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Abstract: - Based on First Same As Last (FSAL) technique, an embedded trigonometrically-fitted Two 
Derivative Runge-Kutta method (TDRK) for the numerical solution of first order Initial Value Problems (IVPs) 
is developed. Using the trigonometrically-fitting technique, an embedded 5(4) pair explicit fifth-order TDRK 
method with a “small” principal local truncation error coefficient is derived. The numerical experiments are 
carried out and showed that our new method is more accurate and efficient when compared with other existing 
Runge-Kutta (RK) and TDRK methods of the same order. 
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1 Introduction 
Consider the numerical solution of the IVPs for the 
first order Ordinary Differential Equations (ODEs) 
given in the following form 
 

ᇱݕ = ,ݔ)݂ ,(ݕ (଴ݔ)ݕ =  ଴. (1)ݕ
 

A numerous number of researchers have 
proposed several highly efficient TDRK methods 
with constant and variable step-sizes as well as 
implementing the First Same As Last (FSAL) 
technique in the derivation of their methods. Chan 
and Tsai[1] introduced special explicit TDRK 
methods by including the second derivative which 
involves one evaluation of f and a few evaluations 
of g per step. They presented methods with stages 
up to five and order up to seven. Chan et al.[2] then 
presented their study related to stiff ODEs problems 
on explicit and implicit TDRK methods and extend 
the applications of the TDRK methods to various 
Partial Differential Equations (PDEs).  

Besides, Zhang et al.[3] derived a new fifth-order 
trigonometrically-fitted TDRK method for the 
numerical solution of the radial Schrödinger 
equation and oscillatory problems. Meanwhile, two 
fourth-order and three practical exponentially-fitted 
TDRK methods were presented by Fang et al.[4] 
and Chen et al.[5] respectively. The new methods 

were compared with some famous optimized codes 
and traditional exponentially-fitted Runge-Kutta 
(RK) methods in the literature.  

Bogacki and Shampine[6] derived a 3(2) pair of 
RK formula while Dormand and Prince[7] 
introduced a family of embedded RK5(4) which 
have extended stability regions and a ‘small’ fifth-
order principal truncation terms in a few decades 
back. Tsitouras[8] presented RK pairs of order 5(4) 
which satisfy only the first column simplifying 
assumption by neglecting the row simplifying 
assumptions. Fang et al.[9] designed new embedded 
pairs of higher order RK methods specially adapted 
to the numerical integration of IVPs with oscillatory 
solutions by implementing the FSAL property.  

Chen et al.[10] improved traditional RK methods 
by introducing frequency-depending weights in the 
update. With the phase-fitting and amplification-
fitting conditions and algebraic order conditions, 
new practical RK integrators are obtained and two 
of the new methods have updates that are also 
phase-fitted and amplification-fitted. Recently, in 
[11] and [12], Demba et al. derived four-stage 
fourth-order explicit trigonometrically-fitted Runge-
Kutta-Nyström (RKN) method and fifth-order four-
stage explicit trigonometrically-fitted RKN method 
respectively for the numerical solution of second-
order initial value problems with oscillatory 
solutions based on Simos’ RKN method.  
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Meanwhile, Fawzi et al. in their papers [13] and 
[14] developed fourth-order phase-fitted and 
amplification-fitted modified RK method and 
fourth-order seven stage phase-fitted and 
amplification-fitted RK methods respectively. 

Motivated by the FSAL property as well as the 
trigonometrically-fitting technique, hence in this 
paper, a new fifth-order four stages 5(4) pair 
trigonometrically-fitted TDRK method with FSAL 
property is constructed. An overview of TDRK 
method will be given in the Section 2. In Section 3, 
trigonometrically-fitted properties are considered. 
The derivation of the new method is discussed in 
Section 4. Finally, the numerical results, discussion 
and conclusion are dealt in Section 5, Section 6 and 
Section 7 respectively. 
 
 

2 Two Derivative Runge-Kutta 
Method 
Consider the IVPs (1) with ݂: ℜே → ℜே. In this 
case, we also assume that the second derivative is 
known where 
 

ᇱᇱݕ = :(ݕ)݃ = ݂ᇱ(ݕ)݂(ݕ), ݃: ℜே → ℜே. (2) 
 

An explicit TDRK method for the numerical 
integration of IVPs is given by 
 

௜ܻ = ௡ݕ + ℎ ෍ ܽ௜௝

௦

௝ୀଵ

(௝ݕ)݂ + ℎଶ ෍ ොܽ௜௝

௦

௝ୀଵ

݃( ௝ܻ), (3) 

௡ାଵݕ = ௡ݕ + ℎ ෍ ܾ௜

௦

௜ୀଵ

(௜ݕ)݂ + ℎଶ ෍ ෠ܾ௜

௦

௜ୀଵ

݃( ௜ܻ), (4) 

 
where ݅ = 1, … ,   .ݏ
 

Consider the following explicit methods which 
have a minimal number of function evaluations 
where 
 

௜ܻ = ௡ݕ + ℎܿ௜݂(ݔ௡, (௡ݕ + ℎଶ ෍ ොܽ௜௝

௜ିଵ

௝ୀଵ

௡ݔ)݃

+ ℎ ௝ܿ, ௝ܻ), 

(5) 

௡ାଵݕ = ௡ݕ + ℎ݂(ݔ௡, (௡ݕ + ℎଶ ෍ ෠ܾ௜

௦

௜ୀଵ

௡ݔ)݃

+ ℎܿ௜, ௜ܻ), 

(6) 

 
where ݅ = 2, … ,   .ݏ
 

This method with a minimal number of function 
evaluations is called special explicit TDRK method. 
The difference between this method with the 
traditional RK methods is that special explicit 
TDRK methods involves only one evaluation of ݂ 
per step. Butcher tableau below shows the 
difference between the explicit TDRK method and 
special explicit TDRK method 
 
Table 1 Difference between Butcher tableau for 
explicit and special explicit TDRK method. 
 

 መܣ ܣ ܿ
 

 መܣ ܿ
 ்ܾ ෠்ܾ  ෠்ܾ 

 
The TDRK parameters ොܽ௜௝ , ෠ܾ௜ and ௝ܿ are assumed 

to be real and ݏ is the number of stages of the 
method. We introduce the ݏ-dimensional vectors 
෠ܾ, ሜܾ , ܿ and ݏ ×  መ whereܣ ,matrix ݏ
෠ܾ = [ ෠ܾଵ, ෠ܾଶ, … , ෠ܾ௦]் , ሜܾ = [ ሜܾଵ, ሜܾଶ, … , ሜܾ௦]் , ܿ =
[ܿଵ, ܿଶ, … , ܿ௦]் and ܣመ = [ ොܽ௜௝] respectively. An 
embedded ݎ(݉) pair of TDRK method is basedon 
the method (ܿ, ,መܣ ෠ܾ) of order ݎ and the other TDRK 
method (ܿ, ,መܣ ሜܾ ) of order ݉ where ݉ <  and it can ݎ
be expressed in the following Butcher tableau  
 
Table 2 Butcher tableau for embedded TDRK 
method. 
 

 መܣ ܿ
 ෠்ܾ 
 ത்ܾ 

 
In embedded pair of explicit TDRK methods, our 

main target is to achieve an affordable and cheap 
local error estimation which will be used in a 
variable step-size algorithm. At the point ݔ௡ାଵ the 
local error estimation is determined by the 
expression 
 

௡ାଵߜ = ௡ାଵݕ̄ −  ௡ାଵ (7)ݕ
 
where ̄ݕ௡ାଵ is the solution using the fourth-order 
formula. The step-size ℎ are being controlled using 
the procedure given as follows:  
 

 If ܱܶݒ݅݀/ܮ < ݐݏܧ < .ݒ݅݀  then ܮܱܶ
ℎ௡ାଵ = ℎ௡  

 If ݐݏܧ ≤ then ℎ௡ାଵ ݒ݅݀/ܮܱܶ = 2ℎ௡  

 If ݐݏܧ ≥ .ܮܱܶ then ℎ௡ାଵ ݒ݅݀ =
ଵ

ଶ
ℎ௡ and 

repeat the step  
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where ݀݅ݒ = 2ଵ଻,  is the accuracy required ܮܱܶ
which is the maximum allowable local error and 
ݐݏܧ =  ௡ାଵ‖ଶ represents the local error estimationߜ‖
at each step. This procedure do not allow step-size 
change after each step as it would lead to 
unnecessary rounding errors. If the step is 
acceptable (ܱܶݒ݅݀/ܮ < ݐݏܧ < .ݒ݅݀  and ܮܱܶ
ݐݏܧ ≤  then we applied the accepted (ݒ݅݀/ܮܱܶ
procedure of performing local extrapolation (or 
higher order mode).  
 
 

3 Trigonometrically-Fitted Two 
Derivative Runge-Kutta Method 
Technique 
When the special explicit TDRK method (5) and (6) 
is applied to the ODEs (1) with ݕᇱᇱ =  the ,ݕଶߣ−
method becomes  
 

௡ାଵݕ = ௡ݕ + ℎ݂(ݔ௡, (௡ݕ + ℎଶ ෍ ෠ܾ௜

௦

௜ୀଵ

௡ݔ)݃

+ ܿ௜ℎ, ௜ܻ), 

(8) 

 
where 
 

ଵܻ = ௡ݕ + ܿଵℎ݂(ݔ௡,  ௡), (9)ݕ

ଶܻ = ௡ݕ + ܿଶℎ݂(ݔ௡, (௡ݕ − ଶݒ ොܽଶଵ ଵܻ, (10) 

ଷܻ = ௡ݕ + ܿଷℎ݂(ݔ௡, (௡ݕ − )ଶݒ ොܽଷଵ ଵܻ + ොܽଷଶ ଶܻ), (11) 

ସܻ = ௡ݕ + ܿସℎ݂(ݔ௡, (௡ݕ
− )ଶݒ ොܽସଵ ଵܻ + ොܽସଶ ଶܻ + ොܽସଷ ଷܻ), 

(12) 

⋮  

௜ܻ = ௡ݕ + ܿ௜ℎ݂(ݔ௡, (௡ݕ + ℎଶ ෍ ොܽ௜௝

௦

௝ୀଵ

ଶߣ−)
௜ܻ). (13) 

 
which results in 
 

௡ାଵݕ = ௡ݕ + ℎ݂(ݔ௡, (௡ݕ + ℎଶ ෍ ෠ܾ௜

௦

௜ୀଵ

ଶߣ−)
௝ܻ). (14) 

 
Let ݕ௡ = ݁௜ఒ௫ and ݂(ݔ௡, (௡ݕ =  ௡, computeݕߣ݅

the values for ݕ௡ାଵ and substitute those values in 
equation (8)-(14). By using ݁௜௩ = cos ( (ݒ +
݅ sin (  the following equation is obtained ,(ݒ
 

cos ( (ݒ + ݅ sin ( (ݒ = 1 +  ݖ

ଶݖ+ ෍ ෠ܾ௜

௦

௜ୀଵ

ቌ1 + ௜ܿݖ + ଶݖ ෍ ොܽ௜௝

௜ିଵ

௝ୀଵ

௝ܻ݁ିூఒ௫೙ቍ, 
(15) 

 
 

4 Construction of The New Method 
In this section, the embedded fourth-order method 
will be derived using the existing fifth-order TDRK 
method given by Chan and Tsai[1]. The TDRK 
parameters must satisfy the following order 
conditions.  
 
Table 3 Order conditions for TDRK methods. 
 

Order Conditions 

2 ෠்ܾ݁ =
1
2

   

3 ෠்ܾܿ =
1
6

   

4 ෠்ܾܿଶ =
1

12
   

5 ෠்ܾܿଷ =
1

20
 ෠்ܾܣመܿ =

1
120

  

6 ෠்ܾܿସ =
1

30
 ෠்ܾܿܣመܿ =

1
180

  

 ෠்ܾܣመܿଶ =
1

360
   

 
The following simplifying assumption is also 

used in practice.  
 

∑ ොܽ௜௝
௦
௜ୀଵ =

ଵ

ଶ
ܿ௜

ଶ  for ݅ = 2, … ,  (16) .ݏ

 
The FSAL property is given as follows 

 
෠ܾ௜ = ොܽ௦௜ where ݅ = 1, … , ݏ − 1and ෠ܾ௦ = 0. (17) 
 

The advantage of FSAL technique is the last 
function evaluation of a step is used as the first 
function evaluation of the next step.  
 
 
4.1 The Fifth-Order Formula 
For the fifth-order TDRK method, the existing fifth-
order method given by Chan and Tsai[1] is used. 
The derivation of this method is very simple. To get 
a TDRK formula of algebraic order five, there will 
be five equations and six unknowns. Hence,this 
system has one free parameter. Solve the order 
conditions given by Table 3 and this will lead to the 
following equation in term of ܿଶ 
 

ොܽଷଶ =
1

250
 
(5 ܿଶ − 3)(−10 ܿଶ + 3 + 10 ܿଶ

ଶ)
(2 ܿଶ − 1)ଷܿଶ

, (18) 

෠ܾଵ =
1

12
 
10 ܿଶ

ଶ − 8 ܿଶ + 1
ܿଶ(5 ܿଶ − 3)

, (19) 
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෠ܾଶ = −
1
6

 
−ܿଶ + 1/2

ܿଶ(2 ܿଶ − 1)(−10 ܿଶ + 3 + 10 ܿଶ
ଶ)

, (20) 

෠ܾଷ =
25
12

 
(2 ܿଶ − 1)ଷ

(5 ܿଶ − 3)(−10 ܿଶ + 3 + 10 ܿଶ
ଶ)

, (21) 

ܿଷ =
1
5

 
5 ܿଶ − 3
2 ܿଶ − 1

. (22) 

 

Let ܿଶ =
ଵ

ଵ଴
, hence coefficients of this three stage 

fifth-order formula are given by the following Table 
4. 
 
Table 4 Three stage fifth-order TDRK method. 
 

0 0   

3
10

 
9

200
 0  

3
4

 0 
9

32
 0 

 
5

24
 

25
81

 
8

81
 

 
The norms of the principal local truncation error 

coefficients for ݕ௡ is given by  
 

ฮ߬(଺)ฮ
ଶ

= 8.5616861162 × 10ିସ. (23) 
  
 
4.2 The Fourth-Order Formula 
Based on the values of ܣመ and ܿ given in the previous 
section, a four stages fourth-order embedded 
formula will be derived. Implementing the FSAL 
property, ܿସ = 1, ොܽସଵ = ෠ܾଵ, ොܽସଶ = ෠ܾଶ, ොܽସଷ = ෠ܾଷ and 
ොܽସସ = 0.  
 

According to order conditions in Table 3 for 
second, third-order and fourth-order, we have 
 

ሜܾଵ + ሜܾଶ + ሜܾଷ + ሜܾସ −
1
2

= 0, (24) 

3
10

  ሜܾଶ +
3
4

  ሜܾଷ + ሜܾସ −
1
6

= 0, (25) 

9
100

  ሜܾଶ +
9

16
  ሜܾଷ + ሜܾସ −

1
12

= 0. (26) 

 
Solving equation (24)-(26) will lead to a solution 

of ሜܾଵ, ሜܾଶ and ሜܾଷ in term of ሜܾସ 
 

ሜܾଵ =
5

54
−

7
9

  ሜܾସ, (27) 

ሜܾଶ =
25
81

+
50
27

  ሜܾସ, (28) 

ሜܾଷ =
8

81
−

56
27

  ሜܾସ. (29) 

 
Our main objective is to choose ሜܾସ such that the 

principal local truncation error coefficient, ฮ߬(ହ)ฮ
ଶ
 

have very small value. Wrong choices of ሜܾସ may 
cause a huge difference global error compared with 
the error tolerance specified. By plotting the graph 
of ฮ߬(ହ)ฮ

ଶ
 against ሜܾସ and choosing a small value of 

ሜܾସ in the range of [0.0,1.0], hence the value of ሜܾସ 
lies between [0.0,0.1]. ሜܾସ = 11/2000 is chosen for 
an optimized pair. All the coefficients are showed in 
Table 5 and it is denoted as FLTDRK5(4).  
 
Table 5 Butcher Tableau for FLTDRK5(4) method. 
 

0 0    

3
10

 
9

200
 0   

3
4

 0 
9

32
 0  

1 
5

24
 

25
81

 
8

81
 0 

 
5

24
 

25
81

 
8

81
 0 

 
4769

54000
 

1033
3240

 
1769

20500
 

11
2000

 

 
The norms of the principal local truncation error 

coefficients for ̄ݕ௡ is given by 
 

ฮ߬(ହ)ฮ
ଶ

= 9.635906518 × 10ିସ. (30) 
  
 
4.3 Derivation of Embedded 5(4) Pair 
Trigonometrically-Fitted TDRK Method 
In deriving the new method, the trigonometrically-
fitted property will be applied to the embedded 
TDRK method derived earlier where the coefficient 
is given in Table 5. Hence, the derivation of the new 
embedded trigonometrically-fitted TDRK method 
will be discussed next.  
 

For optimized value of maximum global error, 
the combination of ෠ܾଶ and ෠ܾସ are chosen as free 
parameters. By using the coefficients of the higher 
order method (fifth-order), separate the real part and 
the imaginary part of (15) and this leads to  
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cos (ݒ) = 1 +
1

800
  ෠ܾସ଼ݒ

+ ൬−
1

800
−

1
24

  ෠ܾସ൰ ଺ݒ

+ ൬
9

200
  ෠ܾଶ +

1
36

+
1
2

  ෠ܾସ൰ ସݒ

+ ൬−
31

162
− ෠ܾଶ − ෠ܾସ൰  ,ଶݒ

(31) 

(ݒ) ݊݅ݏ = −
1

120
  ෠ܾସݒ଻ + ൬

1
120

+
1
6

  ෠ܾସ൰ ହݒ

+ ൬−
3

10
  ෠ܾଶ −

2
27

− ෠ܾସ൰ ଷݒ

+  .ݒ

(32) 

 
Solving equation (31) and (32) we will obtain 
 
෠ܾଶ

= −
1

ସݒ ଷ(2ݒ324 + 420 − (ଶݒ 37
ହݒ 1620)  cos (

+ ହݒ 3700 − ଻ݒ 200 − ସݒ 8100 sin (ݒ)
+ ଺ݒ 243 sin (ݒ) + 194400  cos (ݒ) ݒ
− ଷݒ 42000 − 194400  sin (ݒ)
+ ଶݒ 97200 sin (ݒ) −32400  cos (ݒ)  ,(ଷݒ

(33) 

෠ܾସ =
1

ସݒ ଷ(2ݒ + 420 − (ଶݒ 37
(180  cos (ݒ) ݒ

+ ݒ 420 − ଷݒ 37 + ହݒ 2

− 600  sin (ݒ)
+ ଶݒ 27 sin (ݒ)). 

(34) 

 
As ݒ → 0, the following Taylor expansions are 
obtained  
 

෠ܾଶ

=
25
81

−
1

11760
ସݒ  +

3097
44452800

଺ݒ 

+
139709

205371936000
଼ݒ 

−
111256711

1121330770560000
ଵ଴ݒ 

−
6929656837

470958923635200000
ଵଶݒ  + ⋯, 

෠ܾସ

=
79

352800
ସݒ  +

3037
222264000

଺ݒ 

+
477013

2053719360000
଼ݒ 

−
510764327

11213307705600000
ଵ଴ݒ 

−
24076649309

4709589236352000000
ଵଶݒ  + ⋯. 

 
As ݒ → 0, the coefficients of ෠ܾଶ and ෠ܾସ of the 

higher order method will reduce to its original 
coefficient that is the higher order method.  

 
In a similar way, for optimized value of 

maximum global error, the combination of ሜܾଷ and 
ሜܾସ are chosen as free parameters. By using the 
coefficients of the lower order method (fourth-
order), separate the real part and the imaginary part 
of (15) and this leads to  

(ݒ) ݏ݋ܿ = 1 +
1

800
  ሜܾସ଼ݒ

+ ൬−
81

6400
  ሜܾଷ −

1
24

  ሜܾସ൰ ଺ݒ

+ ൬
9

32
  ሜܾଷ +

1033
72000

+
1
2

  ሜܾସ൰ ସݒ

+ ൬−
65957

162000
− ሜܾସ

− ሜܾଷ൰  ,ଶݒ

(35) 

(ݒ) ݊݅ݏ = −
1

120
  ሜܾସݒ଻

+ ൬
1
6

  ሜܾସ +
27

320
  ሜܾଷ൰ ହݒ

+ ൬−
3
4

  ሜܾଷ −
1033

10800
− ሜܾସ൰ ଷݒ +  .ݒ

(36) 

 
Solving equation (35) and (36) we will obtain 
  
ሜܾଷ

=
2

ଷ(−4800ݒ2025 − ଶݒ 220 + (ସݒ 107
 (10667

+ ଺ݒ 24300 sin (ݒ) − ହݒ 20350

+ ହݒ 162000 cos (ݒ) − ସݒ 810000 sin (ݒ)
ଷݒ 424560− − 3240000  cos (ݒ) ଷݒ

+ ଶݒ 9720000 sin (ݒ) + 19440000  cos (ݒ) ݒ
− 19440000  sin (ݒ)), 

(37) 

ሜܾସ =
1

ଷ(−4800ݒ100 − ଶݒ 220 + (ସݒ 107
 

 (−1440000  (ݒ) ݏ݋ܿ ݒ + 162000  cos (ݒ) ଷݒ

− ଷݒ 24640−ݒ 480000

+ ହݒ 10667

+ 1920000  sin (ݒ)
− ଶݒ 540000 sin (ݒ)
+ ସݒ 24300 sin (ݒ)). 

(38) 

 
As ݒ → 0, the following Taylor expansions are 
obtained 
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ሜܾଷ =
1769

20250
+

11
60000

ଶݒ  −
9959

20160000
ସݒ 

+
17619839

72576000000
଺ݒ 

−
7386874259

191600640000000
଼ݒ 

+
83281063591

10868981760000000
ଵ଴ݒ 

−
174784988603783

143470559232000000000
ଵଶݒ 

+ ⋯, 
ሜܾସ

=
11

2000
−

11
60000

ଶݒ  +
11379

22400000
ସݒ 

−
20368771

145152000000
଺ݒ  +

8355100183
383201280000000

଼ݒ 

−
5017304507021

1195587993600000000
ଵ଴ݒ 

+
1364007862423069

2008587829248000000000
ଵଶݒ  + ⋯. 

 
As ݒ → 0, the coefficients of ሜܾଷ and ሜܾସ of the 

lower order method will reduce to its original 
coefficient that is the higher order method. The 
above two solutions are the new embedded 5(4) 
trigonometrically-fitted TDRK method denoted as 
FSALTDRK5(4).   
 
 

5 Problems Tested and Numerical 
Results 
The performance of the studied method 
FSALTDRK5(4) are compared with existing 
embedded RK and TDRK methods by considering 
the following problems. All problems below are 
tested using C code for solving differential 
equations. The tolerances used are ܱܶܮ =
10ିଶ௜, ݅ = 1, … ,5. 

 
Problem 1 (Senu[15]) 

 
ଵݕ

ᇱ = ଵ(0)ݕ ,ଶݕ = 1.1, 
ଶݕ

ᇱ = ଵݕ16− + 116݁ିଵ଴௫, ݕଶ(0) = −10, 
ଷݕ

ᇱ = ଷ(0)ݕ ,ସݕ = 1, 
ସݕ

ᇱ = ଷݕ16− + 116݁ିଵ଴௫ ݕସ(0) = −9.6,  
ݔ  ∈ [0,100]. 

Exact solution is 
 

(ݐ)ଵݕ = 0.1 cos ( (ݔ4 + ݁ିଵ଴௫, 
(ݔ)ଶݕ = −0.4  sin( (ݔ4 − 10݁ିଵ଴௫, 
(ݐ)ଷݕ = 0.1 sin ( (ݔ4 + ݁ିଵ଴௫, 
(ݔ)ସݕ = 0.4cos(4ݔ) − 10݁ିଵ଴௫. 

 

Problem 2 (Rabiei and Ismail[16]) 
 

ଵݕ
ᇱ = ଵݕ2− + ଶݕ + 2 sin (  ,(ݔ

ଶݕ
ᇱ = ଵݕ − ଶݕ2 + 2(cos ( (ݔ − sin (  ,((ݔ

ଵ(0)ݕ = ଶ(0)ݕ ,2 = ݔ ,3 ∈ [0,100]. 
 
Exact solution is 
 

(ݔ)ଵݕ = 2݁ି௫ + sin (  ,(ݔ
(ݔ)ଶݕ = 2݁ି௫ + cos (  .(ݔ

 
Problem 3 (Duffing problem[17]) 

 
ଵݕ

ᇱ =  ,ଶݕ
ଶݕ

ᇱ = ଵݕ− − ଵݕ
ଷ + 0.002 cos (  ,(ݔ1.01

ଵ(0)ݕ = ݔ ,0.200426728067 ∈ [0,100]. 
ଶ(0)ݕ = 0,  

 
Exact solution is 
 
(ݔ)ଵݕ = 0.200179477536 cos( (ݔ1.01

+ 2.46946143
× 10ିସ cos ( (ݔ3.03 + 3.04014
× 10ି଻ cos ( (ݔ5.05 + 3.74
× 10ିଵ଴ cos (  ,(ݔ7.07

(ݔ)ଶݕ = −0.2021812723 sin ( (ݔ1.01
− 7.482468133
× 10ିସ sin ( (ݔ3.03 − 1.53527070
× 10ି଺ sin ( (ݔ5.05 − 2.64418
× 10ିଽ sin (  .(ݔ7.07

 
Problem 4 (Prothero-Robinson problem[1]) 

 
ᇱݕ = ݕ)ߣ − ߮) + ߮ᇱ, 
(0)ݕ = (ߣ)ܴ݁ ,(0)߮ < ݔ ,0 ∈ [0,100]. 

 
where ߮(ݔ) is a smooth function. We take ߣ = −1 
and ߮(ݔ) = ) ݊݅ݏ   .(ݔ

 
Exact solution is (ݔ)ݕ =   .(ݔ)߮

 
The following notations are used in Figures 1–4 :  

 FSALTDRK5(4): New embedded 5(4) pair 
trigonometrically-fitted TDRK method with 
FSAL property of four stages derived in this 
paper.  

 TDRK4(5): Existing embedded 5(4) pair 
TDRK method five stages derived by Chan 
and Tsai[1].  

 RKDP5(4): Existing embedded 5(4) pair 
RK method seven stages given in Dormand 
and Prince[18].  
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 RKF4(5): Existing embedded 5(4) pair RK 
method six stages given in Bu et al.[19].  

 RKCK5(4): Existing embedded 5(4) pair 
RK method six stages given in Press et 
al.[20].  

 
The performance of these numerical results are 

represented graphically in the following Figures 1–
4: 

 

 
 

Figure 1  Efficiency graph for Problem 1 
 

 

 
 

Figure 2  Efficiency graph for Problem 2 
 

 

 
Figure 3  Efficiency graph for Problem 3 

 

 
 

Figure 4  Efficiency graph for Problem 4 
  

 

6 Discussion 
The results show the typical properties of the 

new embedded trigonometrically-fitted TDRK 
method with FSAL property, FSALTDRK5(4) 
which have been derived earlier. The derived 
method is compared with some well-known existing 
embedded RK and TDRK methods. Figures 1-4 
represent the efficiency and accuracy of the method 
developed by plotting the graph of the logarithm of 
the maximum global error against the logarithm 
number of function evaluations. From Figures 1–2, 
the global error produced by the FSALTDRK5(4) 
method has smaller global error compared to 
TDRK5(4), RKDP5(4), RKF5(4) and RKCK5(4).  

Meanwhile, in Figures 3-4, FSALTDRK5(4) has 
a bigger global error compared to TDRK5(4) but 
FSALTDRK5(4) has fewer number of function 
evaluations per step compared to TDRK5(4). All in 
all, FSALTDRK5(4) has the least number of 
function evaluations compared to other existing 
embedded RK and TDRK methods of the same 
order. 

  
 

7 Conclusion 
In this research, an embedded 5(4) pair 
trigonometrically-fitted TDRK method with FSAL 
property has been developed. Based on the 
numerical results obtained, it can be concluded that 
the new 5(4) pair FSALTDRK5(4) method is more 
promising compared to other well-known existing 
explicit embedded RK and TDRK methods in terms 
of accuracy and the number of function evaluations.  
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