
0.4 0.5 0.6 0.7 0.8 0.9 1.0
recall
0.0
0.2
0.4
0.6
0.8
1.0
precision
AB-GICOA Cyberbullying Kaggle harassment (TF-IDF) - PR curve
no harassment AP:0.784
harassment AP:0.620
micro AP: 0.749
no harassment
harassment
Predicted label
no harassment
harassment
True label
0.907 0.093
0.459 0.541
AB-GICOA Cyberbullying Kaggle harassment (TF-IDF) - confusion matrix
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
Fig. 3. Best performing model PR plot and confusion matrix.
Future works will focus on further refining the proposed
approach. Additionally, further applications for the proposed
optimizer will be explored.
[1] R. Kowalski, “Cyberbullying,” in The Routledge international handbook
of human aggression, pp. 131–142, Routledge, 2018.
[2] M. O. Lwin, B. Li, and R. P. Ang, “Stop bugging me: An examination
of adolescents’ protection behavior against online harassment,” Journal
of adolescence, vol. 35, no. 1, pp. 31–41, 2012.
[3] A. E. Mackey, Evaluating the evolution of the English language as seen
in TikTok slang. PhD thesis, Wichita State University, 2023.
[4] K. Chowdhary and K. Chowdhary, “Natural language processing,”
Fundamentals of artificial intelligence, pp. 603–649, 2020.
[5] H. Jia, H. Rao, C. Wen, and S. Mirjalili, “Crayfish optimization
algorithm,” Artificial Intelligence Review, vol. 56, no. Suppl 2, pp. 1919–
1979, 2023.
[6] H. Christian, M. P. Agus, and D. Suhartono, “Single document automatic
text summarization using term frequency-inverse document frequency
(tf-idf),” ComTech: Computer, Mathematics and Engineering Applica-
tions, vol. 7, no. 4, pp. 285–294, 2016.
[7] T. Hastie, S. Rosset, J. Zhu, and H. Zou, “Multi-class adaboost,”
Statistics and its Interface, vol. 2, no. 3, pp. 349–360, 2009.
[8] A. Waswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in NIPS, 2017.
[9] A. Radford, K. Narasimhan, T. Salimans, I. Sutskever, et al., “Improving
language understanding by generative pre-training,” 2018.
[10] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever, et al.,
“Language models are unsupervised multitask learners,” OpenAI blog,
vol. 1, no. 8, p. 9, 2019.
[11] V. S. Tida and S. Hsu, “Universal spam detection using transfer learning
of bert model,” arXiv preprint arXiv:2202.03480, 2022.
[12] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.
[13] N. Mladenovi´
c and P. Hansen, “Variable neighborhood search,” Com-
puters & operations research, vol. 24, no. 11, pp. 1097–1100, 1997.
[14] S. Mirjalili and S. Mirjalili, “Genetic algorithm,” Evolutionary algo-
rithms and neural networks: Theory and applications, pp. 43–55, 2019.
[15] S. Mirjalili, “Sca: a sine cosine algorithm for solving optimization
problems,” Knowledge-based systems, vol. 96, pp. 120–133, 2016.
[16] X.-S. Yang and A. Hossein Gandomi, “Bat algorithm: a novel approach
for global engineering optimization,” Engineering computations, vol. 29,
no. 5, pp. 464–483, 2012.
[17] S. Mirjalili and A. Lewis, “The whale optimization algorithm,” Advances
in engineering software, vol. 95, pp. 51–67, 2016.
[18] A. A. Heidari, S. Mirjalili, H. Faris, I. Aljarah, M. Mafarja, and
H. Chen, “Harris hawks optimization: Algorithm and applications,”
Future generation computer systems, vol. 97, pp. 849–872, 2019.
[19] M. Hub´
alovsk´
a, ˇ
S. Hub´
alovsk`
y, and P. Trojovsk`
y, “Botox optimization
algorithm: A new human-based metaheuristic algorithm for solving
optimization problems,” Biomimetics, vol. 9, no. 3, p. 137, 2024.
[20] M. Zivkovic, L. Jovanovic, M. Ivanovic, N. Bacanin, I. Strumberger, and
P. M. Joseph, “Xgboost hyperparameters tuning by fitness-dependent
optimizer for network intrusion detection,” in Communication and
intelligent systems: Proceedings of ICCIS 2021, pp. 947–962, Springer,
2022.
[21] M. Salb, L. Jovanovic, M. Zivkovic, E. Tuba, A. Elsadai, and N. Ba-
canin, “Training logistic regression model by enhanced moth flame
optimizer for spam email classification,” in Computer networks and
inventive communication technologies: Proceedings of fifth ICCNCT
2022, pp. 753–768, Springer, 2022.
[22] A. Petrovic, M. Antonijevic, I. Strumberger, L. Jovanovic, N. Savanovic,
and S. Janicijevic, “The xgboost approach tuned by tlb metaheuristics
for fraud detection,” in Proceedings of the 1st international conference
on innovation in information technology and business (ICIITB 2022),
vol. 104, p. 219, Springer Nature, 2023.
[23] N. Bacanin, M. Zivkovic, L. Jovanovic, M. Ivanovic, and T. A. Rashid,
“Training a multilayer perception for modeling stock price index predic-
tions using modified whale optimization algorithm,” in Computational
Vision and Bio-Inspired Computing: Proceedings of ICCVBIC 2021,
pp. 415–430, Springer, 2022.
[24] L. Jovanovic, M. Zivkovic, M. Antonijevic, D. Jovanovic, M. Ivanovic,
and H. S. Jassim, “An emperor penguin optimizer application for
medical diagnostics,” in 2022 IEEE Zooming Innovation in Consumer
Technologies Conference (ZINC), pp. 191–196, IEEE, 2022.
[25] N. Bacanin, L. Jovanovic, M. Zivkovic, V. Kandasamy, M. Antonijevic,
M. Deveci, and I. Strumberger, “Multivariate energy forecasting via
metaheuristic tuned long-short term memory and gated recurrent unit
neural networks,” Information Sciences, vol. 642, p. 119122, 2023.
[26] L. Jovanovic, D. Jovanovic, N. Bacanin, A. Jovancai Stakic, M. An-
tonijevic, H. Magd, R. Thirumalaisamy, and M. Zivkovic, “Multi-step
crude oil price prediction based on lstm approach tuned by salp swarm
algorithm with disputation operator,” Sustainability, vol. 14, no. 21,
p. 14616, 2022.
[27] H. Christian, M. Agus, and D. Suhartono, “Single document automatic
text summarization using term frequency-inverse document frequency
(tf-idf),” ComTech: Computer, Mathematics and Engineering Applica-
tions, vol. 7, p. 285, 12 2016.
[28] H. Jia, H. Rao, C. Wen, and S. Mirjalili, “Crayfish optimization
algorithm,” Artificial Intelligence Review, vol. 1, p. 1, 09 2023.
[29] J. J. Liang, B. Y. Qu, and P. N. Suganthan, “Problem definitions and
evaluation criteria for the cec 2014 special session and competition
on single objective real-parameter numerical optimization,” Computa-
tional Intelligence Laboratory, Zhengzhou University, Zhengzhou China
and Technical Report, Nanyang Technological University, Singapore,
vol. 635, no. 2, p. 2014, 2013.
[30] M. J. Warrens, “Five ways to look at cohen’s kappa,” Journal of
Psychology & Psychotherapy, vol. 5, 2015.
5HIHUHQFHV
WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.20
Nebojsa Bacanin, Luka Jovanovic, Ilja Uzelac Bujisic,
Jelena Kaljevic, Jelena Cadjenovic,
Milos Antonijevic, Miodrag Zivkovic