
A High Performance Global Routing Algorithm on Julia
Parallel Computing Platform

The miniturization of Integrated Circuits (ICs)
has greatly increased the complexity in all phases
of the IC design flow especially routing. Routing
is analogous to finding the roads between the
pins of circuit elements to be connected. It is a
two-fold process that involves global routing fol-
lowed by detailed routing. Global routing simply
specifies the tracks to be used for interconnec-
tions without abiding the design rules required
for fabrication [1], as shown in Fig: 1. Also, it
needs to be performed multiple times and demands
for exploring the strength of parallel processing
using efficient programming languages. Parallel
processing involves the use of multicomputers or
multiprocessors. The increased number of cores
for parallelism reduces the runtime but it has not
been possible to utilize the advantage of adding

cores successively. Programming language Julia
has the capability to handle parallel problems in
an easy to use manner with simplified coding
styles compared to other languages. A fast routing
algorithm on parallel grounds under the shield
of high-performance and dynamic programming
language is the key to optimization of the problem
of global routing.

Fig. 1. Global Routing [1].

Programming languages come in two flavours,
viz,-

• System languages which are hard to use but
are fast, and

• Scripting languages which are easy to use but
are slow.

1MEENAKSHI AGARWALLA, 2MANASH PRATIM SARMA, 3KANDARPA KUMAR SARMA

Abstract—To keep pace with the design requirements of Integrated Circuits (ICs), parallel processing is
adopted. The path to be routed between two nodes may or may not be dependent on the previously routed paths.
The solution requires careful attention in distributing the nets to be routed to different processors. Previous work
on allocating the tasks to processors has been quite successful, reporting upto 3x improvement on 4 cores and
5x improvement on 8 core machine. The advantage of increasing the number of cores diminishes with each
added processor and the challenge lies in being able to maintain the improvement per added core. The existing
techniques of distributing the nets cannot provide additional advantage of using more than 8 cores. This paper
improves the work on parallelizing global routing using a technique of balancing the load on the processors for
better utilization of the resources. A relatively new budding platform Julia has been used which provides the
ease of programming while maintaining the performance of the C language. Technique used in this paper has
enabled to use 16 cores with routing solutions obtained in 0.8 minutes achieving 12.5 times speedup compared
to sequential processing on a single core.

Keywords : Wirelength, Runtime, Congestion, MPI, RMST, RSMT, RRR, MR-GR, MRB-GR, HBLMR- GR

Received: March 3, 2021. Revised: July 28, 2021. Accepted: July 30, 2021. Published: August 10, 2021.

1. Introduction

1,2,3Department of Electronics and Communication Engineering, Gauhati University, INDIA

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2021.9.12

Meenakshi Agarwalla,
 Manash Pratim Sarma, Kandarpa Kumar Sarma

E-ISSN: 2415-1521 103 Volume 9, 2021

Attempts to get the best of both the worlds have
given birth to Julia [2], [3] which enjoys the
speed comparable to C and dynamic capability
of Python. The credit of fast execution in Julia
goes to it being a Just-In-Time (JIT) compiled
language unlike C, Fortran where codes are com-
piled before execution. Julia uses On-the-fly code
generation called metaprogramming, multiple dis-
patch, dynamic typing and readable code as a
paradigm, making it the cunningest player of all
high-performance languages.

Parallelizing the routing process requires iden-
tification of independent nets and distribution of
these nets to different processors. Related works
[4], [5] have parallelized routing using upto 8
cores. The utilization of increased number of cores
cannot be justified with the previous reported
methods. This paper presents a technique of ex-
tending parallelism using more than 8 cores. A
fast global routing algorithm is implemented using
Julia on High-Performance Computing (HPC) ma-
chine with 12.5x speedup achieved in 0.8 minutes
with balanced load compared to the sequential
processing.

The paper is organized into six sections of which
Section II highlights the steps involved in the
conventional global routing algorithms. Section III
deals with parallelization techniques and Section
IV discusses the implementation steps of Global
routing algorithms using Julia. The results are
presented in Section V and finally, Section VI
concludes the paper with future directions.

Global Routing accounts for its time consuming
nature as it is performed multiple times. It is a
complex process with steps involved shown in
Fig: 2. Initially, paths are searched in between
the pins to be connected by allowing congestion.
Congestion is the traffic on the layout where the
number of paths through a route exceeds its ca-
pacity. The used paths are given weighted values
to identify congested areas. The overflowing areas
undergo Rip-up and Re-route (RRR) stage [6],
[7] for nullifying the effect of congestion. RRR
comes into play after the initial routing solutions
are obtained and involves the following two steps:

• Areas with congestion are found and a few
nets under violation are ripped.

• Nets considered for rip-up are rerouted in a
pre-defined order.

Fig. 2. Steps in Global Routing.

A net is a path connecting two points. In IC
design, two-pin net routing involves connection
between the source and the target. Some of the
routing algorithms are:

Lee’s Algorithm: Lee’s algorithm [8] is based
on the principle of Breadth First Search (BFS)
technique considering a gridded-graph layout as
shown in Fig: 3.

Fig. 3. Global-Routing Graph

It is a two-stage process:
• Forward wave propagation
• Backtracing

Lee’s algorithm, also known as maze algorithm,
enjoys the advantage of finding the shortest path
between two pins to be connected. But it has some
disadvantages that include:

• Runtime is more as it searches in all directions
from the source.

• It consumes a lot of memory space for storing
a huge amount of unwanted data.

• It cannot be applied to multi-pin nets as it is
meant for two-pin nets.

The work [4] proposes a variation of maze rout-
ing algorithm that is applicable to multi-terminal

2. Global Routing and Heuristics

2.1 Overview of Global Routing Process

2.2 Two-pin Net Routing

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2021.9.12

Meenakshi Agarwalla,
 Manash Pratim Sarma, Kandarpa Kumar Sarma

E-ISSN: 2415-1521 104 Volume 9, 2021

nets. Defects of Lee’s algorithm are handled using
bounding box [9], [10] which reduces the search
space as well as the processing time. Use of bound-
ing box comes at the expense of long wirelengths.
The processing time for routing using maze algo-
rithm is minimized by applying constraints to the
wirelength and the resources used for routing [11].

A* Search Routing: The A* search algorithm
is based on the principle of Depth First Search
(DFS) technique where the search for the path is
always directed towards the target. The direction
is searched using a cost function f(n) given by -

f(n) = g(n) + h(n) (1)

where n represents the path connecting the initial
node and the final node, g(n) denotes the weight
of the path connecting the initial node and the in-
termediate node and h(n) denotes the weight of the
path connecting the intermediate node to the final
node. The search is carried out directing towards
the target by selecting the successive nodes with
lowest cost f(n).

A negotiation-based A* search routing algo-
rithm [10] helps routing of nets through areas
with low values of congestion. Global routers [5],
[9] propose to obtain routing solutions very fast
using bounding box but the weakness lies with
long routing wirelengths and occupation of more
routing resources. A variation of A star algorithm
with bounding box expansion method [11] reduces
the processing time of maze routing algorithm
by applying constraints to the wirelength and the
routing resource. Han et al. [12] proposes to obtain
a fast hand initial routing solutions using A star
algorithm.

The A* search routing has advantages of being
fast and requires less memory relative to maze
routing.

Nets with more than two pins to be con-
nected are called multi-pins and the tracks con-
necting these pins form the multi-pin routed path.
Steiner trees play a major role in this regard by
forming subnets of two-pins, followed by rout-
ing through either Rectilinear Minimum Spanning
Tree (RMST) [13] or Rectilinear Steiner Minimum
Tree (RSMT) algorithm. RSMT algorithm uses

Steiner points [14] to alleviate the problem of
increased wirelength and rectilinear lines which
cannot help in areas under congestion.

Liu et al. [15] proposes to obtain cost saving
routing solutions in terms of wirelength by using
a combination of RSMT and RMST unlike the
global routers [16] [17] that use RMST.

Parallelism is the key to gear up the process of
global routing. Global routing can be parallelized
by two startegies:

• Partitioning based concurrency approach [18]
and

• Task based Concurrency approach (TCS) [11].
In the former approach, parallelization is possible
by allowing processors to route nets in allocated
subregions. In the latter approach, processors can
find routing solutions for nets in parallel without
any restriction in the search space [11]. Routing in
parallel the nets with overlapping bounding areas
[4] leads to congestion.

Another approach is to route nets in parallel with
non-overlapping areas from the formed group of
nets based on wirelength [19] and use Graphics
Processing Unit(GPU) with multi-core processors
[12]. This approach suffers from load imbalancing
and hinders the advantage of using more cores.
Our proposed method involves identification of
as many non-overlapping nets as are processors
available. This technique has enabled to extend
parallelism upto 16 cores efficiently with balanced
distribution of these nets to processors for routing.

The steps involved in sequential and parallel
processing are shown in Fig: 4

1) Grouping of Nets: The process of routing
differently sized nets by processors hinders effi-
ciency. Hence, groups of same - sized nets are to be
formed based on some parameters like wirelength
[19].

Grouping of nets offers the following advan-
tages:

• Different routing algorithms can be applied to
different groups.

2.3 Multi-pin Net Routing

3. Proposed Parallelization Approach

4. Implementation
4.1 Sequential and Parallel Processing Blocks

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2021.9.12

Meenakshi Agarwalla,
 Manash Pratim Sarma, Kandarpa Kumar Sarma

E-ISSN: 2415-1521 105 Volume 9, 2021

Fig. 4. Sequential and Parallel Processing Steps.

• Nets within a group have similar wirelengths
and hence, take the same time for processing.

• Parallelism can be applied efficiently to obtain
routing solutions in minimum time.

2) Identification of Independent Nets within
each cluster: Nets with non-overlapping bounding
boxes are said to be independent and can be
considered for parallel routing.

• Non-overlapping nets are identified using
an efficient technique over [19]. Non-
overlapping nets in a group must not exceed
the worker count as demonstrated in Fig: 5
and Fig: 6.

• The initial experiments are carried out iter-
atively in a loop by identifying four non-
overlapping nets using four cores.

• On an HPC machine, eight and sixteen cores
are used with the subsequent number of inde-
pendent nets in each iteration within a cluster.

Fig. 5. Grouped Nets for Parallel Processing as in [19]

Fig. 6. Grouped Nets for Parallel Processing used in the current
work.

Our proposed technique enjoys the following
advantages:

• Balanced load.
• Overhead on processors is reduced.
• Runtime is improved.
3) Prim’s Algorithm and A star algorithm: A

spanning tree with minimum cost that connects all
the pins of a multi-pin net is obtained using Prim’s
algorithm. This tree consists of a subset of edges
with minimum weight.

A star algorithm is used for routing the nets.
It uses the lowest cost function to find the path
between two pins. The cost functions are the
distances in between the nodes in consideration.
The formula used for calculating the weights are
the well-known Manhattan distance [20] and Eu-
clidean distance [21] equations. Manhattan dis-
tance between two nodes with co-ordinates (x1,y1)
and (x2,y2) is given by

Manhdist = |x1− x2|+ |y1− y2| (2)

Euclidean distance between two nodes with co-
ordinates (x1,y1) and (x2,y2) is given by

Eucldist =

√
(x1− x2)2 + (y1− y2)2 (3)

Using the Manhattan distance for cost calcu-
lation posed a problem as it gave almost similar
results for all neighbors corresponding to a source
node, thereby creating a perplexed situation for
selecting the next node. So, we used the Euclidean
distance formula which solved the problem but it
consumed a lot of runtime because of the square
root function. Hence, we used a modified equation
for our purpose, given by

Modfdist = (x1− x2)2 + (y1− y2)2 (4)

The use of square root function causes the data
type to be changed from Integer format to Floating

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2021.9.12

Meenakshi Agarwalla,
 Manash Pratim Sarma, Kandarpa Kumar Sarma

E-ISSN: 2415-1521 106 Volume 9, 2021

format which is strictly prohibited in Julia environ-
ment for processing efficiency. Also, the distance
calculated without square root doesnot affect the
final solution.

Experiments are carried out on adaptec1 with
219794 nets which is one of the benchmarks of
ISPD 2008 [22] using the environment Julia. The
results are obtained on a 64-bit quad-core proces-
sor with 7.7 GB of memory. Fig: 7 presents the
results obtained after forming groups of nets based
on the semiperimeter of their bounding boxes as
in [19].

Fig. 7. Net Count in the Groups formed based on Wirelength.

Table I compares the simulation time for sequen-
tial processing and parallel processing using four
cores.

TABLE I

PERFORMANCE COMPARISON ON SINGLE CORE AND QUAD

CORE

Group Name Net Count Runtime on Single core (s) Runtime on Quad core (s) Speed-up

group1 53 0.002 0.002 1x
group2 769 0.04 0.02 2x
group3 7066 0.4 0.19 2.1x
group4 26838 2.1 0.84 2.5x
group5 40271 5.1 1.75 2.9x
group6 35441 7.5 2.47 3.03x
group7 29179 11.8 3.59 3.29x
group8 19469 14.8 4.25 3.48x
group9 17481 26.4 7.52 3.51x
group10 15776 49.2 12.88 3.82x
group11 13417 100.3 24.19 4.15x
group12 8823 196.7 32.8 5.99x
group13 4526 149.7 49.4 3.03x
group14 676 35.9 20.75 1.73x

Table II shows the performance on HPC ma-
chine using eight and sixteen cores with speedups
compared to sequential results.

Table III shows runtime comparison with
NTHU-Router 2.0 [23] and GPU-CPU [12] based
router on 1 core and 4 cores. Also, simulation time

TABLE II

PROCESSING TIME USING VARIOUS NUMBER OF CORES ON HPC

Group Name Parallel Processing
(with 8 cores) (s) Speedup Parallel Processing

(with 16 cores)(s) Speedup

group1 0.0019 1.05x 0.0015 1.3x
group2 0.0139 2.88x 0.0092 4.35x
group3 0.098 4.08x 0.099 4.04x
group4 0.33 6.36x 0.236 8.89x
group5 0.61 8.36x 0.352 14.5x
group6 0.84 8.93x 0.519 14.45x
group7 1.17 10x 0.772 15.28x
group8 1.35 10.96x 0.97 15.26x
group9 2.57 10.27x 1.82 14.5x

group10 4.36 11.28x 3.44 14.3x
group11 9.19 10.9x 8.58 11.69x
group12 14.57 13.5x 11.66 16.87x
group13 17.56 8.53x 13.9 10.77x
group14 7.35 4.88x 5.76 6.2x

is compared with Maze Routing Global Router
without bounding box (MR-GR) [11], Maze Rout-
ing with Bounding box Global Router (MRB-GR)
[15] and Heuristic Bounded Length Maze Router
(H-BLMR-GR) [15] on 8 cores. Quad-core pro-
cessing results on Julia Router are 1.12 times better
than NTHU Router2.0 and almost same as GPU-
CPU Router. Results on 8 cores are 5.9 times,3.85
times and 2.65 times better on Julia Router than
MR-GR, MRB-GR and H-BLMR-GR respectively.
Also, the results obtained on 16 cores using Julia
show 12.5x speed-up compared to processing on
1 core.

TABLE III

RUNTIME COMPARISON WITH NTHU ROUTER 2.0, GPU-CPU

BASED ROUTER, MR-GR, MRB-GR, H-BLMR-GR

Number of cores Name of the Router Programming Language Simulation Time (min)

1 NTHU 2.0 [23] C/C++ 9.95
Julia Router[This Work] Julia 9.9

4
NTHU 2.0 [23] C/C++ 2.9
GPU-CPU [12] C/C++ 2.51

Julia Router[This Work] Julia 2.6

8

MR-GR [11] C/C++ 5.9
MRB-GR [15] C/C++ 3.85

H-BLMR-GR [15] C/C++ 2.65
Julia Router[This Work] Julia 1

16 Julia Router[This Work] Julia 0.8

Table IV shows the performance comparison of
an un-optimized Julia code which is equivalent
to Matlab or Python Code with optimized Julia
code. The results show that the performance is
undoubtedly better than that obtained in other
scripting language.

5. Results and Discussion

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2021.9.12

Meenakshi Agarwalla,
 Manash Pratim Sarma, Kandarpa Kumar Sarma

E-ISSN: 2415-1521 107 Volume 9, 2021

TABLE IV

PERFORMANCE COMPARISON OF UN-OPTIMIZED JULIA CODE

(EQUIVALENT TO MATLAB, PYTHON CODE) WITH OPTIMIZED

JULIA CODE

Number of Cores Un-optimized Julia
Code (min) Optimized Julia Code (min) Speedup

1 472.6 9.9 47.7x
4 167.35 2.6 64.36x

This paper presents implementation of global
routing on parallel platform. Simulations are done
on a single core, quad core and on High Perfor-
mance Computing Machine (HPC) using eight and
sixteen cores in Julia programming environment. It
is observed that Julia offers the ease of program-
ming and debugging of high-level languages and
allows optimization of code giving performance of
low-level languages. The solutions have improved
by 12.5 times through massive parallelism. This
parallelism has been possible due to the proposed
technique of distributing tasks to processors. The
achieved speedup will undoubtedly save the pro-
cessing time in post routing phases. The paral-
lelism can be stretched out to an extent limited
by the number of independent nets. It is expected
to open up new avenues to parallelize the global
routing process efficiently with minimum process-
ing time by using variations of routing algorithms.

[1] N. A. Sherwani, “Algorithms for VLSI Physical Design
Automation”, Springer, 3rd ed., Berlin, Germany, 1999.

[2] I. Balbaert, A. Sengupta and M. Sherrington, “Julia: High
Performance Programming”, Packt, 1st ed., Birmingham, UK,
2016.

[3] J. Bezanson, A. Edelman, S. Karpinski and V. B. Shah, “Julia:
A fresh approach to numerical computing”, Society for Iand
Applied Mathematics (SIAM), Vol :1, pp. 65-98, 2017.

[4] Y. Shintani, M. Inagi, S. Nagayama and S. Wakabayashi,
“A Multithreaded Parallel Global Routing with Overlapped
Routing Regions”, Euromicro Conference on Digital System
Design(DSD), September 2013.

[5] M. D. Moffitt, “MaizeRouter: Engineering an Effective Global
Router”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol: 27, pp. 2017-2026, Issue
: 11, November 2008.

[6] J. R. Gao, P. C. Wu and T. C. Wang,“A new global router for
modern designs”, Asia and South Pacific Design Automation
Conference(ASP-DAC), pp. 232-237, 2008.

[7] M. M. Ozdal and M. D. F. Yong,“ARCHER: A history-driven
global routing algorithm”, Proceedings of International Con-
ference on Computer-Aided Design (ICCAD), pp. 488-495,
November 2007.

[8] J. Hu and S. S. Sapatnekar, “A survey on multi-net global
routing for integrated circuits”, Integration,The VLSI Journal,
Elsevier, Vol: 31, pp. 1-49, Issue: 1, November 2001.

[9] M. Cho and D. Z. Pan, “BoxRouter: A new global router
based on box expansion and progressive ILP”, IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
Systems, Vol : 26, pp. 2130-2143, Issue : 12, December 2007

[10] M. Cho, K. Lu, K. Yuan and D. Z. Pan, “BoxRouter2.0:
Architecture and Implementation of a hybrid and robust global
router”, International Conference on Computer-Aided Design
(ICCAD), November 2007.

[11] W. H. Liu, W. C. Kao, Y. L. Li and K. Y. Chao, “Multi-
threaded Collision-Aware Global Routing with Bounded-
Length Maze Routing”, Proceedings of the 47th Design
Automation Conference (DAC), pp. 200-205, June 2010.

[12] Y. Han, D. M. Ancajas, K. Chakraborty and S. Roy, “Explor-
ing high-Throughput Computing Paradigm for Global Rout-
ing”, IEEE Transactions on VLSI systems, Vol: 22, January
2014.

[13] J. A. Roy and I. L. Markov, “High performance Routing at
the nanometer scale”, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, Vol: 27, pp. 1066-
1077, Issue : 6, June 2008.

[14] M. Pan and C. Chu, “FastRoute: A step to integrate global
routing into placement”, IEEE/ACM International Conference
on Computer-Aided Design, 2006.

[15] W. H. Liu, W. C. Kao, Y. L. Li and K. Y. Chao, “NCTU-
GR 2.0: Multithreaded Collision-Aware Global Routing with
Bounded-Length Maze Routing”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
Vol:32, pp. 709-722, Issue:5, May 2013.

[16] C. Chu, “FLUTE: Fast look-up table based wirelength esti-
mation technique”, Proceedings of International Conference
on Computer-Aided Design (ICCAD), pp. 696-701, November
2004.

[17] C. C. N. Chu and Y. C. Wong, “Fast and Accurate Rectilinear
Steiner minimal tree algorithm for VLSI Design”, Proceed-
ings of International Symposium on Physical Design (ISPD),
pp. 28-35, April 2005.

[18] T. H. Wu, A. Davoodi and J. T. Linderoth, “A parallel integer
programming approach to global routing”, Proceedings of the
47th Design Automation Conference (DAC), pp. 6, June 2010.

[19] D. Tumelero, G. Bontorin and R. Reis, “Overhead for Inde-
pendent Net Approach for Global Routing”, IEEE 6th Latin
American Symposium on Circuits and Systems(LASCAS),
February 2015.

[20] M. Sarrafzadeh, K. F. Liao and C. K. Wong, “Single-layer
global routing”, IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, Vol. 13, Issue: 1,
1994.

[21] Y. C. Hsu, Y. Pan and W. J. Kubitz, “A path selection
global touter”, Proceedings of the 24th ACM/IEEE Design
Automation Conference, Pages - 641-644, USA, 1987.

[22] Cliff Sze. (2008), ISPD 2008 Contest [Online]. Available:
http://archive.sigda.org/ispd2008/contests/ispd08rc.html.

[23] Y. J. Chang, Y. T. Lee and T. C. Wang, “NTHU-Route2.0:
a fast and stable global router”, Proceedings of International
Conference on Computer-Aided Design (ICCAD), pp. 338-
343, November 2008.

6. Conclusion

References

Creative Commons Attribution License 4.0
(Attribution 4.0 International, CC BY 4.0)

This article is published under the terms of the Creative
Commons Attribution License 4.0
https://creativecommons.org/licenses/by/4.0/deed.en_US

WSEAS TRANSACTIONS on COMPUTER RESEARCH
DOI: 10.37394/232018.2021.9.12

Meenakshi Agarwalla,
 Manash Pratim Sarma, Kandarpa Kumar Sarma

E-ISSN: 2415-1521 108 Volume 9, 2021

