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Abstract: Adherence to the schedule is of prime importance in public transport. This paper presents a specific 
application of the Gini coefficient, well known indicator in economics, for the headway adherence assessment. 
The paper shows that Lorenz curve, which is usually used to define mathematically the Gini coefficient, is a 
good indicator of the users' waiting time when it is based on the bus schedule. When it is computed on the basis 
of the ratio of observed headway to the schedule, it is a powerful visual tool that can be used by operators to 
detect the existence of irregularities on a bus line at a glance. An equation gives, in an idealistic case, the 
impact of any single traffic disturbance on the Gini coefficient, making this coefficient comprehensive. A 
detailed analysis is developed, based on the bus proportions according to the headway adherence level. These 
proportions are obtained from new indices coming from the derivative of the Lorenz curve. The values of these 
indexes alert the operator of any adherence disturbance. The examination of the Lorenz curve takes more time, 
but is worthwhile, giving the types of the irregularities The application of these indicators is carried on real-
time data from the New Delhi bus network. 
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1 Introduction 
The reliability of bus travel time is an objective of 
major concern for bus operators and users. For 
users, bus irregularities are associated with 
bunching phenomena or large gaps between buses, 
which results in low attractiveness of the service for 
transit agencies. However, due to traffic conditions 
and variability in bus demand, deviations from 
schedules are unavoidable, leading to an overall 
decrease in the level of service and capacity. The 
ability to accurately and effectively analyze various 
performance measures is fundamental to 
determining how well the bus service is adhering to 
its service standards. Understanding and developing 
methods to assess transit operations performance are 
not only valuable in identifying potential problem 
areas along a route; it is also constructive in 
proposing effective strategies to improve service 
reliability.   

Time reliability measures are related to headway 
adherence or on-time performance measures. 
Headway adherence is often measured when the bus 
service is operating at headway of 10 minutes or 
less scheduled; while on-time performance is 
evaluated for all services with a published timetable. 
In this paper, the reliability of the bus travel time is 

studied using the Gini coefficient and the Lorenz 
curve regardless of the service planning. The Gini 
coefficient is computed for the ratio of actual (real) 
headway to schedule allowing the assessment of the 
respect of the schedule. When the bus service is 
planned as a timetable, the travel times of buses are 
converted to headway.   

We also show that the Lorenz curve is a 
powerful graphical tool for the analysis of the bus 
regularity. When ²drawn for the scheduled headway 
only, the Lorenz curve allows the analysis of the 
regularity of the waiting time of all riders of the bus 
line and is a good measure from the users’ point of 
view. When it is drawn based on the ratio of the 
observed to the scheduled headway, it allows 
analyzing the regularity of the respect of buses of 
the scheduled headway and is, therefore, a good 
measure, mainly from the operator’s point of view.  

The following section of the paper gives a 
literature review, exposing firstly the research 
dedicated to the reliability indicators for public 
transport assessments, and secondly the Gini 
coefficient use in the transportation field. The third 
section explains the Gini coefficient and the Lorenz 
curve. In section 4 we explain that the Lorenz curve 
based on the scheduled headway is equivalent to the 
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Lorenz curve based on the riders’ waiting time if the 
headway is established such that to have the same 
number of riders in each bus; in section 5 we 
introduce a Gini coefficient based on the {observed/ 
scheduled} headway ratio and we demonstrate that 
the associated Lorenz curve is a good indicator of 
the adherence of buses to scheduled headway. 
Section 6 gives interesting properties of the Lorenz 
curve and new indexes coming from its derivative. 
Applications are made on real-time data from 25 bus 
routes of the New Delhi Indian bus network. Section 
7 is dedicated to data processing and headway 
estimation. In section 8 we discuss different results 
of the Gini coefficient and Lorenz curve firstly on 
the route level. Finally, section 9 gives the 
conclusion and perspectives.  

  

2 Literature review  

In the literature, reliability measurements are often 
discussed under three different categories: (1) travel 
time-based, (2) schedule adherence, and headway 
based measures:   

(1). Concerning travel time-based reliability, firstly 
[1] defined reliability as “the ability of the service to 
provide a consistent service over a period of time” 
he proposed the inverse of the standard deviation of 
the measure, such as travel times or wait times as 
indicators.[2] extended this definition by estimating 
travel time reliability to be measured by the ratio of 
the mean travel time to the standard deviation. This 
was to incorporate the differences in the mean 
values over differing bus routes or sections of a 
route. [3] measured travel time variation in terms of 
percentage values of the excess over mean travel 
time, and [4] measured it as the percentage of times 
when travel times exceed the mean value by more 
than 10 percent. [5] defined travel time reliability as 
the difference between the actual and planned travel 
time, assuming that the travel times follow a log-
normal distribution. [6] defined PT reliability, in 
terms of travel time variability (TTV) where TTV is 
a buffer time as presented in [7]. They used the 
difference between the 90th and 10th percentile of 
day-to-day travel times. [8] also proposed the use of 
TTV and lately [9] proposed the use of TTV with 
the difference between the 85th percentile and 15th 
percentile in the numerator.   

(2). [10] and[11] proposed a schedule to adherence 
measures to develop a service quality index. [12] 

defined reliability in terms of the ratio of the 
number of on-time arrivals of the buses to the total 
bus arrivals. Similarly [13] considered the Chicago 
Transit Authority’s definition of ‘running time 
adherence’. It measures the average difference 
between the actual and scheduled times and 
expresses it as a percentage value in terms of the 
scheduled running times. [2] suggested that service 
reliability should also be defined in terms of the 
excess of waiting time experienced by the transit 
users. This measure is also used by Transport for 
London [14. The excess wait time is calculated from 
the difference between the average wait time for the 
passengers if the buses were running on schedule 
and the average wait time experienced. Further [15] 
defined the ‘adherence to schedule’ measure with 
the help of two approaches. The first technique 
measures the ‘reliability of runs that come on 
schedule’, which is estimated by the ratio of the 
number of implemented runs to the total number of 
runs scheduled for the same time period. The second 
approach is defined as a measure of ‘punctuality 
which is closer to the definitions used in other 
research and is calculated by the ratio of the number 
of on-time runs to the total number of runs. In this 
study, runs were considered to be punctual up to 1 
minute early and 5 minutes late from the specified 
scheduled time.  

(3). [16-17] emphasized the importance of regular 
headways, particularly for a high frequency of 
service. They stated that in the case of regular and 
even headways, the wait times are minimized, 
leading to an optimal distribution of passengers in 
the PT. They estimated headways to be irregular as 
a measure of the average deviations of the actual 
headways compared to the scheduled headways. 
Their analysis revealed that there was a higher 
degree of regularity at the beginning of the line, and 
this decreased systematically over consecutive 
stops. 
 [2](Liu and Sinha, 2007) further stressed that 
adhering to the scheduled headways minimizes the 
wait time, and thereby is seen to positively influence 
patronage. When the bus service is unable to 
maintain the scheduled headways, bunching of 
buses occurs, resulting in an uneven and suboptimal 
distribution of passengers in the buses, and due to 
overcrowding, having to bypass bus stops. They 
followed the definition put forth by [18] which 
measured headway reliability as the ratio of the 
standard deviation to the mean headway. [19] 
argued that the regularity of bus service is more 
important to the users, rather than the schedule 
adherence, for high-frequency services. In their 
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proposed measure, they incorporated the concept of 
coefficient of variation, since it accounted for the 
differences in the mean values.  

Further to these publications, we find many 
articles dedicated to the applications of the known 
measurement to public transport networks. [20] 
gave brief evaluations of 20 indicators sorted by 
their function (Travel time indicators, schedule 
adherence indicators, headway regularity indicators 
and wait time indicators). The paper takes interest in 
whether an indicator is “traveler-oriented” or not. 
According to [20] the preferred indicators to use by 
bus operators are the percentage of buses running on 
time and excess waiting time. The authors also 
proposed a new composite indicator named Journey 
Time Buffer Indicator “JTBI”. 

 [21] reviewed nine reliability indicators and 
gave a comparison between them in terms of ease of 
understanding, accuracy measure, agency 
comparability, and cost-efficiency, and gave an 
overall rank for each one of them. [14] compared 
the state of practice of 12 bus operators who belong 
to the International Bus Benchmarking Group 
(IBBG) [22]. They presented four regularity 
indicators and listed the advantages and 
disadvantages of each one of them regarding the 
ease of communication, objectivity, customer 
representation and the nature of inputs.  

[23] reviewed six types of timetable reliability 
indicators used in railways and compare them in 
terms of the information provided, the applicability 
domain (routes, stops, aggregated) and the necessary 
inputs for each one. A microscopic simulation 
model is used to study the indicators' robustness. 
[24] proposed an indicator named « The Reported 
Waiting Time” which predicts the waiting time 
perceived by a traveler; this indicator allows bus 
operators to better understand the concept of waiting 
time from the customer’s point of view.   

[25] (Teng & Lai, 2015) proposed a new 
formulation of Bus Running Indicator (BRI) based 
on Bus Planning Travel Time (BPTT) which was 
also proposed by authors.  

Most of the proposed indicators are not 
expressed on a normalized scale and therefore 
cannot be used to compare one route with another. 
Furthermore, in the majority, they are not 
immediately or intuitively understandable for senior 
management or non-expert external stakeholders.   
The Gini coefficient in the transport field  
The Gini coefficient used in economic studies to 
measure the inequality of revenues and health 
among the population is based on the Lorenz curve 
[26] (OECD, 2010). In the transport sector, we find 

a certain number of papers using the Gini 
coefficient.  

[27] adapted the Gini coefficient and Lorenz 
curve to assess public transport horizontal equity. 
Horizontal equity is when all the population has 
equal transit service regardless of the variability of 
transit needs within population groups. [28] 
(Ricciardi et al., 2015) compared the public 
transport vertical equity, using the Gini coefficient 
(GC), between three vulnerable groups: elderly 
residents, no-income households, and no-car 
households. GC has been largely used in the 
evaluation of public transport equity, in addition to 
these articles readers are referred to [29] and [30] . 

 [31] proposed the use of GC as an evaluation of 
travel time in order to assess its evenness among 
road users. GC is calculated in a case study of roads 
in Korea and is compared with standard deviation, 
speed, buffer time and buffer index to evaluate the 
significance of this measure; results show that the 
Buffer index has a higher positive correlation with 
the GC in this study.  

To the best of our knowledge, only [32] 
proposed a Regularity index based on the Gini 
coefficient. The authors studied the regularity of 
scheduled headway. The indicator was described, 
however, as difficult to understand and to use by the 
[33] (TCRP, 2013).  We hope that, with the new 
developments made here, -notably helping the 
comparisons between bus lines -, that this type of 
criticism will no longer be justified. 

We show in this paper that the application of the 
Gini coefficient to the schedule is of limited interest. 
The GC is, however, a powerful indicator of 
regularity when applied to the ratio of observed to 
scheduled headway. We also show that the Lorenz 
curve offers good visualization of the bus regularity 
which could help operators to have a quick synthetic 
evaluation of the bus route regularity.  

  

3 Gini coefficient(GC)  
The Gini coefficient is often used in economic 
studies [26] (OECD, 2010). It is a relative measure 
intended to represent the income distribution of a 
nation's residents. The Gini coefficient of a 
developing country may increase (due to increasing 
inequality of income) while the number of people in 
absolute poverty decreases.   

The Gini coefficient is usually defined 
mathematically based on the Lorenz curve. A 
Lorenz curve plots the cumulative percentages of 
total income received against the cumulative 
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percentage of the population, starting with the 
poorest individual or household (see Figure 1). The 
Gini coefficient can be thought of as the ratio of the 
area that lies between the line of equality (the 
bisector) and the Lorenz curve (the surface marked 
A on Figure 1) over the total area under the line of 
equality (the surface marked B on Figure 1); i.e., the 
Gini coefficient GC = A / (A + B). Thus a Gini 
coefficient of zero expresses perfect equality, when 
all values are the same (for example, when everyone 
has the same income). A Gini coefficient of one (or 
100%) expresses maximal inequality among values 
(for example, when only one person has all the 
income or consumption, and all others have none).  
 

 
 
 
 
 
 
 
 
 
 

 
Figure 1: Lorenz Curve Definition 
 
GC = A / (A + B). Since A + B = 0.5, the Gini 
coefficient is GC = 2 A, or GC = 1 – 2 B.  (1) 
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Let us note hi , the scheduled headway hi  of bus 
i, and hi  +hi  the observed one, hi  being the 
deviation (delay) on the headway.  

The sum of headways throughout the day (thus 
the average headway) does not change in case of 
disturbances, provided that these disturbances have 
disappeared at the end of the day(service). This 
induces an important simplification in the GC 
calculation and interpretation, and is the rationale 
for using the Gini coefficient for the ratios 

i i
i

i

h
y

h

 
  (see section 5, which is the main 

contribution of this paper). Indeed, let us take two 
assumptions: first that this deviation is compensated 
by the opposite deviation (-hi) on one of the 
following bus; second that the scheduled headway 
of this following bus is also hi ; then the deviation on 
the headway ratio hi/hi is compensated  by the 
opposite  -hi/hi. So, when a bus is delayed during 
the day, the sum of the headway ratios does not 
change (thus their average too, which is normally 

close to 1 and which is the value y  in (Eq.2). These 
two assumptions can be criticized as too “idealistic”, 
but they greatly simplify the computation of the 
impact of a disturbance on the GC, thus they make 
the GC much more comprehensive: 

Without any delay, the Lorenz curve is the first 
bisector. 

In the idealistic case the disturbances address k 
(k=1...K) bus couples (the leader delayed, one of the 
followers compensating with a smaller headway 
ratio). When sorting this k disturbances by 
decreasing hk/hk, the first (the biggest) disturbance 
pushes  the 1st couple of buses to occupy the places 
1/n and n/n… the  kth disturbance pushes the kth 
couple of buses to occupy the places k/n and (n-
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k+1)/n . 
Whereas the headway ratios yk and yn-k+1 of (Eq.2) 
would be - without the kth disturbance,- equal to 1; 
within it, their values are [1-hk/hk] and [1+hk/hk]. 
The other ratios yj are not modified 
The impact on GC of the single kth disturbance is, 
following (Eq.2),  

2 / 2 ( 1) /
. .

2(1 2 1/ ) /
.

k k k k

k k

k h n k h
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n y
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

               (4) 

The impact of kth disturbance depends on n (the 

number of headways considered), y  (which is close 
to 1) and k/hk (the ratio between the disturbance 
and the scheduled headway). 

 
4 Scheduled headway regularity 

coefficient and waiting time 
Let us consider the Lorenz curve based on the 
scheduled headways. The horizontal axis represents 
the cumulative proportion of buses ordered from 
buses with the smallest headways to buses having 
the largest. The vertical axis represents the 
cumulative headways of the individual buses as they 
are arrayed on the horizontal axis. The diagonal line 
is the function that describes perfectly regular 
service with equal headways for all buses.  
Substituting the series {yi} in (Eq.3) by the series of 
scheduled headways {hi} , we obtain the Gini 
coefficient for the scheduled headways: 
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N is the number of headway observations, H is their 
mean value, i is the rank of the headway. 
 
4.1 The Gini coefficient for the Scheduled 

headways 
We show that the Lorenz curve based on the 

scheduled headways is identical to the Lorenz curve 
plotting the waiting time when the timetable is 
established such that to get the same number of 
users in each bus (except for the passengers of the 
first bus of the day, for which no headway is 
attached): it is, therefore, a good indicator from the 
riders' perspective. 

Let us assume, for the sake of simplicity, that the 
scheduled headways between consecutive buses i-1 

and i are independent of the bus stop on the bus 
route; this means that there is one unique headway 
hi for the bus i at all the bus stops. Assume that the 
bus operator builds the scheduled headways such 
that all buses take the same number of passengers 
(Np), equal the forecasted traffic demand for the 
time corresponding to the headway and that 
passengers go to the stop randomly without 
expectations of boarding a particular bus. The 
cumulative percentage of headways or buses (on the 
X-axis of the Lorenz curve) is thus equal to the 
cumulative percentage of passengers taking these 
buses. The mean waiting time of a passenger is 
equal to half of the headway; the total waiting time 
of the passengers of each bus i is equal to the 
number of passengers by bus multiplied by half of 
the headway (Eq.6).  

.
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 i

i P

h
w N                                         (6) 

Let us re-number the buses, sorting them 
according to their headway (the bus with the 
smallest headway becomes the first bus); the 
waiting time for all passengers of buses 1 to i  are 
given by (Eq.7): 
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              (7) 

Where [1,i] is the set of passengers of scheduled 
headway less or equal to hi. The total waiting time 
for the whole day on the bus line is: 

N
p

T j
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N
W h
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The cumulative percentages of the waiting time 
wasted until the ith bus, related to the total waiting 
time, is: 

i N i N
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 (9) 
The Lorenz curve plotting the cumulative 

percentages of waiting time against the cumulative 
percentages of the total population waiting for 
buses, starting with the smallest waiting time, is thus 
identical to the Lorenz curve that plots the 
cumulative percentages of scheduled headways. 
Thus the Gini_S coefficient represents exactly the 
waiting time inequity.  
 
5 Gini coefficient based on the ratio of 

observed to scheduled headway as an 
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indicator of the adherence to the 

scheduled 
Operators already know the irregularity of 
scheduled headway implied by the timetable they 
established taking into account many constraints. 
Operators are more interested in the adherence of 
the observed headways to the schedule; that 
adherence can be analyzed thanks to the Lorenz 
curve based on the ratios {observed/scheduled} 
headway; the adherence is assessed by the value of 
the corresponding Gini coefficient, named in this 
paper Gini_R. Like other indicators, the Gini_R 
must be used carefully by operators -its interest is to 
prioritize the actions, to highlight the more severe 
problems. It is well adapted for headway adherence 
control policies. 

The denominators of the ratios used in the 
Gini_R are the scheduled headway. When 
increasing the number of buses, for example, 
multiplying by two bus frequency (this can be the 
case when two bus lines have a common trunk and 
the stops on the common trunk have twice the 
number of buses than the peripheries), the scheduled 
headway are divided by two. Assuming the same 
distribution of the headway deviations the ratios 
used in the Gini_R is multiplied by two; this says 
that the same absolute deviation costs twice as much 
as relatively to headway. This has a sense when 
assuming that the doubled frequency is due to twice 
as many users. However, from the traveler’s point of 
view, comparing the reliability of two (or more) 
lines with different frequencies (or average 
headway, their inverses of frequencies), it is fair to 
have the same index value, for the same headway 
deviation iwhatever the average headway; this is 
obtained by replacing the observed headway hi+Δhi, 
(hi being the scheduled headway and Δhi the 
observed deviation) in the numerators of the ratios, 

by the quantity ; 

Average_Headwayl is the average headway per 
day on the line is equal to D/N, D being the daily 
duty and N the number of headways (i.e. the 
number of buses minus 1) for line l 
Average_Headway0 is the average headway of the 
line with the least frequent time (the highest average 
headway). It is equal to D0/N0 lowest number of 
services is thus N0+1) among all lines. The ratio 

 is less or equal to 1. Then, 

whatever the line l,   is smaller than .  
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used in the Lorenz curves and the Gini coefficients, 
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standardization effect. This modified ratio is built to 
ensure that, on average, the same deviation, the 
same modified ratio whatever the line l.  
Analyzing and comparing the schedule adherence 
for different parts of the day (peak /off-peak) during 
which the average bus frequency varies, also 
requires similar modifications of the ratios  
The passage from the ratios to “modified” ones 

changes the average ratio Ṝlin 
new

l
R , the Gini-R, the 

Lorenz curve, its derivative. The following 
equations give the correspondence: 
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    
 
 

  
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 

0 0
'

mod 0 0

0

0

( ) 1
( )

1 1

l l

l l

l l

l
l

l

l

ified

N D N D
R L x

N D N D
L x

N D
R

N D

   
 

 
 

  

(14) 

'
mod ( )
l

ified
L x
 
 
 

and
'

mod ( )
l

ified
L x
 
 
 

 being the 

Lorenz curve based on modified ratios and its 
derivative for line l. 

Historically, the Gini coefficient, the Lorenz 
curves display the income inequality in a state. 
Comparing the inequalities between different states 
by superimposing Lorenz curves is particularly valid 
when the average income is the same across the 
different states. Here the comparisons will be 
particularly valid if the average ratios R l are the 
same or at least similar for all lines l. When 
different, the R l values must be taken into account 
in the comparisons between lines. 

Let us assume that the first and the last bus of the 
day are on time; this generally happens, even if it is 
not strictly. Then two cases may happen: 

In the case where there is no missing data nor 
missing bus, the average ratio is generally close to 
the value 1 for all bus lines. Indeed there is 
compensation between the observed headway 
deviation leading to the following conservative 

equation:  

This does not strictly imply that  , 

as the denominator hi depends on i. However, the 
scheduled headway on a line does not change very 
often along a day, thus this sum is generally close to 
zero, implying that the average of the ratios 
“observed/scheduled headway” is close to 1. 
All average ratios Ṝl are closed to the value 1, thus 
to each other. Therefore the visual comparison of 
the different Lorenz curves is right. 

- In the case of missing data or missing bus,- for 

instance, k missing bus or missing data on the line 
l, each with a scheduled headway hl, we have: 

hi=h.kl     >0. The average ratio is perhaps as 

much as 1+kl/Nl depending on line l. 
 
6 Properties of the Lorenz curve 

The Lorenz curve has different properties that make 
it a powerful graphical indicator [34]. Its different 
parts may help the operator to identify the headway 
adherence to the schedule. As we can see in 
Figure 2, in one glance, the operator identifies: 

 At left, the buses with observed headway shorter 
than scheduled.  

 At the center, the buses respecting more or less 
the scheduled headway. 

 At right, the long or very long intervals as 
compared to the scheduled ones. 

 

1- The Lorenz curve L(x) is piecewise linear. 
Its derivative is piecewise constant. Being a 
cumulative ratio proportion, the slope of the straight 
line between the points is

i i i 1 i 1;L and ;L
N N N Nl l l l

                
            

i 1 i 1

i 1

h h1
R h

l

l
l

 



 
  where R l  is the average of the 

headway ratios. 

 As the ratios 
i i

i

h h

h

l

l

 
are sorted from the 

lowest to the greatest, this slope (i.e. the derivative 
of the Lorenz curve) is increasing, the Lorenz curve 
is convex. 

Just before a strict increase of the headway ratio, 
i.e. for buses i (which corresponds to the bus 

proportion xi=i/Nl ) such as 
i i

i

h h

h

l

l

 
is strictly 

lower than
i 1 i 1

i 1

h h

h

l

l
 



 
 , the derivative of the 

Lorenz curve is discontinuous, passing from 

i i

i

h h1
R h

l

l
l

 
  at xi_to

i 1 i 1

i 1

h h1
R h

l

l
l

 



 
  at xi+. 

Note that maxR
l

 the highest ratio. The highest value 
of the derivative (slope) reaching the point {1,1} ) is 

equal to maxR
l

/Ṝ l 
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 Figure 2: The Lorenz Curve Properties 
 

1- “Part 0”, at the left of the Lorenz curve, 
gathers the bunched buses (if existing), which have 
an observed headway near 0, thus a very small 
headway ratio. Then, the derivative of the Lorenz 
curve (equal to this very small headway ratio 

divided by R l ) remains very low..  
2- Perfect equity (all ratios equal) lead to a 

Gini coefficient equal to 0. In this case, Part 1 
covers the whole interval [0 1] and the Lorenz curve 
is confounded with the first bisector. The more 
problems (whatever their source), the higher the 
Gini coefficient is and the more the Lorenz curve 
deviates under the first bisector. “Part 1” is reduced 
for the benefit of the proportions of low ratios (at 
the left of Part1) and of high ratios (at the right of 
Part1). 

 
3- Limits of Part 0, Part 1, Part 2. 
Let us define xas the proportion of buses such 

as the Lorenz curve derivative passes, between xr-to 

xr+, from a value lower than r/ R l , to a val 
ue equal or greater ,i.e. the headway ratio at 

xr+1/Nl reaches or exceeds the values r. 

r r
rL ' x L ' x

R
l l

l
 

   
    

   
                      (15) 

 The limits of Part 0, Part 1 and Part 2 are 
obtained by the values of xr, for specific values of r: 

Let hl be the average scheduled headway on line 
l- for instance hl =14 minutes. A bus is bunched 
when its observed headway is only the time of 
loading/unloading passengers’ -one minute for 

instance. Its headway ratio is then below a 
threshold, obtained by dividing this time by its 
scheduled headway, in average hl- in the example 
this threshold is r=0.07=1/14. Part 0 is then the 
interval [0,x0.07]. However it is not excluded that 
Part 0 includes a few non-bunched buses, when their 
scheduled headway is much greater errors than the 

average scheduled used for the threshold.  
For r=1, [0, x1] corresponds to buses with an 

observed headway shorter than scheduled, whereas 
[x1+1/Nl,1]  corresponds to buses with an observed 
headway equal or greater than scheduled. Part 1, 
around x1, is defined here as buses whose headway 
ratio is comprised between r=0.75 and r= 1.25. This 
corresponds, for example in the case where the 
scheduled headway is 14 minutes, to a headway 
deviation less than 3’30” in absolute value. Thus 
Part1 =[x0.75+1/Nl, x1.25].  

Part 2” at the right of the Lorenz curve is defined 
as the proportion of headway ratios greater than 2, 
which can be considered as irregular. Part 2= 
[x2+1/Nl, 1]. The number of such buses is Nl(1-x2)-
1. Their cumulative headway ratio is

 21 L(x ) R Nl l   . It corresponds to an excess 

headway ratio E2 =

   2 21 L(x ) R 1 x Nl l
 

     
 

  . 

Headway ratios over 2 occur when: 
 

a) the previous bus did not pass,  
b) the previous bus passed but the 

corresponding data was not recorded, 
c) the emergence or aggravation of a traffic 

jam (or another event) slows down a bus, creating a 
large headway before the bus, 

The number of occurrences of cases a) and b) is 
equal to the difference between the scheduled 
number of buses and the observed number of buses 
in the data file. 

Thus E2, quantifies the number of missing data, 
missing bus, cumulative headway deviation (divided 
by one scheduled headway) for buses whose delay is 
even more than their scheduled headway. Strictly 
speaking, E2 is only a lower bound of this quantity, 
since a non-recorded bus could sometimes result, 
behind, in a headway ratio below two: this occurs 
when the previously recorded bus was delayed. 
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- Let [ maxR
l

] be the integer part of maxR
l

. In the case 

where maxR
l

is equal or greater than 3, additional 
xrare considered: for all r integers between 3 and [

maxR
l

]. To make some equations easier, let us 

complete this series by r=[ maxR
l

]+1, with 

systematically 
max 1

1
R

x
 

 
 


l

l

 

The interval 1,
r r

x x


 
  

l l

 contains 1r r
N x x



 
  
 

l l

l  

buses having an observed headway equal (or 
greater) than “r” times the scheduled one, due either 
to traffic delays or to “r-1” missing data or missing 
buses, ahead.  

The series 1 max{ , 2, }
r r

x x r R


   
       

l l l

 constitutes 

a series of indicators of the worst conditions that we 
can call “Misery indicators”. 

 
4- When superimposing several lines on the 

same graphic, the Lorenz curves (and their 
derivatives) are based on modified headway ratios 
(the modification depending on the line frequency); 

the initial series max, 0.07..
r

x r R
  

     

l l

 , based on 

non-modified ratios, are identified by the following 
condition obtained by combining (Eq.14) and 
(Eq.15): 

 
   

 

0 0

mod 0 0

0 0

0 0

mod0 0
mod

1

1 1 /

1

ified

r

ified

rified

N D r N D
R

N D R N D
L x

N D R N D

N D N D
r

N D N D
L x

R





 

 
 

 

 

 (16) 

5 - By analogy with the definition of rx
l

 in 

(Eq. 14), let us define 
mod

max, 0.07,
ified

r
x r R

  
     

l, l

as the proportion of buses such as the derivative of 

the Lorenz curve for modified ratios 
'

mod ( )ified
L x
 
 
 

 

reaches or exceeds r/
mod ified

Rl . For a given r >1, 

this corresponds, for bus number 
mod

1
ified

r
N x 

l,

l , 
to an extra modified headway ratio of r-1. The extra 
waiting time for the travelers is, on average only, 
but whatever l, equal to (r-1).h0, h0 being the 
average headway of line “0”, the line with the 
lowest frequency. Thus, the proportions 

 modified

rx ,
l,

l  are comparable from the travelers' 

point of view and these indicators are powerful. The 
previous comments related to missing data, missing 
buses apply on initial {xr,l}and not on modified 
ones. 

For r=1,  
mod

1 1

l, lified
x x
 

   since the proportion of 

buses with Δhi≤0 does not change when multiplying 

Δhi  by  for forming the modified ratio.  

 
 
7 Data 
 
7.1 Raw data 

Delhi is the capital city of India with a 

population estimated about 22 million. The 

mode share of trips by buses is ~20%, with a 

fleet size of ~10,000 buses plying on ~700 

routes  [35]. We used the bus data provided by 

the operator DIMTS for September 2016 for a 

sample of 25 routes (Figure 1 

Figure 1). The AVL data consists of route-
geometry specifications, bus stop locations, trip 
details, and time performance details. These are 
provided separately for both the directions of 
each route, classified as “UP” and “DOWN”. 
Route-geometry data lists the various segments 
that comprise the route in a particular direction, 
along with the coordinates of the key locations 
defining the segment. An example of this file is 
presented in Table 1. Bus stop location data 
specifies the sequence of bus stops for the particular 
direction of the route, and also the coordinates of the 
stops (see Table 2). The files on trip details and trip 
performance provide the details of individual bus 
trips for each day. They also give the information 
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whether the trip functioned as normal, or was 
deviated from the route (noted as “route deviated”), 
or if there was a breakdown and the trip was 
terminated prematurely (noted as “breakdown”). 

Besides, the GPS data from the AVL device on 
each bus plying on the route was provided. 
However, these data were not segregated into the 
two directions of each route. The data contain the 
details of all the buses running on the specific 
routes: the bus identification number, the timestamp 
of when the GPS data was transmitted every 10 
seconds, the coordinates of the bus movement for 
this 10-second frequency, and the instantaneous 
speed for the corresponding timestamp (Table 3). 
For our analysis, we considered the route-geometry 
data, bus stop locations, and GPS data. 

 

Figure 1: Sample of 25 bus routes in Delhi 

Table 1: Example of route-geometry data for 
route 239DOWN 

 
DO: Distance from origin 
SL : Segment length 
 

Table 2: Example of bus stop location data for 
route 239DOWN 

 
 

Table 3: Example of bus-based GPS data for 
route 239 

 
7.2 Travel-time estimation 
We compared two different approaches to process 
the GPS data from the buses to assess the link travel 
time and speed for the sample of routes. The link is 
defined as the road section between two consecutive 
bus stops. In the first approach, we used bus stops as 
the unit of reference. Buffer areas were created 
around each bus stop. Speeds were estimated based 
on the instances of the first detection of the buses in 
these buffers (approximately as the arrival times of 
the buses). In the second method, the buses were the 
unit of reference. Buffer areas were created around 
the GPS locations of the buses, and travel times (and 
speeds) were derived from the first instances of 
when the buses changed the links, i.e. crossed the 
bus stops (approximately the departure times of the 
buses).  
 
 

 
Figure 4: Link Travel-Time and speed estimation 
 

This needed the identification of the bus 
direction. Note that a U-turn can occur along the 
route, not necessarily at the terminus. For each GPS 
coordinate, a link search algorithm was applied in 
the sequence order of the current route, starting from 
the first link of the route. This allowed detecting a 
change in direction when the next link position is 
found before the previous link position. Once the 
link position was found, the curvilinear distance 
from the upstream stop of the link was computed. 
This distance was also used to anticipate either the 
detection of a U-turn (when distance decreased) or 
the arrival at the terminus (when distance equals the 
link length).  
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Method 2 differs from method 1 in that method 1 
considered arrival times of the buses within the 
vicinity of the bus stop, and method 2 considered 
the departure times of the buses from the bus stop. 
Results showed that differences in the speed 
estimates by the two methods were statistically 
significant for only less than ~10% of the links, and 
there was no significant difference in the headway 
estimates. Method 2 is however chosen because of 
the number of missing data, many buses are not 
detected in the buffer region of the bus stops leading 
to fewer observations. 

 

7.2.1 Estimation of link travel times and speeds 
In this method, link travel time was estimated using 
the following equation: 

                           
(17) 

Where Ti is the travel time on the link, D is the 
departure time of bus j from the bus stop, e is the 
endpoint (or buffer) of the link, and s is the start 
point (or buffer) of the link. It is important to note 
that the travel time is computed from the difference 
of the approximate arrival times of the bus at two 
consecutive stops.  

Thus, it is inclusive of the dwell time 
experienced at the start of the link, i.e. the first stop 
of the link. Also, speeds greater than 50 km/h were 
disregarded for the estimates of the mean and SD. 
This is because link speeds greater than 50 km/h 
implies even higher instantaneous speeds for buses, 
which is not feasible. Such kind of estimates is 
likely results of the errors that arise sometimes in 
GPS data and are thus discarded. 
 

7.2.2 Estimation of headways 

The headway  of a bus j+1 at the bus stop a 

was estimated using the following equation: 
  𝐻𝑎

𝑗+1
=  𝐷𝑎

𝑗+1
−  𝐷𝑎

𝑗 (18) 

Where  is the schedule. As a bus stop may 
belong to several routes, attention was taken to 
satisfy this property when computing the headways. 

 

8- Results 
The Gini coefficient is an inequity measure, 
however if all buses were late as compared to 

their schedule with the same amount of time, 
the Gini coefficient is equal 0, it is closer to one 
when there is no similarity at all between the 
schedule and the observed headways. This helps 
to identify the most irregular bus routes in a 
network and the black spots on a bus route. 
 

8.1- Regularity at bus routes  
Comparing the respect of the schedule of four 

different bus routes.  

As shown in (Figure 5) the bus line 165 is the one 
with the more regular headway, - from the passenger 
point of view.  

 
Figure 5a. Direction “UP” 

 

 
Figure 5b: Direction “DOWN”. 

Figure 5: Lorenz curves of four bus routes: lines 
165, 185, 403 and 507. 

 
X-axis: cumulated proportion of buses (sorted by 

increasing  observed/ scheduled headway ratio). 
Y-Axis: cumulated proportion of observed /  

scheduled headway ratio. 
Considering the number of minutes less or more 

versus the scheduled headway for the two directions 
UP and DOWN the modified Gini coefficient is 
equal respectively to 0.21 and 0.23. The most 
irregular is the bus route 403 CL with a modified 
Gini coefficient of 0.52 for the UP direction and a 
0.59 for the DOWN. Making a deeper analysis, we 
notice from the Lorenz curves that bus routes 
403CL and 185 have the same amount of long 
observed headway as compared to the schedule 
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(common higher part of the Lorenz curve), while the 
line 403 CL is more bunched than 185 with very 
short headways, forming what is commonly called a 
“train of buses”. In the DOWN direction, bus routes 
185 23 and 507CL have very comparable regularity 
(modified Gini coefficients are 0.45, respectively 
0.47). The Lorenz curves show occurrences of 
slightly higher ratios (observed headway longer than 
scheduled). 
 
8.2 Regularity at bus stops 
The Gini coefficient is computed at all the bus stops 
of the different bus routes of our New Delhi sub-
network. Figures 6 gives the Gini coefficient at the 
stops ordered from the origin to the destination of 
the direction UP (the contrary of Down). It is 
normal to have differences in the stop names and 
sometimes on the itineraries of both directions, in 
that case, we suppressed the corresponding bus 
stops. We also suppressed bus stops on the two 
directions when there are missing data in one 
direction. Results show many missing data at the 
origin and destination of the bus routes. 

For many bus routes, the Gini coefficient tends 
to increase from the origin to the destination; when 
superimposing the evolutions of the Gini 
coefficients of both directions according to the 
stops, the curve “UP is increasing, whereas the 
curve “Down” seems to decrease since the order of 
the stops is reversed (Figure 6 and 7). This finding 
confirms the observations of [17], who found that 
the regularity of the line decreases systematically 
over consecutive stops. However, this is not the case 
for circular bus routes such as 507CL (Figure 8b)  
 

 
 
Figure 6: The Gini coefficient value at bus stops in 

the two directions UP and DOWN for a High 
Frequency & Long Route – Bus Route 165.  

 

 
 

Figure 7: Bus Route RL-77, High Frequency & 
Short Route 

 
 

    
 

 
Figure 8.a Map of circular line 507. Both directions 
 

Figure 8b: Circular Line 507CL. Gini by stop 
 
 
8.3 The Lorenz curve as a tool of the 

regularity analysis  
 
8.3.1. The example of the Prem-Nagar 
Figure 9 contains the Lorenz curve of the stop Prem 
Nagar in both directions (UP and DOWN) of line 
165 in New Delhi. It is the 41st stop of the UP 
direction and the 12th at the DOWN direction.  
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Figure 9: Lorenz curves of 
{Observed/Schedule} headways at Prem_Nagar 

bus stop of bus route 165 for the 2 directions 
UP and DOWN, the 23rd September 2016. 

 

With a higher GINI coefficient in the UP 
direction, line 165 UP appears less regular than line 
165 DOWN at the stop Prem-Nagar, either because 
congestion or incidents are more frequent in UP 
than in DOWN, or because the fulfillment of the 
scheduled headway deteriorates along the line - 
Prem Nagar is the 41st stop in the UP direction, 
farther from the origin than it is in the DOWN 
direction. 
 
8.3.2 Lorenz Curve Derivative Characteristics at 

Prem Nagar 
The series {xr} characterizing the Lorenz Curve 
derivatives for Prem Nagar provides deeper analyses 
and comparisons between 165 UP and 165 DOWN.  
 - [0,  x0.07] corresponds to Part 0. x0.07 is lower in 
sense DOWN (3.5%) than in sense UP (10%); 
referring to the data validates the assumption that 
Part 0 corresponds to bunched buses -2 bunched  
- Between x0.07 and x0.75 are observed headway 
ratios shorter than scheduled.  x0.75 is higher in UP 
(51%) than in DOWN (32%). Although this is 
positive for some travelers in UP, we will see below 
that it is the backlash of difficulties on UP. 

- Part 1, from x0.75 to x=1.25, is larger in Down (from 
32% to 58%) than in UP (from 51% to 63%), 
indicating better operations in DOWN  

- As x2=81% in both directions, Part 2 = ]x2,1] 
addresses the same proportion of buses (missing 
bus, missing data, number of buses whose delay has 
worsened by more than one scheduled headway than 
the delay of the previous bus. 

However the operations are more deteriorated in 

the UP direction (incident or congestion), where the 
higher ratio is more than 5: Indeed the 
characteristics (x4=95.%) and (x5=98%) exist only 
on UP, implying the existence of three additional 
misery indicators (x4 –x3), (x5 –x4), and (1-x5). This, 
in turn, implies many observed short or very short 
headway ratios, for buses passing just after the end 
of the incidents. That’s why the proportion of short 
headway ratio sx0.75 is higher in UP than in DOWN. 

 
 

 
 

Figure 10: Bus proportions for Part 0, Part 1, Part 2 
at Prem Nagar (both directions). 

 
9. Conclusion 
The Gini coefficient, based on the ratio of 
observed to scheduled headways is an indicator 
of the adherence to the schedule; its value is 0 
in the case of perfect adherence, thus in case of 
perfect operations; it is 1 in the most abnormal 
case of all buses bunched. The operator is 
alerted by a high Gini coefficient, computed on 
particular stops or days. The value of the Gini 
coefficient is comprehensive: an equation gives, 
in an idealistic case, the impact of any single 
traffic disturbance on the GC.  Comparing 
different bus lines, or comparing different parts 
of the day (peak/off-peak.) requires, before 
computing the Gini coefficient, some 
homothetic modifications of the ratios in order 
to accord with the average bus frequencies. We 
address here the Lorenz curve, which gives the 
cumulative percentage of ratio spent against the 
cumulative percentage of buses (ordered by 
increasing ratios). Then we focus on the 
derivative of the Lorenz curve, which provides 
new indicators detailing different proportions of 
buses with respect to the adherence to 
scheduled headway: bunched buses, buses with 
an observed headway close to its scheduled one, 
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buses with an observed headway twice (or 
more) than the scheduled one, etc..   
When computed on the modified ratios, these 
new indicators are standardized with regard 
gain or loss of waiting time. Their values are 
comparable when applied for different parts of 
the day or for bus lines with different 
frequencies.  

Once computed, the Lorenz curve helps the 
operator to identify the regularity of the bus line 
at a glance. We presented here an application on 
a part of the New Delhi bus network. We 
believe that this will complement the 
knowledge that operators already have on the 
network they manage.  

The perspectives are twofold: (1) addressing 
the advantages and drawbacks of this 
coefficient compared with others (standard 
deviation of headway) – (2) Adding to the 
observed or scheduled headway, the observed 
or scheduled travel time from previous to 
current stop. Then making the ratios and 
applying the whole process. This would provide 
a different ranking of buses, suitable for the 
point of view of the traveler, who is sensitive to 
his entire journey time. 
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