilities

 Performance, energy analysis, and project

management tools

 Memory partitioning, sub-system simulation,

debugging, and profiling of multi-processors

 Cycle-accurate Instruction Set Simulator

 Pipeline modeling

 Locating and vectorization of code loops with

the help of a vectorization assistant

This makes it an all-in-one tool that integrates

processor optimization, software development, and

multi-processor SoC architecture design [6]. Xtensa

Xplorer IDE is a part of the Cadence Tensilica

Xtensa SDK. The various tools which are integrated

inside speed up the software development process.

3 Methodology

3.1 Training of the CNN for traffic sign

recognition task

A pre-trained AlexNet Caffe model was

downloaded from the Caffe model zoo[13]. Using

the transfer learning approach, the model was

trained for traffic sign recognition tasks using the

GTSRB dataset on Nvidia DIGITS[11]. The model

was trained on 43 different classes of traffic signs

on NVIDIA DIGITS. This model was then uploaded

onto the DIGITS software along with the traffic sign

dataset consisting of 43 image classes in jpeg

format. The images were resized to a fixed

resolution. After training was completed, a

.caffemodel file was generated along with prototxt

and binaryproto files.

3.2 Preparing calibration and validation

dataset

The German Traffic Sign Recognition Benchmark

(GTSRB) dataset, which was downloaded, had 43

traffic sign classes. The XNNC supports only .ppm,

.jpeg, .pgm image file formats. As the images in the

dataset were in png format, they were first

converted from png to ppm format. These images

were then divided into calibration and validation

datasets. Each dataset had 11 images of each of the

43 classes. Hence each dataset had a total of 473

images.

3.3 Compilation using Xtensa Neural

Network Compiler

The .caffemodel file generated after the training

phase is fed to the XNNC software for compilation

along with the traffic sign calibration and validation

dataset[12]. After installing XNNC, the .caffe model

file was given input to the XNNC along with the

calibration and validation dataset. The image format

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2022.10.5 Ninad Patil, Vanita Agarwal

E-ISSN: 2415-1521 39 Volume 10, 2022

was ppm, and the image resolution was 224*224*3.

Both these datasets contain 11 images of each 43

classes. In total, there were 11*43 = 473 images in

each dataset. There are a total of 2 stages in the

compilation: -

3.1.1 Analysis Stage

The Analysis stage is executed using calibration

images, validation images, and network definition.

The Analysis stage maps the network layers to their

XI-CNN library equivalents. It empirically evaluates

the activations of each layer to determine

appropriate quantization parameters for the model

weights and library functions[12]. Analysis Stage

Options:-

 Quantization Accuracy Levels:

o Level 0 (default – better performance, lesser
detection quality) – This level was selected
for this task

o Level 1 (Balanced)

o Level 2 (better detection quality)

 Adjustable thresholds for min/max selection and

outlier removal for quantization calibration

 Layer wise manual modification of min/max

values for quantization

 Control of input/output data types for custom

layers

3.1.2 Optimization Stage

After the analysis stage, the execution of the

optimization stage takes place where it takes the

quantized network and fixed-point parameters as

inputs and generates the optimized code for the

target Xtensa processor in the output[12]. The

Optimization stage determines how local memory is

partitioned, the storage formats of data and

coefficients, and the DMA tiling strategy for the

network[12]. Optimization Stage Options:-

 Layer-wise declaration of data storage formats

(WHD, DWH)

 Memory Configuration Options

 Use default configuration from the target DSP's

core parameters

 Treat dual local RAMs as contiguous or non-

contiguous

 Adjust the size of memory reserved for stack

and statically allocated data

 Batching (process a series of images to help

reduce memory bandwidth)

When the compilation process is complete,

optimized code is generated for the target Xtensa

processor, along with a summary of the expected

detection quality of the quantized, fixed-point

network. Caffe model is required to compile the

network model using the XNN compiler[12].

Alternatively, we can use a TensorFlow model, but

this approach will require one additional step,

converting the TensorFlow model into the Caffe

model. If we use Caffe, we can bypass this

conversion step, as shown in the image below.

Fig.8 XNNC Compilation Stages and User

Control[12]

3.4 Viewing the performance report on

Xtensa Xplorer IDE

The optimized code generated by the XNNC, along

with other supporting software files needed to get

the performance report, is given as input to the

Xtensa Xplorer IDE in the form of a workspace[12].

The extension of this workspace file is .xws. To

analyze the CNN's performance, Xtensa Xplorer

IDE needs to be configured by importing the Vision

P6 DSP core. Once the Xtensa IDE is configured for

Vision P6 DSP, then the performance report of the

neural network can be generated by importing the

previously generated workspace from XNNC and

running the simulation. The simulated result would

be approximately equal to the actual result if the

CNN was implemented on Vision P6 DSP

hardware.

4 Results and Discussions

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2022.10.5 Ninad Patil, Vanita Agarwal

E-ISSN: 2415-1521 40 Volume 10, 2022

After training the neural network on Nvidia DIGITS

a .caffemodel is generated. This file is given as

input to the Xtensa Neural Network Compiler. A

workspace file with the extension .XWS is

generated at the output of XNNC which is then

given to the Xtensa Xplorer for generating the

performance report. The performance report for the

trained CNN (AlexNet) was generated by running

the simulation on the Xtensa Xplorer software. The

figure below shows the performance report

generated on the Xtensa Xplorer software. In the

figure, below the toolbar option we can see that in

the P: section, the neural network used is AlexNet,

and in the C: section, the software has been

configured to run the AlexNet on Vision P6 DSP.

The CNN (AlexNet) performance was 116.54 FPS

at a clock speed of 1000.00 MHz. The total number

of MAC operations required to process one frame is

720 million. The number of cycles required to

process one frame is around 8.5million (precisely

8580570). The processor clock speed is 1000 MHz,

i.e., 1000000000 clock cycles in 1 second. Thus

1000000000/8580570 comes out around 116.54 fps

which indicates it can process one frame in 8.58ms.

It can be concluded from the "Layer Name" column

that the neural network used for the TSR task is

AlexNet. There are convolutional layers (conv1,

conv2, conv3, conv4, conv5), fully connected layers

(ip6, ip7, ip8) after convolutional layers, and at the

end, a SoftMax layer. Convolutional layers 1 and 2

are followed by batch normalization and max

pooling. The convolutional layers 3,4,5 are

cascaded, followed by max-pooling in the end.

We can conclude from this result that

convolutional & fully connected layers perform

most of the MAC operations. Other related

information has been provided in the various

columns. Some of the columns indicate the total

number of cycles, DMA wait cycles (Number of

cycles the request must wait to access the memory

directly via a system bus), DMA Queue Size (the

number of DMA requests queue reserved in local

memory), number of MACs per cycle, and the total

number of MAC operations for each layer.

Fig.10 Performance Report of AlexNet trained for

TSR on Cadence Tensilica Vision P6 DSP

5 Conclusion

The simulation concluded that the AlexNet CNN

processed the input video frames at 116.54 FPS at a

processor clock speed of 1000 MHz on Vision P6

DSP. Convolutional and fully connected layers

perform a significant portion of the total MAC

operations. The total number of MAC operations

required per frame is around a 720million. The total

cycles required for the processing of one frame are

8580570.

6 Future Works

In the future, more efficient and optimized CNN

architectures such as ResNet and GoogleNet can be

trained on the GTSRB dataset, improving the

performance results significantly. Performance

comparison of different CNN architectures can also

be made, which will set a benchmark for the

performance of a CNN and can also serve as a

reference model for future research. It can also help

us decide which architecture to implement in an

actual self-driving car. Current results assume ideal

conditions that there will be no error while

recognizing the traffic sign. The overall system can

be more robust by considering different weather

conditions and other scenarios and training the

neural network on these datasets.

7 Acknowledgment

I want to thank Late Prof A.B.Patki from the E&TC

department, Centre of Excellence (CoESIP) & VLSI

design lab staff for all the guidance and help

provided in completing this project. I would also

like to thank Mr. Sarang Shelke and Mr. Abhishek

Belkonikar of Cadence Design Systems, Inc, who

helped me complete this project and solve queries

regarding Cadence's XNNC and Xtensa Xplorer

software.

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2022.10.5 Ninad Patil, Vanita Agarwal

E-ISSN: 2415-1521 41 Volume 10, 2022

References:

[1] Cadence Design Systems, Inc. (2017).

Developing Smarter, Safer Cars with ADAS IP

[White Paper]. Cadence Design Systems, Inc.

https://ip.cadence.com/uploads/1195/cdn-wpt-

auto-ip-sys-design-enablement-pdf

[2] Cadence Design Systems, Inc. (2019).

Computer Vision and AI for Automotive

Safety: Staying Alert on the Road [White

Paper]. Cadence Design Systems, Inc.

https://ip.cadence.com/uploads/1253/13044_Vi

sionQ7_Automotive_TB_FINAL-pdf

[3] Cadence Design Systems, Inc. (2019).

Tensilica Vision DSP Family [White Paper].

Cadence Design Systems, Inc.

https://www.cadence.com/content/dam/cadence

-

www/global/en_US/documents/tools/ip/tensilic

a-ip/TIP-PB-Vision-DSP-FINAL.pdf.

[4] Cadence Design Systems, Inc. (2015).

Choosing the Right DSP for High-Resolution

Imaging in Mobile and Wearable Applications

[White Paper]. Cadence Design Systems, Inc.

https://ip.cadence.com/uploads/899/TIP_WP_V

ision_P5_Final-pdf

[5] Cadence Design Systems, Inc. (2014). Xtensa

Processor Developer’s Toolkit [White Paper].

Cadence Design Systems, Inc.

https://ip.cadence.com/uploads/102/HWdev-

pdf

[6] Cadence Design Systems, Inc. (2014).

Tensilica Software Development Toolkit

(SDK) [White Paper]. Cadence Design

Systems, Inc.

https://ip.cadence.com/uploads/103/SWdev-pdf

[7] Cadence Design Systems, Inc. (2015). Using

Convolutional Neural Networks for Image

Recognition [White Paper]. Cadence Design

Systems, Inc.

https://ip.cadence.com/uploads/901/TIP_WP_c

nn_FINAL-pdf

[8] Krizhevsky, A., Sutskever, I., and Hinton, G. E.

ImageNet classification with deep

convolutional neural networks. In NIPS, pp.

1106–1114, 2012.

[9] Stallkamp, J., Schlipsing, M., Salmen, J., &

Igel, C. (2012). Man vs. computer:

Benchmarking machine learning algorithms for

traffic sign recognition. Neural Networks, 32,

323-332.

[10] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev,

J. Long, R. Girshick, S. Guadarrama, and T.

Darrell. Caffe: Convolutional architecture for

fast feature embedding. arXiv:1408.5093,

2014.

[11] NVIDIA Corporation. (2017). NVIDIA

DIGITS [White Paper]. NVIDIA Corporation.

https://docs.nvidia.com/deeplearning/digits/pdf/

DIGITS-User-Guide.pdf

[12] Cadence Design Systems, Inc. (2018). Xtensa

Neural Network Compiler User Guide [White

Paper]. Cadence Design Systems, Inc

[13] S. Lapuschkin. (2019) Model Zoo. [Online].

Available:https://github.com/BVLC/caffe/wiki/

Model-Zoo

Creative Commons Attribution

License 4.0 (Attribution 4.0

International , CC BY 4.0)

This article is published under the terms of the

Creative Commons Attribution License 4.0

https://creativecommons.org/licenses/by/4.0/deed.en

_US

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2022.10.5 Ninad Patil, Vanita Agarwal

E-ISSN: 2415-1521 42 Volume 10, 2022

http://www.cadence.com/content/dam/cadence
https://creativecommons.org/licenses/by/4.0/deed.en_US
https://creativecommons.org/licenses/by/4.0/deed.en_US

