
Layered architecture approach of the sensor software component stack
for the Internet of Things applications

BRAGARENCO ANDREI

Department of Microelectronics and Biomedical Engineering
Technical University of Moldova

168, Stefan cel Mare Blvd., MD-2004, Chisinau
REPUBLIC OF MOLDOVA

andrei.bragarenco@mib.utm.md

MARUSIC GALINA,
Department of Computer Science and Systems Engineering

Technical University of Moldova
168, Stefan cel Mare Blvd., MD-2004, Chisinau

REPUBLIC OF MOLDOVA
galina.marusic@adm.utm.md

CIUFUDEAN CALIN

Department of Computers, Automatics and Electronics
 University Stefan cel Mare of Suceava

ROMANIA
ciufudean.calin@gmail.com

Abstract: - The paper stands for a layered architecture approach of the sensor software component stack for the
Internet of Things applications. A well-defined architecture is one of the key success factors for a project, as it
improves the maintainability, reusability, and other things related to the efficiency in software development.
The concept is inspired by the AUTomotive Open System ARchitecture (AUTOSAR) approach of the Software
component Development with the proposal to extend the architecture with the Sensor and Actuator component
stacks as parts of so named, here, Extended Software (ESW). The first part presents a generic architecture for
an IoT device, following with a generic software component stack proposal, applied for any component from
the proposed architecture, going through the description of all layers from the Service down to Hardware
abstraction, with an implementation proposal, also covering the HW/SW association. In the end, an architecture
example for environmental data acquisition is presented.

Key-Words: - AUTOSAR, architecture, device, electronic, environment, IoT, layer, network, component stack.

1 Introduction

1.1 IoT Challenge
We are living in the modern era, where time and

money are getting more critical in all fields of
activities. This also includes the software
development domain, in particular, automotive field,
because the OEMs want to add more functionality in
existing platforms or new platforms that includes
these functionalities, but realized with the same
financial and temporal constraints. More
functionality implies a growing complexity of the
developed software, a large number of the variants

for the same car platform through the same or
separated Electronic Control Units (ECUs) [1].
 A recent forecast made by IDC projects the
Internet of Things (IoT) and the associated
ecosystem to be a $1.7 trillion market by 2020,
which will include 212 billion connected things. The
IoT will fuel a paradigm shift of a “truly connected”
world in which everyday objects become inter-
connected and smart with the ability to
communicate many different types of information
with one another as well as with human users Fig.1,
presents a graphical forecast of IoT explosion over
the coming years as estimated by Cisco [2].

WSEAS TRANSACTIONS on COMPUTER RESEARCH Bragarenco Andrei, Marusic Galina, Ciufudean Calin

E-ISSN: 2415-1521 124 Volume 7, 2019

Fig.1. The explosion of the Internet of Things [2]

Exponentially growing Internet of things domain

also requires a well defined architectural approach
to control de system complexity it involves.

1.2 AUTOSAR Layered architecture

overview
A very well example of a well-defined

architecture is the AUTomotive Open System
ARchitecture (AUTOSAR) concept that is the basis
for the development of the new modules in
automotive systems and stands for the newest
worldwide automotive trend. AUTOSAR standard
defines the reference architecture and method for the
development of automotive software systems and
supplies the language (metamodel) for their
architectural models. It also specifies the
architectural modules and functionality of the
middleware layer known as the Basic Software
(BSW) [3].

The concept is abstracting the electrical
equipment through a particular layer called Runtime
Environment (RTE) so that the application (ASW)
does not consider the type of equipment or the
location of the required resources. The
responsibility for the generic functionalities and
connectivity is transferred to the BSW, Fig.3.

 Fig.2. AUTOSAR component interaction concept
[3]

Moreover, this concept allows the application to
access resources located on other equipment as if it
were part of the equipment it is running on, which is

due to an even higher abstraction where all RTE
layers form a concept of Virtual Function Bus
(VFB). This concept allows the realization of
distributed applications where the components can
be distributed on different electrical equipment units
(ECU) Fig.3.

Fig.3. AUTOSAR Virtual Functional Bus concept
[3]

Generic functionalities such as Memory,

Communication, or Security are performed in BSW
inside of the Layered component stacks, distributed
between three generic layers such as Service Layer,
ECU Abstraction Layer (ECAL), and MCU
Abstraction Layer (MCAL). The functionalities that
cannot be generalized are defined as Complex
Device Driver Fig.4.

Fig.4. AUTOSAR Layered architecture [3]

The Sensor/Actuator is a specific type of

AUTOSAR Software Component for sensor
evaluation and actuator control. Though not
belonging to the AUTOSAR Basic Software, it is
described here due to its strong relationship with
local signals. It has been decided to locate the
Sensor/Actuator SW Components above the RTE
for integration reasons. Fig 5 [3].

Fig.5. Sensor/Actuator component in the

AUTOSAR architecture [3]

WSEAS TRANSACTIONS on COMPUTER RESEARCH Bragarenco Andrei, Marusic Galina, Ciufudean Calin

E-ISSN: 2415-1521 125 Volume 7, 2019

Inspired by the AUTOSAR concept, it is
proposed that the components of the Sensors and
Actuators that in the AUTOSAR architecture are
part of the Application Layer to be defined with
layered component stacks in a group so-called
Extended Software (ESW) as an extension of the
BSW. This supplies an abstraction for most of the
generic architecture components proposed in this
work.

2 Problem Formulation
Before going into the concept of the Extended
Software (ESW) component stack proposal, we will
analyze the Internet of Things (IoT) system as a
spread-out device and the architectural approach for
the generic IoT Device on which the IoT consists.

2.1 Spread Out System Concept
On the highest abstraction level, the system could be
viewed as a device that takes information from the
environment, processes it, and reacts based on
internal and environmental factors. Within this
paper, two aspects will present the system, the
structural and the functional.
 Structurally, the system stands for a collection
of interconnected components, Fig 6. For an IoT
device such components could list a sensor, an
actuator, user interaction, communication, database,
and power management or device-specific
application components, as presented in Fig.9.

Fig.6. A system as a collection of components that

compose it

 Functionally, the system represents the set of
transfer functions through which a signal from the
environment interface is propagating through
various transfer functions till reaching the output of

the system, providing signals back to the
environment, as shown in Fig.7.

Fig.7. A system as a collection of transfer functions

that compose it

 A device network could be considered as an
electronic spread out system, where the network
replaces or abstracts the wired connections for
signal interconnection, Fig.8.

Fig.8. Spread-out electronic devices with IoT

interconnections

 The abstraction is applied through all domains,
including either mechanical engineering (ME),
electrical engineering (EE), software engineering
(SWE), or of any other kind, considering the system
as a set of components and with their transfer
function.

2.2 The generic architecture of an IoT device
Functionalities of the system could be clustered in
some specific generic components, as usual parts of
a standard device. These components contain
functionalities according to the problem it solves as
follows: Acquisition, Actuation, User Interaction,

WSEAS TRANSACTIONS on COMPUTER RESEARCH Bragarenco Andrei, Marusic Galina, Ciufudean Calin

E-ISSN: 2415-1521 126 Volume 7, 2019

Communication, Database, Power Management,
Basic Software or Operating System components,
Fig.9.

Fig.9. The generic architecture of an IoT Device

 Two aspects of the device should be mentioned
– the interaction parts, which are the environment
and the communication network between the user
and the devices, and those that are part of the device
structure as Sensors, Actuators, User Interaction,
Database, Power Management, Communication.

Interactions
 PHY - the environment represented by its

physical parameters to be acquired or influenced
by the device.

 USER - the user, either human or inhuman, that
can intervene with the introduction or tracking
of messages or actions from the device.

 IoT - Internet of Things stands for all media and
communication technologies between Devices.

Device Components
 SNS - Sensor stands for the set of components

implemented by Mechanical Engineering (ME),
Electrical Engineering (EE), or SW Engineering
(SWE) involved in the acquisition and
transformation of a physical parameter of the
environment into internal information of the
system. PHY to INFO.

 ACT - Actuator is the set of components
implemented by Mechanical Engineering (ME),
Electrical Engineering (EE), or SW Engineering
(SWE) involved in transforming the control
information into action to the physical
parameter of the environment, INFO to PHY.

 UI - User Interaction represents the set of all
SNS or ACT components specialized for human
or inhuman user interactions.

 COM - Communication stands for the set of
components made by Mechanical Engineering
(ME), Electrical Engineering (EE), or SW
Engineering (SWE) that intervene to ensure the
transfer of information between interconnected
devices.

 DB - Database represents the set of components
for storage and access to data stored for the
short or long term within the Device, or access
to remote storage media. It could also be
identified as memory (MEM).

 POW - Power Management represents all the
components that ensure the normal functioning
of the device from the electrical point of view,
as well as the management of energy
consumption.

 BSW – is the platform that consists of the
Operating System (OS) and services available to
the Application running on the platform,
ensuring a high level of abstraction for the
Device.

3 Problem solution
Following the system architecture of a generic
device for an IoT, the next step is to define the
architecture for every component it consists. In this
paper, we will assume that we will reuse the concept
proposed by AUTOSAR, so we will consider that
some of the components of IoT Device could be
covered by AUTOSAR BSW, such as OS, COM,
MEM/DB, IO, CDD.
 In this paper, we propose a generic concept for
the so-called component class Extended Software
(ESW) for an AUTOSAR-like architecture with
HW/SW association., focusing on a solution for the
Sensor (SNS) component stack.

3.1 Sensor software component stack
Every component of the system consists of parts
implemented by Mechanical Engineering (ME),
Electrical Engineering (EE), or SW Engineering
(SWE). These are organized according to a layered
architecture to ensure interactions between all
domains, to facilitate the safe and qualitative
transfer of the signal/information to the application,
and vice versa, from the application to the
environment, user, or other systems, Fig.10.

WSEAS TRANSACTIONS on COMPUTER RESEARCH Bragarenco Andrei, Marusic Galina, Ciufudean Calin

E-ISSN: 2415-1521 127 Volume 7, 2019

Fig.10. Layered architecture for a generic
component

 According to the presented concept, in the
Software domain, there are defined many layers that
abstracts and supply with services related to the
associated layers from the Electrical and Mechanical
domain. Those services also are known as Device
Drivers – libraries to support peripheral equipment.
In this way, according to the diagram from Fig.10,
we will obtain the following associations:
 MCU vs. MCAL: where the MCU stands for all

the internal hardware peripherals of the
Microcontroller such as GPIO, TIMER, ADC,
USART, SPI, EEPROM, WDT, etc. The MCAL
(MCU Abstraction Layer) represents the
software services to support the
microcontroller's peripherals. Among the
resources of this layer can provide
functionalities such as DigitalRead,
DigitalWrite, PortRead, PortWrite,
AnalogRead, AnalogWrite, SerialRead,
SerialWrite, which are specific for the
information transfer, but also other specific to
peripheries features.

 ECU vs. ECAL: where the ECU level represents
the electronic components located on the
microcontroller board or attached to it. The
ECAL being the layer of drivers for the
electronic solutions on the ECU. Those
electronic components being the electrical parts
of the components from the architectural

concept of a device presented in this paper in
Fig.9, such as Sensors, Actuators, external
memory chips, user interaction devices,
communication modules, Power Management
mechanisms.

 Device vs. Service: where the Device stands for
the physical device itself, to which all the
characteristics according to the specification are
associated. The Service represents the upper-
level SW of the component. It is the producer of
services provided to the Application and ensures
the functionalities of managing the component,
as well as the interaction with the other services
from other components under RTE.

 PHY - RTE: probably not the best association,
but as PHY represents the physical environment
through which the device interacts with the
environment, RTE is the one by which the
Application interacts with the environment
providing functions prefixed by Get, Scan,
Read, Recv to bring information from the
environment and respectively Set, Print, Write,
Send to transfer information to the environment.
Respectively we can assume that RTE is the
abstraction to the PHY, the environment.

 Application: does not have an associated level
and represents the system itself. At the
application level, the behavior of the system is
implemented. The application can be
implemented locally on a single device or
distributed on several devices. Similarly to that,
multiple applications could run on the same
device the device to be part of multiple systems.
Fig.3.

3.2 Sensor Overview
In this paper, we are focusing more on the sensor
component stack definition, Actuators being the
proposal for further works.
 A sensor represents the totality of components
realized through Mechanical Engineering (ME),
Electrical Engineering (EE), or SW Engineering
(SWE) that participates in the acquisition and
transformation of a physical parameter of the
environment into internal information of the system,
PHY to INFO.
 There are a vast number of different sensors,
applying different measurement techniques, and
using different interfaces to a controller. This,
unfortunately, makes sensors a difficult subject to
cover [4].
To find the proper sensor according to the

WSEAS TRANSACTIONS on COMPUTER RESEARCH Bragarenco Andrei, Marusic Galina, Ciufudean Calin

E-ISSN: 2415-1521 128 Volume 7, 2019

application and define the services it provides, it
makes sense to classify them according to certain
criteria, such as:
 By the physical nature of the sensor and the

acquired signal. It is essential to clarify first
what kind of environment in which the
measurements are acquired, which is the
physical parameter measured, and which is the
sensor construction and what acquisition
methods it uses. With this information, it is
easier to identify which is the most suitable
sensor according to its technical specifications.

 By the signal type at the sensor output. This
classification allows the identification of a
suitable electrical interface and may impose
restrictions on the resources of Microcontroller
or other electronic components of the Device.

 By localization of the sensor. From the Device's
point of view, it is necessary to distinguish the
localization of the sensor. Is it a local or a global
one.

 By the signal source. It is essential to
distinguish between proprioceptive/internal
sensors and exteroceptive/ external sensors.

 By the interaction with the environment,
passive and active sensors could be classified.
The active is the sensor that performs a stimulus
to the environment to extract the value of
interest.

3.2.1 Signal Acquisition
The original information about the environment has
a physical state or physical effect, depending on its
nature. For example, the luminosity is defined by a
photon flux, the humidity - concentration of water
molecules in the air, the temperature – by infrared
irradiation, sound – by mechanical oscillations, the
distance is expressed in metric units, etc..
Considering the non-electric nature of the effect and
the fact that the contemporary equipment operates
with electrical signals, a conversion of the non-
electric quantities into electric ones is necessary. So,
this conversion is the primary function of the sensor.
 At the component level - the sensor senses the
physical changes occurring in the surrounding and
converting it into a readable quantity. This value
often could not be used directly, so additional
conditioning is required, a function that is in the
responsibility of another component - the translator.
The transducer converts the physical quantity or
nonelectrical into another signal or electrical signal.
As a conclusion, to obtain a physical size expressed
in the electrical signal, two components are needed -
a sensor connected to a transducer. Usually, in the

context, both names are used to refer to the whole
pair, Fig.11.

Fig.11. Generic sensor concept

3.2.2 Signal Conditioning
The value directly collected from the sensual
element is usually a raw one that requires
conditioning before being used as a real physical
value within the system. Thus, the signal from the
moment of acquisition by the sensor goes a long
way through numerous transfer functions. Those
functions could be performed on both sides, in the
electronic domain, same as in the Software domain.
There are using a sensor with a digital interface that
already may have the conditioning mechanism that
may be implemented in the transducer. However, in
the classical case, or in the design of the transducer
itself, the conditioning must be designed
considering all aspects of the acquisition method
and the environment through which the signal
propagates.
 A typical path that a signal would follow for an
analog signal source is to go through the electronic
domain with preliminary conditioning following
conditioning in the Software domain, Fig.12.
 Signal acquisition - stands for the transfer
function that converts the physical parameter into an
electrical signal. This transfer function can be found
in the datasheet of the sensor in case it is an
industrially produced one, or the experimental curve
can be extracted by setting environmental conditions
and measuring the electrical parameter at the sensor
output.
 Electrical amplification/attenuation and offset
- the obtained electrical signal needs amplification
in order to be able to see the change of the physical
value applied to the sensor on the electrical output
of the sensor, as well as brought to the acceptable
value range by the interface of the microcontroller
by establishing an offset, which usually is in the
range of 0-5 Volts. The amplification, as well as the
offset setting on the electrical side, can be
performed with the methodology of functions with
operational amplifiers. Attenuation can be obtained
with passive circuits such as a voltage divider, or by
the same method, with operational amplifiers with a
1/x amplification coefficient.

WSEAS TRANSACTIONS on COMPUTER RESEARCH Bragarenco Andrei, Marusic Galina, Ciufudean Calin

E-ISSN: 2415-1521 129 Volume 7, 2019

Fig.12. Typical signal conditioning flow

 Electrical saturation - it is essential not to
admit that the voltage levels outside the acceptable
range of values to be applied to the microcontroller,
which could damage this circuit. Assuming that in
the amplification and offset phase are brought to
the acceptable range for microcontroller
acquisition, the values outside this domain are out
of interest. The realization of this mechanism is
possible both with simple circuits type stabilizing
diodes, as well as by the methodology of
performing the functions with operational
amplifiers.
 Electrical filtering – it is recommended to
have a preliminary filtration in the electrical
conditioning in order to exclude electromagnetic
influences and signal acquisition disturbances.
Usually, a LowPass filter could be involved in
filtering the high frequencies, specific to the white
noise, but a HighPass or bandpass filter also could
be applied.
 The HighPass filter could exclude the
variation of the reference point, the offset of the
signal. A particular case is the application of the
Notch filter, which excludes the frequencies
induced by the household voltage sources 50-60
Hz. The electric filters can be made either with
passive elements, with active elements such as
operational amplifiers, or specialized circuits.
 Analog-Digital Conversion - assumes that the
analog signal applied to a pin of the microcontroller
is converted into a digital value that can be
retrieved with software engineering techniques,
meaning, reading the data from a register in the
address space of the peripherals. Analog-Digital
conversion limits the resolution of the definition of
the signal value as well as the maximum sampling
frequency to that specific to the converter. The
characteristics of an A/D converter include
Accuracy expressed in the number of digits it
produces by value (for example 10bit A/D

converter), Speed expressed in maximum
conversions per second (for example 500
conversions per second), Measurement range
expressed in volts (for example 0-5V) [4]. The
converter can be one from inside of the
microcontroller, allowing the direct collection of
the analog signal, external one with the serial or
parallel interface, switched to the respective
interfaces of the microcontroller, or one included in
the component of the sensor that provides the
digital converted signal. Many A/ converter
modules include a multiplexer as well, which
allows the connection of several sensors, whose
data can be read and converted subsequently, but
this property of the converter also implies a
decrease in the sampling frequency per channel
divided by the number of sensors connected [4].
 Conversion from digital RAW value to
voltage value - implies the inverse operation of
Analog-Digital conversion, thus obtaining the
physical value of the voltage level at the pin of the
microcontroller to which the signal is applied. In
many cases, this conversion has a linear
dependency where the equation of the straight line
can using the minimum and maximum values from
the ADC associated with respective voltages. For
example, 0.5V - 0.1023 for the converter with a 10-
bit resolution. From this point of the evolution of
the signal, it can be assumed that the measurement
process is finished, and the voltage value is
transferred to an internal data structure, so the
signal is ready to be processed with Software
methods.
 Software signal saturation - is a function
similar to the one in the electronic domain and
presents the limitation of the signal value between a
Minimum and a Maximum value. When in the
electronic domain saturation was a mechanism of
electrical protection of the electronic interfaces, in
the Software, this mechanism limits the field of

WSEAS TRANSACTIONS on COMPUTER RESEARCH Bragarenco Andrei, Marusic Galina, Ciufudean Calin

E-ISSN: 2415-1521 130 Volume 7, 2019

definition of value to minimize the computing
effort with large numbers, which, however, has no
interest because they are outside the definition
domain.
 Median Filtering - represents the filter that
excludes local minimum and maximum pulses from
the signal, caused, for example, by electromagnetic
spikes because of commutation in the environment.
The median filter also called statistical filter or salt
and piper, can be implemented by sorting on a
sample window from the input signal and
extracting the value from the middle. In this way,
the local minima and maxima, after sorting, reach
the edges of the sorted vector, and in the center is
the most probable value for the given sample [5].
The recommendation is for the sample window to
have an odd number of elements to facilitate the
selection of the median, Fig.13.

Fig.13. Dataflow diagram for sold & piper filter

implementation
 Weighted Average Filter - represents a low
pass filter (LPF) for the exclusion of uniform noise,
also called white noise. The weighted average is
applied to a sample window from the input buffer
signal. For efficiency in terms of performance, it is
recommended to have a minimal sample window,
which for low-performance microcontrollers can be
reduced even to the last acquired two values. If the
weights are equal, the simple arithmetic average
formula could be applied.

Where x(i) represents the signal values in the
sampling window, and n(i) are the weights of the
values in the obtained result, Fig.14.

Fig.14. Dataflow diagram for weighted average

filter

 Voltage conversion to the physical value -
represents the inverse process of converting the
voltage to the physical value associated with the
sensor, which converts a physical value into
voltage, but in value as internal information used in
software processing. As the basis of calculation for
this conversion is the input/output dependency that
can be found in the datasheet of the sensor or
obtained experimentally. In the case of linear
dependency, the canonical equation of the straight
line is used with two sensor-specific reference
points, Fig.15.

Where (x1, y1) and (x2, y2) are the associated
reference points as x - voltage, y - physical size.

Fig.15. Example of a nonlinear transfer function for

a sensor

 In the case of nonlinear dependency, Fig.15.,
the experimental curve is divided into small
segments according to the tables collected
experimentally, with a linear approximation, on
which also could be applied the conical equation of
the straight line for conversion.

3.2.3 Strengths and Weakness
There are cases when the same conditioning
operation could be implemented in software either
in hardware. On choosing the best method, it is

(2)

 (1)

WSEAS TRANSACTIONS on COMPUTER RESEARCH Bragarenco Andrei, Marusic Galina, Ciufudean Calin

E-ISSN: 2415-1521 131 Volume 7, 2019

necessary to analyze the strengths and weaknesses
of those methods.
 The strength of the electrical conditioning is
the operability, on the other hand, the weak part is
the fact that the electronic components involve
costs, and in the case of the elements of high
stability and precision, these costs have a high
impact on the production. The reduced flexibility is
another weakness. The adjusting elements entail
additional costs and are often uncomfortable with
handling, as well as their reliability. An even bigger
problem is on changing the conditioning method,
which involves the complete reorganization or
replacement of the entire electronic part.
 The weakness of the Software conditioning is
its operability, assuming it involves processing
time, which is shared between several
functionalities of the system. On the other hand,
programmable resources can be reprogrammed and
do not involve material costs. Modifications and
adjustments are made even during the operation of
the system. This property has the consequence that
more and more functionalities are being transferred
from the electrical domain to the Software domain,
involving the reduction of the production costs of
the devices.

3.2. Sensor Services
The Services for the sensor are provided by the
upper-level SW of the sensor component. It is the
producer of services provided to the Application
and ensures the functionalities of managing the
component, as well as the interaction with the other
services from other components under RTE. As the
provider of the environmental information to upper
layers, to the application via RTE, here in the
service layers are implemented the functions
prefixed by Get, Scan, Read, Recv to bring
information from the environment. Also, here is the
right place for the sensor manager allows to build
special sensor features based on multiple sources of
information. A good example could be the
implementation of virtual sensors, which are
providing information with no gathering
information from a real sensor, but by a special
model instead.
 Also, here in the service layer should be
implemented the Sensor specific symptom
detection and diagnostic qualification, providing
this information to the rest of the system. A couple
of generic diagnosis symptoms for sensors could be
named, same as the qualification methods and type
of reactions associated, that are presented in the
subsections below.

3.2.1 Diagnosis Symptom
Diagnosis is the identification of the nature and
cause of a certain phenomenon. Diagnosis is used
in many different disciplines, with variations use of
logic, analytics, and experience, defining the proper
"cause/effect model. In system engineering and
computer science, it is typically used to determine
the causes of symptoms, mitigations, and solutions
[6].
 The symptom of the diagnosis comes as an
indicator of detection of the situation in logical size
"0", "1" or LOW, HIGH. As primary diagnoses on
the signals received from the sensors, we will
identify the following:
 Threshold symptom - It involves comparing a
signal with a preset value. If the signal value is
higher than a preset, we have diagnoses of Over
Value (e.g. Over Voltage, Over Temperature) and
complimentary for diagnosis of Under Value (e.g.
Under Voltage, Under Temperature), Fig.16.

Fig.16. Threshold symptom detection

 Range Symptom - Assumes the position of
value between two preset values. In this case, we
could identify four diagnostic signals - In range,
Out of Range High, Out of Range Low, Fig.17.

Fig.17. Range symptom detection

WSEAS TRANSACTIONS on COMPUTER RESEARCH Bragarenco Andrei, Marusic Galina, Ciufudean Calin

E-ISSN: 2415-1521 132 Volume 7, 2019

 Plausibility Symptom - This diagnosis verifies
the plausibility of measurements based on the
acquisition of the same parameter with two or more
sensors. If the signal difference is higher than the
permissible limit, a diagnostic symptom will be
generated, Fig.18.

Fig.18. plausibility symptom detection

 Stall in the range Symptom. Regardless of the
nature of the signal, there are always some
variations on the acquired data. this diagnosis
detects the freezing of the signal evolution, which
could be because of a signal source dysfunction,
such as, for example, a short circuit or connection
damage, Fig.19.

Fig.19. Stall in range symptom detection

3.2.2 Diagnosis Qualification
For any diagnosis symptom to be considered as a
valid one and be processed by the sensitive systems
on these diagnoses, preliminary processing is
necessary in order to qualify them first. The
qualification of diagnoses could be implemented by
a binary filter, which assumes that a diagnosis can
be qualified or disqualified if the symptoms persist
longer than a specific period. The binary filter in
this context filters a binary signal and could be
implemented with an Anti-Bouncing Counter,
Fig.20.

Qualification: When the symptom appears, the
counter will increase with a default value
ABC_INC. Upon reaching an ABC_MAX value,
the diagnosis will be considered as qualified and
will keep the active state until its disqualification.
The counter in case of valid symptom is saturated
to a maximum value.
Disqualification: When the symptom disappears,
the counter will decrease with a preset value
ABC_DEC. Upon reaching an ABC_MIN value,
the diagnosis will be considered as disqualified and
will remain in this state until the next qualification.
The counter in case of no diagnosis symptom is
saturated to the minimum value.

Fig.20. Qualification with antibounce counter

 3.2.3 Reaction for Qualified diagnostics
Once a diagnosis is qualified, it should be
associated with a specific reaction. The ordinary
reactions could be listed as follows:
 Inhibition - involves ignoring the detected

symptom for a given period. For example, a
situation occurred where the diagnosis is not
relevant, or another higher priority situation
persists.

 Informing - involves the transmission of a
message to a user interface for information
purposes, for example, a recommendation to
charge the device battery.

 Blocking - involves disabling certain
functionalities during the of a valid diagnosis,
for example, blocking a mechanical action
during the presence of a person in the danger
zone.

 Derating - involves limiting the functionalities
when detecting specific diagnoses — for
example, limiting the power consumption when
a low battery detected or limiting the screen
brightness to the laptop. Derting can be binary
or follow a derating function following a Min
function between the applied power and the
derating function depending on the input
signal.

WSEAS TRANSACTIONS on COMPUTER RESEARCH Bragarenco Andrei, Marusic Galina, Ciufudean Calin

E-ISSN: 2415-1521 133 Volume 7, 2019

3.2.4 Internal vs. external diagnosis
Depending on the signal source for diagnoses,
certain specific situations can be identified, and the
proper reactions performed, Fig.21.
 The internal diagnosis or self-diagnostics
checks the internal symptoms of the system
operation in order to ensure that the system is
behaving in admissible limits, and no system
failure occurs during the device operation.
Detecting internal diagnostics in early time could
prevent system failures involving the proper
reaction before any serf-damage to the device.
 For example, if the RANGE diagnostics will
be applied on a RAW signal, before performing
any conditioning, the detection will detect that the
sensor provides voltage levels that are outside of
the passport data, respectively, as the conclusion -
that the sensor may be defective or is a connection
problem, electrical, either short on the ground or
power supply, or broken wire. In this case, the
reaction could be to disconnect the functionalities
dependent on the respective signal source.
 The external diagnostics are performed to
detect some symptoms of the environment and are
generated for the functional behavior of the system.
In the case when the RANGE diagnosis is on the
physical value, meaning that the diagnosis point is
after the conditioning, and the diagnosis of
detection sensor defects is ok - the conclusion may
be that the ambient temperature range is above the
allowable norms, and the reaction may be a
recommendation message, or derating to avoid the
evolution of the situation. A more concrete
example would be overheating the engine at high
speeds.
 Like the conditioning, the diagnoses and
reactions can be implemented both sides, in the
Electronic domain and in the Software domain, the
implementation methods are domain-specific, but
following the same principles.

Fig.21. Diagnosis source example

4 Conclusion
Considering the analyses presented in this paper, a
methodology and design process was established
that resulted in a modular system. It was proposed
reuse of the components designed and applied to
the processing of a specific signal also for the other
signals. This principle allows even the existing
system to be extended to other parameters of
interest, by adding a sensor and configuring the
system to treat the signal source, similar to the
existing ones.
 A study was performed in order to identify a
generic method for a system definition based on
layered principle for a Spread out the electronic
device as an IoT system.
 A generic architectural concept was proposed
for a device definition, as well as a layered
architecture for a component was proposed.
 A typical signal conditioning methodology
was defined, and the diagnostics approach for the
signal dataflow.
 Following the proposed concept architecture
for an Internet of Things System, a prototype for
Environment Map Acquisition was developed. It
consists of a Coordinator and multiple IoT Devices.
The acquisition devices collect data about the
environment and transmit it to the IoT network.
The server coordinator collects the information via
IoT network from the IoT Devices and uses it for
its various application proposal. The functionality
of the IoT Device was implemented following the
layered architecture concept as defined in this
paper same as the system architecture of the
coordinating server. In the server coordinator, the
sensor information is provided via the
communication stack, transferred on the service
layer to the sensor component stack and provided
to the Application.

References:
[1] Catalin-Virgil Briciu Ioan Filip

Franz Heininger “A new trend in automotive
software: AUTOSAR concept” Applied
Computational Intelligence and Informatics
(SACI), 2013 IEEE 8th International
Symposium. DOI:
10.1109/SACI.2013.6608977

[2] Arkady Zaslavsky, Prem Prakash Jayaraman,
“The internet of things: Discovery in the
internet of things” Magazine Ubiquity Volume
2015 Issue October, ACM New York, NY,
USA DOI: 10.1145/2822529

[3] Layered Software Architecture - AUTOSAR
Release 4.2.2.
 https://www.autosar.org/fileadmin/user_uplo

WSEAS TRANSACTIONS on COMPUTER RESEARCH Bragarenco Andrei, Marusic Galina, Ciufudean Calin

E-ISSN: 2415-1521 134 Volume 7, 2019

ad/standards/classic/4-
3/AUTOSAR_EXP_LayeredSoftwareArchitec
ture.pdf [accessed Oct 22, 2019].

[4] Bräunl T. Sensors. In: Embedded Robotics.
Springer, Berlin, Heidelberg , (2003) ISBN
978-3-662-05101-6

[5] Steven B. Leeb, Alfredo Ortiz, Robert F.
Lepard, Steven R. Shaw, and James L. Kirtley,
Jr., “Applications of Real-Time Median
Filtering with Fast Digital and Analog Sorters”
, IEEE/ASME TRANSACTIONS ON
MECHATRONICS, VOL. 2, NO. 2, JUNE
1997

[6] A Guide to Fault Detection and Diagnosis -
https://gregstanleyandassociates.com/whitepap
ers/FaultDiagnosis/faultdiagnosis.htm
[accessed Oct 22, 2019].

WSEAS TRANSACTIONS on COMPUTER RESEARCH Bragarenco Andrei, Marusic Galina, Ciufudean Calin

E-ISSN: 2415-1521 135 Volume 7, 2019

