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Abstract: The basic idea behind multivariate cryptography is to choose a system of polynomials which can be
easily inverted (central map). After that one chooses two affine invertible maps to hide the structure of the central
map. Fellows and Koblitz outlined a conceptual key cryptosystem based on the hardness of POSSO.

Let F},- be a finite field of p® elements, where p is a prime number, and s € N, s > 1. In this paper, we used the
act of G Ly, (F):) on the set . and the transformations group, to present the public key cryptosystems based on
the problem of solving a non-linear system of polynomial equations.
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1 Intoduction 2 Preliminaries

A group is a non-empty set G on which there is binary
Cryptographic techniques are essential for the secu- operation
rity of communication in modern society. The asym- (a,b) — ab such that
metric encryption methods based on difficult prob- e if a and b belong to G then ab is also in G (closure).
lems in mathematics. Today, nearly all cryptographic e If a,b and ¢ in G, then (ab) ¢ = a (bc) (associativ-
schemes used in practice are based on the two prob- ity).
lems of factoring large integers and solving discrete e there exists an element 1¢ in G such that
logarithms. However, schemes based on these prob- lga = alg = a forall a € G (identity).
lems will become insecure when large enough quan- e if a € G. then there is an element a—! € G such
tum computers are built. The reason for this is Shor's that ’
algorithm. which solves number theoretic problems a"la = aa! = 1¢ (inverse).

such as integer factorization and discret logarithms in

polynomial time on a quantum compgter. Thgrefore dinality of G, that is the number of elements in G. A
one needs alternatives to those classical public key subset H of a group G is a subgroup of GG, if and only
schemes. Besides lattice, code and hash based cryp- if H = () and forall a.bin H.abin H an’d aVin H.
tosystems, mult_lvarlate cryptography seems to be a The subgroup H of a group @ is denoted by H < G.
candidate for this. Given two groups GG and H, a group homomor-
phisnyis a map f : G — H such that f (ab) =
f(a)f(b) for all a,b € G. Note that this defini-
tion immediately implies that the identity 15 of G is
mapped to the identity 15 of H. The same is true for

The order of a group G, denoted by |G|, is the car-

In 1994, Fellows and Koblitz outlined a concep-
tual key cryptosystem based on the hardness of the
problem of solving a non-linear system of polynomial

equations. the inverse, that is f (a=!) = f (a) "

The remainder of this paper is organized as fol- Recall that if f : G — H is a group homo-
lows. In Section 2, we begin with some elementary morphism, the kernel of f is defined by Ker (f) =
material concerning of group, finite field, group ac- {a€eG: f(a) =1n}, [1],[2],[9).
tion on a set, general linear group, linear transforma- The group G acts on the set X if forall g € G,
tion, and public key cryptography. In Section 3, we there is a map
prove that the general linear group G L,, (F)-) acts on G x X — X, (g,2) — g.z such that
the set Fy.. In Section 4, we used the computational (1) h.(g.x) = (hg) .x forall g, h € G, forall z € X.
hardness of the Polynomial System Solving (POSSO) (13) l.x =z forallx € X.
to present the public-key cryptosystems, we draw our The kernel of an action G x X — X, (g,x) —
conclusions in Section 5. g.x is given by
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Ker ={g9 € G,g.x =z forallr € X}.

The orbit O (z) of = under the action of G is de-
fined by O (x) = {g.x,g € G}. It is important to
notice that orbits partition X. Clearly, one has that
X =zex O (z). The stabilizer of an element z €
X under the action of G is defined by Stab(x) =
{9 € G, g.x = x}. One may check that this is a sub-
group of GG. Note that, The size of the orbit is the in-
dex of the stabiliser, that is |O (z)| = |G : Stab (x)|.
If G is finite, then |O (x)| = %

In particular, the size of an orbit divides the order of
the group.

Let the finite group G act on the finite set X, and
denote by XY the set of elements of X that are fixed
by g, thatis X9 = {z € X, g.x = z}.

Then the number of orbits is ‘—(1;' | X9, [4].
geG

A ring is a set R with two binary operations + and x
such that

(7) (R,+) is a commutative group;

(7i) x is associative, and there existe an element 15
such that

axlgp=a=algxaforalla € R;

(797) the distributive law holds: for all a,b, and ¢ in
R>

(a+b)xc=axc+bxc
ax(b+c)=axb+axec.

A field is a set ' with two composition laws + and
x such that
(7) (F,+) is a commutative group;
(73) (F — {0}, x) is a commutative group;
(7i7) the distributive law holds.
A field E containing a field F' is called an extension
field of F.
Let f (X) € F [X] be a monic polynomial of degree
m, and let (f) be the ideal generated by f. Con-
sider the quotient ring F'[X]/ (f (X)), and write x
for the image of X in F' [X]/(f (X)), i.e, x is the
coset X + (f (X)).
The map F' [X| — F'[z], P (X) — p(x) is a ho-
momorphism sending f (X) to 0. Therefore, f (z) =
0.
The division algorithm shows that each element g of
F[X]/(f (X)) is represented by a unique polyno-
mial r of degree < m. Hence each element of F'[z]
can be expressed uniquely as a sum ag + a1 + ... +
am_12™ a; € F (%)
To add two elements, expressed in the form (x), sim-
ply add the corresponding coefficients. To multiply
two elements expressed in the form (x), multiply in
the usual way, and use the relation f (z) = 0 to ex-
press the monomials of degree > m in x in terms of
lower degree monomials.
Recall that, if f(X) is a monic irreductible poly-
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nomial of degree m in F[X]|, then Flx] =
F[X]/(f (X)) is a field of degree m over F.

Let F),s be a finite field of p® elements, where p
is a prime number, and s € N,s > 1. We con-
sider vectors of length n with entries in Fj,-. We
denote this by Fj.. This becomes an abelian group
under vector addition: (x1,...,2n) + (Y1,...,Yn) =
(‘Tl + Y1,y T + yn) ) [7] ) [8]

Let GL,, (F)+) be the general linear group over the
field F), is the group of invertible n x n matrices
with cofficients in Fj,-. Note that, the columns of an
invertible matrix give a basis of F).. Conversely, if
U1, U2, ..., Uy is a basis of F% then there is an invert-
ible matrix with these vectors as columns.

Let A € GL;, (Fy). The linear transformation as-
sociated with A is the function Ty : Fji —> FjL
defined by T4 (U) = AU" forall U € F}..

Recall that, if T' : F'% — F'% be a linear transforma-
tion, then the columns of the matrix corresponding to
T are the vectors T (e1) , ..., T (en), where ey, ..., e,
denote the standard basis vectors for F}..

Let A and B be in GL,, (F:), and let T4 and Tz be
the corresponding linear transformations. Then,

(i) The composition T4 o T is a linear transforma-
tion, corresponding to the matrix AB.

(i7) T is bijective, and (T4) " is the linear transfor-
mation corresponding to the matrix A1,

A transformations group is a group whose elements
are linear transformations, and whose operation is
composition.

Let G be a transformation group, and let H be the cor-
responding set of n x n matrices. Then H is a sub-
group of GL,, (Fy:), and G and H are isomorphic.
Public-key cryptography, also called asymmetric
cryptography, was invented by Diffie And Hellman
more than forty years ago. In public-key cryptogra-
phy, a user U has a pair of related keys (pK, sK):
the key pK is public and should be available to every-
one, while the key s K must be kept secret by U. The
fact that sK is kept secret by a single entity creates
an asymmetry, hence the name asymmetric cryptog-
raphy, [6], [10] , [13].

3 Results

In the following proposition we prove that the general
linear group G'Ly, (F}+) acts on the set F)i. Also we
show some results about this notion.

Let F}- be a finite field of p* elements, where p is
a prime number, and s € N,s > 1. Let GL,, (F)-)
be the group of n x n invertible matrices entries in
the field F),-. Consider {ey, ..., e, } the standard basis
vectors for Fp’“:, where n € N,n > 1. Then,
e G Ly, (F):) acts on the set F}. by
GLy (Fpe) X Fie — FJb, (A, u) — Au = Aul,
eforalll <i<mn,|O(e) =p"—1.
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o forallu € Fji — {OF;S},’O(&N = p*" — 1 and

0 (0ry.) = {or. }.

e for all 1 < i < n,
|G L1 (Fpe)| p*™ 1.
(1— 1)
P

o |GLy, (Fe)| = pffln

e Let us check the action is actually well de-
fined. First, we have that A. (B.u) = A. (Bu') =
A (Bu') = (AB) u'.
As for the identity, we get I,.u = I,u' = u.
e Leta; = (a,...,an;) € F;}S be a nonzero vector.
Then we can extend this vector to a basis of Fg,.i,
that is, there is ai,...,ai—1,0i41,...,an € [
such that ay,...,0;-1,0,Qi41,...,a, 1S a ba-

|Stab(e;)| =

sis of Fj.. Since they are a basis the matrix
aii ai; a1n
A = . . . is
an1 Qs QAnn
invertible, that is, A € GL,, (F):). We have Ae! =
ai . a1 G1n 0
1 =
0
Gan1 Qnj Qnn 0

7.

Thus a; € O (e;). Itis clear that O ¢ O (€;).
Then |O (e;)| = ]F;] —l=p"—1.
e Note that A € Stab(e;) if and only if Ael = e;.

A1 0 A,
Thus A is of the form As 1 Ay where
As 0 Ag

(ﬁ; ﬁé) is an (n—1) x (n—1) matrix,

(As 1 As ) is al x n matrix. Since A is

invertible, the matrix Ay Ay must be invert-
As  Asg

ible as well, hence < ﬁ; jé ) € GLp—1 (Fp).

1 Ay ) can be anything. Thus
there are |GL;,,—1 (Fp:)| choices for ( ﬁ; ﬁz )

and p* choices for ( A3 1 As ). In total,
there are |G L,,_1 (Fp:)| p*™~) possible choices for
A € Stab (e;).

e We prove that |GL,, (F):)| = (1 - 1%), by
induction on 7.

The matrix ( A3

(n—1)

sn?n

Pi=1

When n = 1, we have |GLi(Fp)| =
|Fps - {OFIJS}| :ps —1

Now we assume that the formula is true for n — 1.

E-ISSN: 2415-1521

108

Nacer Ghadbane

By the orbit-stabilizer theorem, we have
|G Ly, (Fps) : Stab (e;)| = |O (e;)|. Since GLy, (F)y)

1s finite, we have
|GLy (Fpe) = |0 (e4)] [Stab (e;)] =
(p*" = 1) |GLy-1 (Epe)| p*" Y
—1)%p— _
= (pr-npl e (1 — ,%) pnh =
2 _2n414n—1+
et (- )
= p$”21” 1— L
on - ).
Let F), be the finite field of p elements, where p is
a prime number. Let GL,, (F},) be the group of n x n
invertible matrices with entries in the field F},. Let
e1 € F}} be the vector (1,0, ...,0). Then
¢ O (e1) = By = {0g; }, hence O (e1)] = p — 1.
o |Stab(e1)| = |GLp—1 (Fp)|p" L.
o |GLa (F)| =iy (1= ).

4 Application on the hardness of
POSSO in public key cryptography

Multivariate cryptography is usually defined as the
set of cryptographic schemes using the computa-
tional hardness of the Polynomial System Solving
(POSSO). The POSSO problem over the field Fj- is
then following:

given a system S = (fi, ..., fi, of m nonlinear poly-
nomial equations in the variables x1, ..., x,, find val-
ues 21, ..., 2, such that
fi(e1, ) = o fi (21,
able in general, [15], [16]

,zn) = 0. It is undecid-

The POSSO protocol :

The basic idea behind multivariate cryptography is
to choose a system S of m polynomials in n variables
which can be easily inverted (central map). After that
one chooses two affine invertible maps ¢ and ¢ to
hide the structure of the central map. The public key
of the cryptosystem is the composed map P = ¢ o
S o 1 which is difficult to invert. The private key
consistes of S, ¢, and 1 and therefore allows to invert
P,[11], 12, [14].

Secret Key (sk) : we choose a particular system of
algebraic equations
S = (f1yeees fm) € (Fpe [T1, .oy 2])™, which the
POSSO problem is easy to solve. That is, for all
(15 oo i) € (Fpe)™, we can solve in

Ji—pu1=0

polynomial-time:

fm*#mzo
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And we choose (M, U) € GLy, (Fy:) x Fji, and
(N,V) € GLy, (Fye) x FI™.
(S, (M,U),(N,V)) constitute a secret key.
Public Key(pk): we construct the public-key as:

for all (z1,...,zn) € Ft, P (71,..., Tn)

— N(f1 (M (215 ey 7p)" +U)

. t
Im (M (21, 0)" + U) +V
= (p1(T1y ey @) 5 ooy D (21, ooy Tp)),  which
the POSSO problem is undecidable to solve.
(Fps, Fpe, P) constitut a public key.
Encreption: to encrypt a message M =
(my,...,my) € Fp., we evaluate its components on
the public-key, i.e. C' = P (my, ..., my)

= (pl (mlv-“vmn)a"'vpm (mla"-amn)) =
(Cl7 y Cm
C1, 7Cm)

_ N (f1 (M (ml,...,mn)t—i—U)

Fn (M (M, oy m)t + U)t V.
Decryption:

(C1y ey Cm) =
N (f1 (M (M, .oy mn)! + U) s

for (M (ma,comi)’ +U) 4V

we can decrypt by to solve,

Security of POSSO protocol

The security of multivariate cryptography is based
on two mathematical problems:

1. Solve the system f; = ... = f,, = 0, where each
fi is a polynomial in the n variables 1, ..., z, with
cofficients and variables in F..

2. Given a class of central maps C' and a map P ex-
pressible as P = ¢ o S o 1), where ¢ and v are affine
maps and S € C, find a decomposition of P of the
form P = ¢/ 0 S’ 04/, with affine maps ¢’ and 1)’ and
S e C,[17].

An attack against the public-key cryptosystem
based on the problem of solving a non-linear system
of polynomial equations does not allow to find ex-
actly the Secret-Key. We will get rather a key that is
equivalent to it in the following direction:

We say that (S’, (M, U"),(N’,V’)) is an equiv-
alent key to the Secret-key (S,(M,U),(N,V))
if any message encrypted with the Public-
Key (Fps,Flﬁé , P) can be decrypted with
(S, (M",U"),(N',V")).  This is the case for
example if (S, (M',U’),(N’,V')) checks the fol-
lowing condition:

N (1 (M (ma, o) + U)o
Fo (M (s ccom)t U7 4 V7
— N<f1 (M (M1, ooy min)’ +U)
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t t
fon (M (ma, i)' + U ) +V
for all (my, ..., my) € FjL.

5 Conclusion

In this work, we present the public-key cryptosystem
based on the problem of solving a non-linear system
of polynomial equations.
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