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Abstract: - Advanced Driver Assistance System (ADAS) technology is currently in an embryonic stage. Many 

multinational tech companies and startups are developing a truly autonomous vehicle that will guarantee the 

safety and security of the passengers and other vehicles, pedestrians on roads, and roadside structures such as 

traffic signal poles, traffic signposts, and other structures. However, these autonomous vehicles have not been 

implemented on a large scale for regular use on roads currently. These autonomous vehicles perform many 

different object detection/recognition tasks. Examples include traffic sign recognition, lane detection,  

pedestrian detection. Usually, the person driving the vehicle performs these detection/recognition tasks. The 

main goal of such autonomous systems should be to perform these tasks in real-time. Deep learning performs 

these object recognition tasks with very high accuracy. The neural network is implemented on the hardware 

device, which does all the computation work. Different vendors have many different hardware choices that suit 

the client's needs. Usually, these neural networks are implemented on a CPU, DSP, GPU, FPGA, and other 

custom-made AI-specific hardware. The underlying processor forms a vital part of an ADAS. The CNN needs 

to process the incoming frames from a camera for real-time object detection/recognition tasks. Real-time 

processing is necessary to take appropriate actions/decisions depending on the logic embedded. Hence knowing 

the performance of the neural network (in terms of frames processed per second) on the underlying hardware is 

a significant factor in deciding the various hardware options available from different vendors, which CNN 

model to implement, whether the CNN model is suitable to implement on the underlying hardware depending 

upon the system specifications and requirement. In this paper, we trained a CNN using the transfer learning 

approach to recognize german traffic signs using Nvidia DIGITS web-based software and analyzed the 

performance of this trained CNN (in terms of frames per second) by simulating the trained CNN on Cadence's 

Xtensa Xplorer software by selecting Cadence's Tensilica Vision P6 DSP as an underlying processor for 

inference. 
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1 Introduction 

ADAS enables vehicles to become more aware of 

their surroundings and, generally, safer to drive. 

ADAS covers a few functions of traffic sign 

recognition, automatic parking, adaptive cruise 

control, collision avoidance, lane departure, vehicle 

to vehicle communication, and Voice and Gesture 

Recognition [1]. As the sensors in the vehicle 

generate vast amounts of data per second, this data 

must be processed in real-time to enable quick and 

intelligent decision-making. Integrating all these 

functionalities and processing this vast amount of 

data is challenging and requires a unique design 

approach. Typically, the chips which perform these 

functionalities must have high compute performance 

(>1000GMA/s), high memory bandwidth (up to  

1Gb to support high-resolution image/video 

streams), Hi-speed I/O, and providing optimal 

power, performance, and area ratio. The figure 
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below shows an integrated ADAS SoC 

architecture[1]. 

 

 

Fig.1 Integrated ADAS SoC Architecture[1] 

 
To enable a safer driving experience, each vehicle 

will need to exchange vast amounts of data in real- 

time with other vehicles and roadside units present 

in the surroundings. Camera, ultrasound, radar 

sensors, and the LiDAR system are strategically 

placed inside and around the car. Front/Rear/Side 

view monitoring systems and driver monitoring 

systems are various safety systems[2]. These  

sensors are coupled with sophisticated AI/machine 

learning algorithms (deep learning) to aid quick and 

intelligent decision-making. Usually, an AI 

processor takes care of all the intense computation 

requirements of the algorithms. 

 

 
Fig.2 Various sub-systems within an ADAS 

environment[1] 

 

The DSP used in this project is Tensilica’s Vision 

P6 DSP. The figure below shows the internal block 

diagram of the DSP. 

 

 
 

Fig.3 Vision P6 DSP Block Diagram[3] 

 

The Vision P6 DSPs from Cadence is designed to 

perform image processing, computer vision & AI- 

specific operations efficiently[3]. Features that make 

this processor favorable for these tasks are as 

follows[3]: - 

 Specially tailored Instruction sets for 

performing Image processing/AI-specific tasks 

(Add, Sub, Compare, Matrix Multiplication, 

Divide). 

 New instructions which give an increased math 

throughput 

 An increased number of MAC blocks for 

performing MAC operations is required for 

Image Processing/Object Recognition & AI- 

related tasks 

 A high number of MAC operations per second 

 64-way 8-bit SIMD width 

 More efficient in terms of performance and 

power consumption for a typical AI 

implementation as compared to GPU’s 

 With an improved 8-bit & 16-bit arithmetic, the 

Vision P6 DSP improves performance over 

convolution, FIR filtering & matrix 

multiplication 

 32-bit single-precision and 16-bit half-precision 

VFPU offers performance improvement 

 

 

Fig.4 Features of Vision DSPs that enable object 

recognition and AI-related tasks to be performed 

efficiently[3] 
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Fig.5 Energy consumption comparison between 

CPU, GPU, and Vision DSP[4] 

 

A CPU or a GPU is used to implement a CNN in 

most cases. Compared to these traditional 

CPU/GPU, Vision DSPs consume significantly less 

energy/frame due to the improvements made in the 

architecture of the DSP in terms of memory 

bandwidth, Instruction set architecture, Hi-speed I/O 

and interconnects, and an increased number of MAC 

units which takes care of the high compute-intensive 

requirement of image processing/AI-specific 

tasks[4]. 

 

Cadence’s Tensilica DSPs based on Xtensa 

architecture, which are configurable processors and 

can be custom-made (adding execution units, 

processor I/O interfaces, instruction sets) with the 

help of Xtensa Processor Developers Toolkit along 

with customized system design, software, and 

hardware (RTL) development[5][6]. As the 

hardware is automatically generated for the 

Tensilica Vision DSPs, we can synthesize these 

processors and implement them quickly on an 

FPGA. Due to the availability of software 

programmability, SoC designers can add elasticity 

to their design and improve performance. 

 

Fig.6 Flow diagram for XPG[6] 

 

The Xtensa Processor Generator generates an 

RTL code, and along with the EDA scripts, various 

activities such as synthesis, block placement, 

routing, verification, SoC integration are performed. 

The processor also generates other outputs 

associated with the system and software 

development. 

 

2 Literature Review 

CNN is used for object detection/image 

recognition tasks owing to their accuracy in 

detecting/recognizing objects in the images and the 

speed with which they perform these tasks[7]. CNN 

consists of different layers connected in a cascaded 

manner. Some of the common types of layers are 

convolutional layer, fully connected layer, loss 

layer, pooling layer. CNN architectures are defined 

by the number of different layer types and how  

these layers are connected. Some of the common 

types of CNN architectures are ResNet, GoogleNet, 

AlexNet, MobileNet. 

 

2.1 AlexNet Architecture 

 

Input to AlexNet is an RGB image of size 

224*224. AlexNet architecture has eight layers (5 

convolutional layers followed by three fully 

connected layers in the end)[8]. Some of the 

convolution layers are followed by Max Pooling 

layers. Rectified Linear Unit (ReLU) f(x) = 

max(0,x) is used as an activation function. The three 

fully connected layers, in the end, feeds to the 

SoftMax classifier[8]. This classifier classifies the 

image into one of the classes depending upon the 

total classes available. 

 
 

 
Fig.7 AlexNet Architecture[8] 

 
2.2 Transfer Learning 

 

It is a technique in which a neural network 

previously trained for some tasks is re-used for the 

task at hand. This technique saves much time and 

compute resources that would have been otherwise 
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required for training the neural network from 

scratch. In this pre-trained network model, the 

weights have already been set. A new dataset is 

provided to the network. The only change is in the 

classifier, which is present at the end that classifies 

the image into one of the several labels present in 

the dataset. The classifier is changed depending on 

the number of classes present in the dataset. It also 

does some fine-tuning on the weights. 

2.3 German Traffic Sign Dataset 

 

Training of a neural network requires a large 

dataset. The dataset also needs to have various 

images of each class, taken in different light and 

weather conditions. Due to practical limitations in 

obtaining such a huge traffic sign dataset and 

variations, we downloaded the German Traffic Sign 

Recognition Benchmark (GTSRB) dataset used in 

the ICJNN competition[9]. The dataset was  

prepared from a video. The dataset consisted of 

50,000 plus images of German road traffic signs 

divided into 43 classes. 

2.4 Caffe 

 

Caffe is a deep learning framework that the 

Berkeley Vision and Learning Centre developed at 

the University of California, Berkeley. Speed, 

expression, and modularity was the main goal 

behind creating the Caffe framework. It is prevalent 

among research scientists, startups, and academia. 

The network definition format is entirely different 

from other popular frameworks such as TensorFlow. 

No complex coding is required for optimization and 

defining the model and is done with the help of a 

configuration file. With the help of a single flag, we 

can switch between a CPU or GPU for training 

purposes. Once the model is trained, a .caffemodel 

file is generated. This file consists of floating-point 

weights/parameters. Other files required for training 

are:- 1) train_val. prototxt – this file is used to 

define the network architecture, the path to a binary 

proto file, the path to training, and the validation 

dataset 2) solver. prototxt – used to specify gradient 

descent parameters, learning rate, number of 

iterations, step-size, base learning rate, and other 

information required for training 3) mean. 

binaryproto – It has the mean value of images over a 

complete dataset for each channel that needs to be 

subtracted from each image[10]. 

2.5 Nvidia DIGITS 

NVIDIA DIGITS provides a graphical user 

interface for training a neural network rather than a 

command line. DIGITS generates and modifies 

other training files. DIGITS is an interactive web- 

based tool that helps AI/ML engineers focus on 

training and designing the algorithms rather than 

debugging and other necessary pre-training tasks. 

DIGITS can train the neural network with high 

accuracy and rapidly for image recognition, image 

segmentation, object detection tasks. DIGITS take 

care of all the pre-processing steps that are 

performed on a dataset, selecting/uploading a pre- 

trained model for transfer learning, training a neural 

network from scratch, and providing various 

visualizations (in the form of graphs/charts) before, 

during, and after training[11]. This simplifies the 

training of a neural network. There are multiple 

image resizing options available in Nvidia DIGITS. 

For example, there is squash, fill (random noise), 

crop, half-crop. 

2.6 Xtensa Neural Network Compiler 

 

XNNC is a tool used to convert a floating-point 

neural network model into a fixed-point, optimized 

solution for Xtensa Processors. XNNC helps 

optimize the CNN by efficiently converting the 

floating-point weights to an optimized fixed-point 

weight without losing accuracy[12]. XNNC  

supports both standard and custom CNN layers and 

major CNN architectures. XNNC quantizes the 

input model. XNNC does not have a graphical user 

interface (GUI) and uses a command line to take 

inputs and generate output. 

 

Files that are given to the input of the XNNC are:- 

 

 Floating-point CNN definition (Accepted file 

formats include .caffemodel, .prototxt, 

.binaryproto, TensorFlow models) 

 Calibration and Validation dataset 

 

Files generated at the output of the XNNC: - 

 

 CNN code optimized for target Xtensa DSP 

 Accuracy report and other supporting files 

 

The XNNC reads from a configuration file. In the 

file the path is mentioned for the following: 1) the 

path to the .caffemodel file is stored. 2) path where 
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to store the output 3) path to the calibration and 

validation dataset. There are various other 

information present in the file such as name of the 

CNN architecture used, name of the Xtensa core, 

accuracy level to be used, etc., which helps to 

configure the XNNC. In order to generate an 

optimized, fixed-point version of the neural network 

model, the floating-point neural network goes 

through a 2-stage process. The first stage analyses 

the layer activations of the floating-point network. It 

evaluates quantization profiles (min/max ranges of 

the outputs from each layer) across a range of 

experimental distributions observed in the 

calibration and validation image sets given in the 

input. Based on this evaluation, scaling factors for 

fixed-point conversion of each layer are determined. 

The XNNC then takes these quantization parameters 

and generates an optimized, fixed-point neural 

network. The optimized code and other supporting 

software files  are provided  in a  workspace  with  a 

.xws extension. This workspace file can be imported 

into Xtensa Xplorer to get a performance report[12]. 

2.7 Xtensa Xplorer IDE 

 

The Xtensa Xplorer IDE acts as a GUI for the 

complete design process. It is the main center for 

custom processor development. Using Xtensa 

Xplorer IDE, we can do code creation for Xtensa 

based processors, perform system analysis, 

performance optimization (by addition of instruction 

and execution units), identify any hotspots in the 

systems, decide configuration options, profiling 

applications, and finally generate processor[6]. This 

reduces the time-to-market. 

Features of Xtensa Xplorer IDE:- 

 

 Efficient Xtensa C/C++ compiler (XCC) 

 Xtensa assembler, debugger, linker, GNU 

profiler, and other utilities 

 Performance, energy analysis, and project 

management tools 

 Memory partitioning, sub-system simulation, 

debugging, and profiling of multi-processors 

 Cycle-accurate Instruction Set Simulator 

 Pipeline modeling 

 Locating and vectorization of code loops with 

the help of a vectorization assistant 

This makes it an all-in-one tool that integrates 

processor optimization, software development, and 

multi-processor SoC architecture design [6]. Xtensa 

Xplorer IDE is a part of the Cadence Tensilica 

Xtensa SDK. The various tools which are integrated 

inside speed up the software development process. 

 

3 Methodology 

3.1 Training of the CNN for traffic sign 

recognition task 

A pre-trained AlexNet Caffe model was 

downloaded from the Caffe model zoo[13]. Using 

the transfer learning approach, the model was 

trained for traffic sign recognition tasks using the 

GTSRB dataset on Nvidia DIGITS[11]. The model 

was trained on 43 different classes of traffic signs  

on NVIDIA DIGITS. This model was then uploaded 

onto the DIGITS software along with the traffic sign 

dataset consisting of 43 image classes in jpeg 

format. The images were resized to a fixed 

resolution. After training was completed, a 

.caffemodel file was generated along with prototxt 

and binaryproto files. 

 

3.2 Preparing calibration and validation 

dataset 

The German Traffic Sign Recognition Benchmark 

(GTSRB) dataset, which was downloaded, had 43 

traffic sign classes. The XNNC supports only .ppm, 

.jpeg, .pgm image file formats. As the images in the 

dataset were in png format, they were first  

converted from png to ppm format. These images 

were then divided into calibration and validation 

datasets. Each dataset had 11 images of each of the 

43 classes. Hence each dataset had a total of 473 

images. 

 

3.3 Compilation using Xtensa Neural 

Network Compiler 

The .caffemodel file generated after the training 

phase is fed to the XNNC software for compilation 

along with the traffic sign calibration and validation 

dataset[12]. After installing XNNC, the .caffe model 

file was given input to the XNNC along with the 

calibration and validation dataset. The image format 
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was ppm, and the image resolution was 224*224*3. 

Both these datasets contain 11 images of each 43 

classes. In total, there were 11*43 = 473 images in 

each dataset. There are a total of 2 stages in the 

compilation: - 

 

3.1.1 Analysis Stage 

 
The Analysis stage is executed using calibration 

images, validation images, and network definition. 

The Analysis stage maps the network layers to their 

XI-CNN library equivalents. It empirically evaluates 

the activations of each layer to determine 

appropriate quantization parameters for the model 

weights and library functions[12]. Analysis Stage 

Options:- 

 Quantization Accuracy Levels: 

o Level 0 (default – better performance, lesser 
detection quality) – This level was selected 
for this task 

o Level 1 (Balanced) 

o Level 2 (better detection quality) 

 Adjustable thresholds for min/max selection and 

outlier removal for quantization calibration 

 Layer wise manual modification of min/max 

values for quantization 

 Control of input/output data types for custom 

layers 

 

3.1.2 Optimization Stage 

 

After the analysis stage, the execution of the 

optimization stage takes place where it takes the 

quantized network and fixed-point parameters as 

inputs and generates the optimized code for the 

target Xtensa processor in the output[12]. The 

Optimization stage determines how local memory is 

partitioned, the storage formats of data and 

coefficients, and the DMA tiling strategy for the 

network[12]. Optimization Stage Options:- 

 Layer-wise declaration of data storage formats 

(WHD, DWH) 

 Memory Configuration Options 

 Use default configuration from the target DSP's 

core parameters 

 Treat dual local RAMs as contiguous or non- 

contiguous 

 Adjust the size of memory reserved for stack 

and statically allocated data 

 Batching (process a series of images to help 

reduce memory bandwidth) 

 

When the compilation process is complete, 

optimized code is generated for the target Xtensa 

processor, along with a summary of the expected 

detection quality of the quantized, fixed-point 

network. Caffe model is required to compile the 

network model using the XNN compiler[12]. 

Alternatively, we can use a TensorFlow model, but 

this approach will require one additional step, 

converting the TensorFlow model into the Caffe 

model. If we use Caffe, we can bypass this 

conversion step, as shown in the image below. 

 

Fig.8 XNNC Compilation Stages and User 

Control[12] 

 

3.4 Viewing the performance report on 

Xtensa Xplorer IDE 

 

The optimized code generated by the XNNC, along 

with other supporting software files needed to get 

the performance report, is given as input to the 

Xtensa Xplorer IDE in the form of a workspace[12]. 

The extension of this workspace file is .xws. To 

analyze the CNN's performance, Xtensa Xplorer 

IDE needs to be configured by importing the Vision 

P6 DSP core. Once the Xtensa IDE is configured for 

Vision P6 DSP, then the performance report of the 

neural network can be generated by importing the 

previously generated workspace from XNNC and 

running the simulation. The simulated result would 

be approximately equal to the actual result if the 

CNN was implemented on Vision P6 DSP 

hardware. 

 

4 Results and Discussions 
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After training the neural network on Nvidia DIGITS 

a .caffemodel is generated. This file is given  as 

input to the Xtensa Neural Network Compiler. A 

workspace file with the extension .XWS is 

generated at the output of XNNC which is then 

given to the Xtensa Xplorer for generating the 

performance report. The performance report for the 

trained CNN (AlexNet) was generated by running 

the simulation on the Xtensa Xplorer software. The 

figure below shows the performance report 

generated on the Xtensa Xplorer software. In the 

figure, below the toolbar option we can see that in 

the P: section, the neural network used is AlexNet, 

and in the C: section, the software has been 

configured to run the AlexNet on Vision P6 DSP. 

The CNN (AlexNet) performance was 116.54 FPS 

at a clock speed of 1000.00 MHz. The total number 

of MAC operations required to process one frame is 

720 million. The number of cycles required to 

process one frame is around 8.5million ( precisely 

8580570). The processor clock speed is 1000 MHz, 

i.e., 1000000000 clock cycles in 1 second. Thus 

1000000000/8580570 comes out around 116.54 fps 

which indicates it can process one frame in 8.58ms. 

It can be concluded from the "Layer Name" column 

that the neural network used for the TSR task is 

AlexNet. There are convolutional layers (conv1, 

conv2, conv3, conv4, conv5), fully connected layers 

(ip6, ip7, ip8) after convolutional layers, and at the 

end, a SoftMax layer. Convolutional layers 1 and 2 

are followed by batch normalization and max 

pooling. The convolutional layers 3,4,5 are 

cascaded, followed by max-pooling in the end. 

 

We can conclude from this result that 

convolutional & fully connected layers perform 

most of the MAC operations. Other related 

information has been provided in the various 

columns. Some of the columns indicate the total 

number of cycles, DMA wait cycles (Number of 

cycles the request must wait to access the memory 

directly via a system bus), DMA Queue Size (the 

number of DMA requests queue reserved in local 

memory), number of MACs per cycle, and the total 

number of MAC operations for each layer. 

 

 
 

Fig.10 Performance Report of AlexNet trained for 

TSR on Cadence Tensilica Vision P6 DSP 

 
5 Conclusion 

The simulation concluded that the AlexNet CNN 

processed the input video frames at 116.54 FPS at a 

processor clock speed of 1000 MHz on Vision P6 

DSP. Convolutional and fully connected layers 

perform a significant portion of the total MAC 

operations. The total number of MAC operations 

required per frame is around a 720million. The total 

cycles required for the processing of one frame are 

8580570. 

 

6 Future Works 

In the future, more efficient and optimized CNN 

architectures such as ResNet and GoogleNet can be 

trained on the GTSRB dataset, improving the 

performance results significantly. Performance 

comparison of different CNN architectures can also 

be made, which will set a benchmark for the 

performance of a CNN and can also serve as a 

reference model for future research. It can also help 

us decide which architecture to implement in an 

actual self-driving car. Current results assume ideal 

conditions that there will be no error while 

recognizing the traffic sign. The overall system can 

be more robust by considering different weather 

conditions and other scenarios and training the 

neural network on these datasets. 
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