
Adaptive Neural Networks Based Robust Output Feedback Control for 
Nonlinear System 

 AHMED J. ABOUGARAIR1, MOHAMED M. EDARDAR2 

Electrical and Electronics Engineering Department 1,2 
University of Tripoli 

LIBYA1,2 

 
Abstract: - The performance of the control system is reduced by uncertain nonlinearities behaviors, which can be 
enhanced by implementing an adaptive approach represented by the robust output-feedback control and artificial 
neural network, which is proposed in this paper and utilized for identification and control of a nonlinear system. 
The Cart Pole System (CPS) is treated as a multi-body dynamical system, and the nonlinear swing-up problem 
is handled by designing an adaptive neural network which trained using a modified conventional controller called 
Linear Quadratic Optimal State Estimator with Integral Control (LQOSEIC). In this paper, the nonlinear system 
CPS stabilized utilizing robust output feedback control called LQOSEIC, this controller allows a linearized 
system to act as a model reference for the original nonlinear system, but they are only valid for a limited range 
of operations and will fail if the plant characteristics are unknown or uncertainty. An adaptable neural network is 
used to overcome this challenge., in which the adaptive neuro controller is trained offline using LQOSEIC to get 
the initial weights of neurons for layers network, after finished the training the LQOSEIC will be replaced by 
adaptive neural control. The real advantage of a neuro-controller is its ability to update online depending on the 
error signal. The neuro-controller demonstrates that when any disturbance or uncertainty arises in a non-linear 
system, neural networks characterized by online learning compensate for the effect of unpredictable conditions. 
The suggested adaptive neural network improves control performance and ensures the closed-loop control 
system's robust stability. Finally, numerical simulations are used to demonstrate the efficacy of the proposed 
controllers.  
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1 Introduction 
The cart pole system (CPS), commonly known as 

an inverted pendulum on a cart. CPS is a well-known 
nonlinear control issue. It's a non-minimum phase 
system, unstable and under actuated. The task of 
balancing a pole on a moving cart is a common 
benchmark problem for evaluating various control 
algorithms. Despite the fact that the CPS is a well-
studied control issue, its identification and control 
remain a hot issue. The nonlinearities behavior of real 
plants is extremely difficult to represent analytically. 
The approximation linear model can be used to 
analyze their behavior in some instances, although it 
is only valid for small nonlinearities. Non-linear 
systems, on the other hand, can be stabilized using a 
modified conventional controller. These controllers 
allow a linearized system to perform as a model 
reference for a non-linear system, but they are only 
valid for a limited range of operations and will fail if 
the plant's characteristics are unknown or vary. One 
of the goals of this paper is to show the different 
techniques that may be used to construct a nonlinear 

control system, such as Adaptive Neural Networks 
(ANN) based robust output feedback control. One of 
the most crucial characteristics of neural networks is 
their ability to adapt. Artificial neural networks that 
adapt to changing surroundings are known as 
adaptive artificial neural networks.  Neural networks 
have been used effectively in a wide range of 
applications, including nonlinear system 
identification and control.  Different control 
techniques such as classical, optimal, and intelligent 
for control of CPS were addressed in [1-4]. The 
following is a description of how the paper is 
structured: Description Modeling of CPS in section 
two, Control Design Approach is available in section 
three, Neural networks in Process Modeling and 
Control shown in section four, and the Conclusion is 
provided in section five. 

2 Description model of the CPS 
The CPS is an open-loop system that is 

compulsively non-linear, single input multi output 
(SIMO), the system input is control voltage, while the 
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system outputs are cart position and angle. Because 
of its strong non-linearity and lack of stability, it's a 
good way to test prototype controllers. As a result, 
traditional linear approaches are unable to represent 
and regulate the nonlinear system (CPS). The 
unstable system's output data does not provide 
adequate information about the system. Before 
identification, feedback controllers are created to 
stabilize the system [5]. Within the confines of a one-
dimensional track, the cart is free to move. The pole 
can move parallel to the track in the vertical plane. A 
force F, parallel to the track, can be applied by the 
controller to the cart. The pole has a mass of mp and 
a length of 2l, whereas the cart has a mass of mc. The 
position of the cart represented by x (m) and the angle 
formed by the pole and the vertical is 𝜃 (rad), cart 
velocity 𝑥̇ (m/s) and angle velocity 𝜃̇ (rad/sec). The 
friction coefficient between the cart and the track is 
𝛾, and there is friction in the articulation linking the 
pole and the cart, resulting in a torque of  𝛼 and the 
gravitational acceleration is g. The system dynamical 
equations must be derived before the plant model can 
be constructed in Simulink  [6]. 

      𝜃̈ =
𝑔 𝑠𝑖𝑛 𝜃+𝑐𝑜𝑠 𝜃 {𝑁𝑎+𝛾 𝑔 𝑠𝑔𝑛(𝑁𝑐𝑥̇)}−

𝛼

𝑙 𝑚𝑝

𝑙{
4

3
−

𝑚𝑝 𝑐𝑜𝑠 𝜃

𝑚𝑝+ 𝑚𝑐
[𝑐𝑜𝑠 𝜃−𝛾 𝑠𝑔𝑛(𝑁𝑐𝑥̇)]}

         (1) 

 𝑥̈ =
𝐹+𝑙 𝑚𝑝(𝜃̇2 sin 𝜃−𝜃̈ cos 𝜃)−𝛾  𝑁𝑐 𝑠𝑔𝑛(𝑁𝑐𝑥̇)

𝑚𝑝+ 𝑚𝑐
        (2) 

Where 

𝑁𝑎 =
−𝐹 − 𝑚𝑝𝑙𝜃̇2[sin 𝜃 + 𝛾 𝑠𝑔𝑛 (𝑁𝑐𝑥̇) cos 𝜃]

𝑚𝑝 +  𝑚𝑐
 

𝑁𝑐 = (𝑚𝑝 + 𝑚𝑐)g − 𝑚𝑝𝑙(𝜃̈ sin 𝜃 + 𝜃̇2 cos 𝜃) 

3 Control Design Approach 
The study and design of control systems are 

focused on three basic goals: achieving stability, 
investigate the desired transient response, and 
reducing steady-state errors. In addition, there are 
several types of performance indexes such as 
minimum time problem and regulator problem [7]. 

3.1 Modified Conventional Control Design 
Creating a state feedback controller usually has 

one major disadvantage: it generates a significant 
steady-state inaccuracy. As a result, Integral Control 
(IC) or Reference Input Signal (RIS) is used to 
correct for this problem, removing the steady-state 

response inaccuracy.  Link the LQR with the IC to 
configure LQRIC and connect the Eigen-assignment 
(ES) with the RIS to configure ESRIS. Also, some 
state variables may not be available or may be too 
costly to measure. If the state variables are not 
available due to system design or computation, it is 
possible to approximate cases using the observer. 
Taking into account that the system is controllable 
and observable .  The observer can be designed using 
two different methods: Place Estimation (PE) and 
Optimal State Estimation (OSE). The basic idea now 
is to create an observer-based controller basis by 
linking ESRIS with PE to form ESRISPE and 
similarly linking LQRIC with OSE to create 
LQRICOSE. The purpose of these controllers is to 
make the linearized system act as a model reference 
system for the nonlinear system as shown in Fig. 1. 

 
Fig. 1.  Design optimal controller using model reference 
 
     The state space model of linearized CPS is  
                      𝑥̇  = 𝐴𝑥 +   𝐵𝑢                                (3) 
The error e is the new state with integral control   
                𝑋𝑖

̇ = 𝑒̇ = 𝑟 – 𝑦 = 𝑟 − 𝐶𝑥                      (4) 
Where y is the output system and r are desired 
reference. 
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   [
𝑥
𝑋𝑖

̇
̇
] = [ 

 𝐴              0 
– 𝐶           0

] [
𝑥
𝑋𝑖

] + [
𝐵
0

] 𝑢 + [
0
1

] 𝑟    

               [
𝑥
𝑋𝑖

̇
̇
] = 𝐴𝑎 [

𝑥
𝑋𝑖

] + 𝐵𝑎u +  [
0
1

] 𝑟               (5) 

              y  = [𝐶      0] [
𝑥
𝑋𝑖

]  =  𝐶𝑎 [
𝑥
𝑋𝑖

]                  (6) 
Where  
𝐴𝑎 =  [ 

 𝐴              0 
– 𝐶           0

], 𝐵𝑎= [𝐵
0

] and 𝐶𝑎=  [𝐶      0] 
The system is completely state controllable and the 
state feedback control (SFC) can be written as:  
           𝑢 =  −[𝐾    − 𝐾𝑖] [

𝑥
𝑋𝑖

] = −𝐾𝑎𝑋𝑎                (7) 
Where  
𝐾𝑎 = [𝐾    − 𝐾𝑖]   and   𝑋𝑎 = [

𝑥
𝑋𝑖

] 
Ka: gains of LQR with integral control (LQRIC). 
K: gains of LQR.  
Ki: Integral gain.  
The LQR approach is based on the minimization of a 
quadratic cost function J, which is defined as 
                   𝐽 = ∫ (𝑥𝑇𝑄𝑥

∞

0
+ 𝑢𝑇𝑅𝑢)𝑑𝑡                   (8) 

Where Q is a symmetric positive semi-definite matrix 
and R is a symmetric positive definite matrix [8].  
The closed-loop state equation with the state 
feedback control u(t) is 

[
𝑥
𝑋𝑖

̇
̇
] = 𝐴𝑎 [

𝑥
𝑋𝑖

] − 𝐵𝑎𝐾𝑎 [
𝑥
𝑋𝑖

] + [
0
1

] 𝑟 

              [
𝑥
𝑋𝑖

̇
̇
] = (𝐴𝑎 − 𝐵𝑎𝐾𝑎) [

𝑥
𝑋𝑖

] +    [
0
1

] 𝑟             (9)     

The gain matrix  𝐾𝑎 must be found such that the 
solutions to the equation, 

det(𝜆𝐼 − (𝐴𝑎 −   𝐵𝑎𝐾𝑎)) 

𝑑𝑒𝑡 (𝜆𝐼 − [
𝐴 − 𝐵𝐾     𝐵𝐾𝑖

−𝐶                  0
]) = 0 

                               
The primary goal of state feedback control is to 
stabilize a linearized system so that all closed-loop 
eigenvalues are in the complex plane's left side. Now 
we will design Eigen-assignment with reference 
input signal (ESRIS).  
The control signal is    
                       u  = - 𝐾𝑒x + KRIS . r                            (10)                                                                                            
As a result of which the closed-loop system, provided 
by: 
              𝑥̇ = (A – B𝐾𝑒) x + B KRIS. r                     (11)    
Where  
𝐾𝑒: gains of ES. 
KRIS: Feed forward scaling factor (Reference input 
signal)  
The steady state solution, 𝑥𝑠𝑠, for x is  

𝑥(∞) = 𝑥𝑠𝑠 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
𝑥𝑠𝑠 = [𝑉1   𝑉2    𝑉3  … … . 𝑉n]𝑇= V 

Also, At the staedy state  𝑥̇𝑠𝑠 = 0                                                                                                                           
0 = (A – B. Ke) V + KRIS . B. r 

Solving V yields. 
                V =  −(A − B. Ke)−1 KRIS . B.r              (12)                                                                                    
The steady state output   
    Vss = CV  = C(−(𝐴 − 𝐵. Ke)−1 KRIS. B. r)      (13)                                                                                                                   
The steady state error for a reference input r as a final 
outcome is 

𝑒(∞) = 𝑟𝑠𝑠 − 𝑦𝑠𝑠 
          0 = − [1+C(𝐴 − 𝐵. Ke)−1 K𝑅𝐼𝑆 . B] 
Since K𝑅𝐼𝑆 is a scalar, we can easily solve to show 
the value of feed forward scaling factor to get ess = 0 
is,  
                   K𝑅𝐼𝑆 =

−1

𝐶.(𝐴−𝐵𝐾)−1𝐵.
                           (14) 

Some state variables may not be available at all in 
other applications, or measuring them is too 
expensive. It is feasible to estimate the states if the 
state variables are unavailable due to system design 
or cost. The oobserver dynamic  
                   𝑥̂̇ = 𝐴𝑥 + 𝐵𝑢 + 𝐿(𝑦 − 𝑦̂)                 (15) 
and  
                                   𝑦̂ = 𝐶𝑥                               (16) 
Introduce estimation error   
                               𝑒̂ = 𝑥 − 𝑥     
and  
                              𝑒̂̇ = 𝑥̇ − 𝑥̂̇ 
            𝑒̂̇ = (𝐴 − 𝐿𝐶)(𝑥 − 𝑥̇) = (𝐴 − 𝐿𝐶)𝑒̂         (17) 
 
The controllers and estimators gain for LQRICOSE 
and ESRISPE can be determined using the Matlab 
program and Fig. 2 present the simulink model of 
LQRICOSE and ESRISPE.  We constructed complex 
Simulink model of nonlinear system and linearized 
system with LQRICOSE and ESRISPE controllers. 
In this design, the   linearized system can be used as 
a model reference for the non-linear system [9]. 
Figure 3 and Fig. 4 demonstrate the results of 
LQRICOSE and ESRISPE controllers on the 
behavior of linearized and actual nonlinear plant 
outputs of CPS. Table 1 present the numerical values 
of time specifications (rise time Tr, settling time Ts, 
and overshot OS %) and steady state error (ess). From 
the simulation result, it can be determined that the 
LQRICOSE performs better. In addition, the 
difference between actual states and estimated states 
using observers-based controllers (LQRICOSE and 
ESRISPE) for the linearized and nonlinear system is 
presented in Fig. 5 and Fig. 6 respectively. Through 
the results obtained, it is clear that the LQRICOSE 
gives accurate results with very small errors for 
linearized and nonlinear systems. The optimal 
estimator-based controller is LQRICOSE. 
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Fig.  2. Simulink model of LQRICOSE and ESRISPE 

 

Fig.  3. Simulation states using LQRICOSE 

 
 

 
Fig. 4. Simulation states using ESRISPE 

 

Table 1. Specification of linearized and non-linear System  

Linearized System  
Controller LQRICOSE ESRISPE 

Specification 
x 

(m) 
𝜃 

(rad) 
x  

(m) 
𝜃 

(rad) 
Tr 

Sec 
1 0.7 1.5 0.8 

Ts 2 2 2 3 

OS % 0 25 0 10 

ess 0 0 0 0 

Non-linear System 

Controller LQRICOSE ESRISPE 

Specification 
x  

(m) 
𝜃 

(rad) 
x  

(m) 
𝜃 

(rad) 
Tr 

Sec 
1.1 0.78 1.25 0.6 

Ts 2.1 2.3 4 4 

OS % 1 30 8 30 

ess 0 0 0 0 
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Fig. 5. Eestimated error states for linearized system 

    Fig. 6.  Eestimated error states for nonlinear system 

Despite the fact that the preceding results are good 
while the system parameters remain constant, Fig. 7 
illustrates the implications of parameter changes with 
a noise signal is added. It is evident from this diagram 
that the controller has chosen (LQRICOSE) is unable 
to operate the system to an appropriate degree. The 
acquired controller has the disadvantage of failing if 
there is any ambiguity or change in the plant's 
parameters. This issue will be addressed in the next 
design stage. 

 

Fig. 7. Effects disturbance and varying parameters  on the 
non-linear  system controlled using LQRICOSE 
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3.2 Non-linear Identification Using Linear 
Techniques 
The model dynamics of linear systems is the most 
essential work in control systems, but when dealing 
with non-linear systems, obtaining the model 
becomes a highly difficult problem that may be 
solved using system identification techniques.  
Figure 8 depicts a linearized system and nonlinear 
system with a feedback controller LQRICOSE with 
linear identification techniques. The non-linear 
model of CPS was identified using linear approaches 
such as ARX, ARMAX, Output Error (OE), and Box-
Jenkins (BJ) Model. The nonlinear system's input and 
output signals are sent to ARX, ARMAX, BJ, and OE 
which create the estimated models. In the case of the 
CPS system, both the position and the angle can be 
measured. 

Figur 8. Simulated models using the system identification 
toolbox 

The simulation results presented in Fig. 9 to Fig. 
12 show that the linear identification methods have 
acceptable results in the case of a linearized system, 
but because the inaccuracy in the estimated nonlinear 
model is quite large. Linear identification will not be 
able to develop a decent model for a non-linear 
system of CPS. As a result, the artificial neural 
network methodology will be examined in the next 
section. 
 

 

 

Fig.  9.  Estimated  position state of  linearized 
 

 

Fig.  10.  Estimated  position state of  nonlinear 
 

 
 

Fig. 11. Estimated  angle state of linearized system 

WSEAS TRANSACTIONS on COMPUTER RESEARCH 
DOI: 10.37394/232018.2021.9.15 Ahmed J. Abougarair, Mohamed M. Edardar

E-ISSN: 2415-1521 130 Volume 9, 2021



 

Fig. 12. Estimated  angle state of 
nonlinear system 

 

4 Neural networks in Process 
Modeling and Control 

Control of non-linear systems is a prominent 
application field for neural networks (NNs), which 
have been used to identify and control dynamic 
systems with great success.  The fact that this control 
approach does not use a mathematical model of the 
system gives it a benefit. Input-output relationships 
are used instead. When employing neural networks 
for control, there are usually two-step procedure: The 
system's identification and control design.  A NNs 
model of the plant must be constructed at the system 
identification step. The controller is designed or 
trained using the developed model [10],[11]. 

4.1 Non-linear Identification Using Neural 
Networks 
There are many ways of recognizing the non-linear 

model using neural networks.  Feedforward (FF) 
neural network structure is the most popular 
approach of neural network identification. Both the 
process and the NN model receive the same input 
during training, and then the actual and neuro model 
outputs are compared, with the error signal being 
used to update the NN weights and biases. The 
nonlinear model of CPS gives goal values for the 
learner of the neural network model. The Simulink 
model with feedback control is utilized to give a set 
of targets for the network to learn, as shown in Fig. 
13. Using Matlab it is possible to training and 
developing multi-layer perceptrons. The inaccuracy 

between the network and the output plant is 
considerable at the start of the training. The Mean 
Square Error (MSE) is a useful indicator of the 
model's correctness. The MSE decreases as the 
number of epochs grows. It is feasible to establish the 
right number of epochs for training the position and 
angle states by looking at the training diagram in Fig. 
14 and Fig. 15. To compare the dynamics, the output 
from the model and process is shown. More 
complicated functions can be mimicked by 
increasing the number of hidden layer neurons where 
the training Epochs = 300 and Learning rate = 0.001. 
Increasing the number of hidden neurons improves 
the MSE between the neuro model and the process, 
according to presented Table 2. 

Table 2.  Results of the training feedforward networks 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.  13. Simulink is used to evaluate the actual and neuro 
model quality. 

 

Neurons Angle (MSE) Position (MSE) 

1 1 × 10−7 3 × 10−4 

5 2 × 10−7 4 × 10−4 

20 7 × 10−8 6 × 10−5 

50 8 × 10−8 7 × 10−5 

100 9 × 10−9 8 × 10−6 
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                    Fig.  14. Training angle state  

 

 

 

 

 
 

 
 

                

                       Fig.  15. Training position state 

The process outputs are displayed against the neural 
model outputs in Fig. 16. When the number of hidden 
layer neurons is increased, the MSE drops 
dramatically, and the neural model accurately 
predicts the target. As a result, the feedforward 
networks can accurately mimic the process. FF 
networks will be used to simulate a multi-output 
system as presented in Fig. 17, The neural network's 
quality is assessed by contrasting the neural 
network's outputs with the process's outputs. The 
process and the neural model will both get the same 
input, but the neural network will have four targets to 
train instead of just one. At each time period, the 
neural network is trained by showing the four 
objectives concurrently. Different sizes of FF 
networks (10 and 50 neurons) will model the multi-
output process . The simulation result in multi-output 
case indicates that increasing the number of hidden 
neurons will be improving the MSE between the 
neuro outputs model and process. The optimal FF 
neural network model multi output when hidden 
layer contain 100 neurons as illustrated in Fig. 18. 

Also, the neuro model gives high performance for 
unit step input as explained in Figure 19. 

 

 

 

 

 

 

 

 

 

 

(a) Angle state 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Position state 

Fig. 16. FF network, 1 hidden layer, 50 neurons   
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Fig.  17. Multi-output FF network, 2 hidden layer, [10 – 50] 
neurons 

 

Fig. 18. Optimal FF neural network model multi output 

 

Fig. 19. Unit step response of FF neural network model  

4.2 Adaptive Neural network in control  

In this part, adaptive neural control for CPS system is 
provided, and the closed-loop system's stability 
characteristics have been shown. An existing 
controller is required to construct a supervised neural 
controller [10]. A feedback controller (LQRICOSE) 
has already been created, and this controller might be 
utilized as a reference for neural network (neuro 
controller). The neural controller will be created in 
the same way as the identification techniques were. 
Fig. 20 shows LQRICOSE controller and neuro 
controller, where the target of the neuro controller is 
the output from the original controller. The weights 
and biases are set when the training is completed and 
a Simulink model structure of neuro controller is 
generated, and instead of the existing controller, the 
network is placed in the feedback loop. The type of 
adaptive network to be utilized is the Adaline, which 
gradually adjusts the weights and biases of a network 
during training to reduce the error e(t). The 
ADALINE (ADAptive LInear NEuron) networks are 
similar to the perceptron utilized in the identification 
section, but its transfer function is linear instead of 
hard limiting. Figure 21 depicts the ADALINE's 
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weight values as the training proceeds. The error 
between the LQRICOSE controller and the adaptive 
neural controller is shown in Fig. 22, and as the error 
decreases, the network weights converge to their 
ultimate values. 

 

 

 

 

 

 

 

 

 

 

 

 

        

 

 

 Fig. 20. Supervised learning using LQRICOSE 

 

            Fig.  21. Plot of the neuro controller weights 

 

         Fig. 22. Plot of the error signal  

We compare the result of system output using the 
original controller and the neural controller in Fig. 
23. The difference in error between the neuro 
controller and the original controller is approximately 
10−7, indicating that the neuro controller is a close 
match to the LQRICOSE controller. The main benefit 
of the adaptive neuro controller is that it has the 
ability to change weights in an instantaneous manner 
and thus has the ability to make the system follow the 
specified path even in complex operating conditions 
and the presence of noise signals. 

 

 

 

 

 

 

 

 

 
 

Fig. 23. Response of the non-linear system to unit step  

The Simulink set-up for the adaptive neural 
controller is shown in Fig. 24, where the previously 
learned weights are now utilized as startup weights 
for the ADALINE controller. The input error signal 
in an ADALINE network is equal to the desired 
output minus the actual output. The ADALINE 
receives this error signal and adjusts the weights 
online. This enhances the networks performance. The 

0 100 200 300 400 500 600 700 800 900 1000
-3

-2.5

-2

-1.5

-1

-0.5

0

0.5
Network Weights 

Iteration 

 

0 20 40 60 80 100 120 140 160 180 200
-1

0

1

2

0 20 40 60 80 100 120 140 160 180 200
-0.5

0

0.5

1

Theta

0 20 40 60 80 100 120 140 160 180 200
-0.01

0

0.01

Xdot

0 20 40 60 80 100 120 140 160 180 200
-0.05

0

0.05

Thetadot

Orginal controller

NN controller

Orginal controller

NN controller

Orginal controller

NN controller

Orginal controller

NN controller

X 

0 100 200 300 400 500 600 700 800 900 1000
-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0
Error Signal 

Iteration 

WSEAS TRANSACTIONS on COMPUTER RESEARCH 
DOI: 10.37394/232018.2021.9.15 Ahmed J. Abougarair, Mohamed M. Edardar

E-ISSN: 2415-1521 134 Volume 9, 2021



previous neural controller developed shows that a 
NN can be trained offline using is LQRICOSE 
controller as a trainer. The Adaptive neural controller 
can be then placed online where it will continuously 
update its weights. The potential of adaptive neural 
controller to cancel disturbances that arise during 
operation is one of its advantages. When the 
controller is LQRICOSE and a noise signal is added 
to the setpoint while varying the parameters of a non-
linear system, the system becomes unstable; 
however, we will now test the system's response by 
varying the system's parameters and adding multiple 
types of disturbances to the setpoint when the system 
controlled using adaptive neural networks. The 
adaptive neuro controller will cancel the effect of any 
disturbance for different references as shown in Fig. 25 to 
Fig. 27. It can be seen that the neuro controller has ability 
to predict the desired values with high accuracy. 

 

 

Fig.  24. Online training adaptive controller  

 

 

 

 

 

 

 

 

 

 

 

Fig. 25.  Response to unit step  reference with disturbance and 
modifying the nonlinear system's parameters 

Fig. 26. Response to sinewave reference with disturbance and 
modifying the nonlinear system's parameters 
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Fig. 27. Response to multi step reference with disturbance and 
modifying the nonlinear system's parameters 

 

5 Conclusion 
The stability and tracking performance behavior of the 

nonlinear CPS system for reference trajectories has been 
studied and improved using a robust feedback control and 
an adaptive neural network, with uncertainties taken into 
account in the control design methods. The linear 
identification models like ARX, ARMAX, OE and BJ 
models were applied to estimate the non-linear system 
(CPS), which is found inadequate in modeling the non-
linear system. A variety of hidden layer neurons were used 
to create feedforward neural networks. The feedforward 
networks accurately represented the nonlinear system, 
with a very low MSE between the process and the neuron 
model. The LQRICOSE was able to stabilize the non-
linear system, but it failed when there was any uncertainty. 
When a disturbance is introduced to the process and the 
plant's parameters are changed during simulation, the 
LQRICOSE loses control of the non-linear system. The 
problem is handled using an adaptive neural network, in 
which the neuro controller is trained offline using an 
existing controller LQRICOSE to obtain the initial 
weights, and then replaced to regulate the non-linear 
system. The adaptive neuro controller has the benefit of 
being able to correct for a disturbance or any type of 
uncertainty that arises during operation. 
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