
References:
[1] Firdous S, Wagai GA, Sharma K (2022). A
survey on diabetes risk prediction using
machine learning approaches. Journal of
Family Medicine and Primary Care,
vol.11(11), pp. 6929-6934. doi:
10.4103/jfmpc.jfmpc_502_22.
[2] Kaggle. Pima Indians Diabetes Database,
[Online].
https://www.kaggle.com/datasets/uciml/pima-
indians-diabetes-database (Accessed Date:
August 5, 2023).
[3] Vijiya Kumar, K., Lavanya, B., Nirmala, I.,
Caroline, S.S. Random forest algorithm for
the prediction of diabetes. In: 2019 IEEE
International Conference on System,
Computation, Automation and Networking
(ICSCAN), Pondicherry, India, pp. 1–5
(2019). doi: 10.1109/ICSCAN.2019.8878802.
[4] Mohan, N., Jain, V.: Performance analysis of
support vector Machine in diabetes prediction.
In: 2020 4th International Conference on
Electronics, Communication and Aerospace
Technology (ICECA), Coimbatore, India pp.
1–3 (2020). doi:
10.1109/ICECA49313.2020.9297411.
[5] Goyal, Ayush & Hossain, Gahangir &
Chatrati, Saiteja & Bhattacharya, Sayantan &
Bhan, Anupama & Gaurav, Devottam &
Mishra Tiwari, Sanju. (2020). Smart Home
Health Monitoring System for Predicting
Type 2 Diabetes and Hypertension. Journal of
King Saud University - Computer and
Information Sciences. 34. doi:
10.1016/j.jksuci.2020.01.010.
[6] Jackins, V., Vimal, S., Kaliappan, M., & Lee,
M.Y. (2020). AI-based smart prediction of
clinical disease using random forest classifier
and Naive Bayes. The Journal of
Supercomputing, 77, 5198 - 5219. doi:
10.1007/s11227-020-03481-x.
[7] Deberneh HM, Kim I (2021). Prediction of
Type 2 Diabetes Based on Machine Learning
Algorithm. Int. J. Environ Res Public Health,
18(6),3317. doi: 10.3390/ijerph18063317.
[8] Pranto B, Mehnaz SM, Mahid EB, Sadman
IM, Rahman A, Momen S (2020). Evaluating
Machine Learning Methods for Predicting
Diabetes among Female Patients in
Bangladesh. Information, vol. 11(8):374.
https://doi.org/10.3390/info11080374.
[9] Nazin Ahmed, Rayhan Ahammed, Md.
Manowarul Islam, Md. Ashraf Uddin, Arnisha
Akhter, Md. Alamin Talukder, Bikash Kumar
Paul (2021). Machine learning based diabetes
prediction and development of smart web
application, International Journal of
Cognitive Computing in Engineering, Vol. 2,
pp. 229-241.
https://doi.org/10.1016/j.ijcce.2021.12.001.
[10] Birjais, Roshan, Mourya, Ashish Kumar,
Chauhan, Ritu, Kaur, Harleen (2019).
Prediction and diagnosis of future diabetes
risk: a machine learning approach. SN Applied
Sciences, vol. 1, 1112.
https://doi.org/10.1007/s42452-019-1117-9.
[11] Apratim Sadhu, Abhimanyu Jadli (2021).
Early-Stage Diabetes Risk Prediction: A
Comparative Analysis of Classification
Algorithms, International Advanced Research
Journal in Science, Engineering and
Technology, vol. 8 (2), pp. 193-201. doi:
10.17148/IARJSET.2021.8228.
[12] Jingyu Xue, Fanchao Min, Fengying Ma
(2020). Research on Diabetes Prediction
Method Based on Machine Learning, Journal
of Physics: Conference Series, vol. 1684. doi:
10.1088/1742-6596/1684/1/012062.
[13] Pragati Agrawal, Amit kumar Dewangan
(2015). A brief survey on the techniques used
for the diagnosis of diabetes-mellitus,
International Research Journal of
Engineering and Technology (IRJET), vol.
2(3), pp. 1039-1043.
[14] K. Saravananathan, T. Velmurugan (2016).
Analyzing Diabetic Data using Classification
Algorithms in Data Mining, Indian Journal of
Science and Technology, vol. 9(43). doi:
10.17485/ijst/2016/v9i43/93874.
[15] Ioannis Kavakiotis, Olga Tsave, Athanasios
Salifoglou, Nicos Maglaveras, Ioannis
Vlahavas, Ioanna Chouvarda (2017). Machine
Learning and Data Mining Methods in
Diabetes Research, Computational and
Structural Biotechnology Journal, vol. 15, pp.
104-116.
https://doi.org/10.1016/j.csbj.2016.12.005.
[16] Rawat, Vandana & Suryakant,. (2019). A
Classification System for Diabetic Patients
with Machine Learning Techniques.
International Journal of Mathematical,
Engineering and Management Sciences, vol.
4, pp. 729-744.
doi:10.33889/IJMEMS.2019.4.3-057.
[17] Sakshi Gujral, Aakansha Rathore, Simran
Chauhan (2017). Detecting and Predicting
Diabetes Using Supervised Learning: An
Approach towards Better Healthcare for
Women, International Journal of Advanced
Research in Computer Science, vol. 8(5), pp.
WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.23
Bhavya Marupura, Sai Krishna Vaibhav.,
Narendra V. G., Shivaprasad G.