References:
[1] Jain, A. K., Ross, A., & Prabhakar, S. (2004).
An introduction to biometric
recognition. IEEE Transactions on circuits
and systems for video technology, vol. 14(1),
pp. 4-20. DOI: 10.1109/TCSVT.2003.818349.
[2] Jain, A. K., & Kumar, A. (2012). Biometric
recognition: an overview. Second generation
biometrics: The ethical, legal and social
context, The International Library of Ethics,
Law and Technology, vol 11. Springer,
Dordrecht. Pp. 49-79. DOI: 10.1007/978-94-
007-3892-8_3.
[3] LeCun, Y., Bengio, Y., & Hinton, G. (2015).
Deep learning. Nature, vol. 521(7553), pp.
436-444. DOI: 10.1038/nature14539
[4] Ishaan Swan, M. (2015). Blockchain:
Blueprint for a new economy. 1st Edition,
O'Reilly Media, Inc. ISBN-10:
9781491920497 ASIN: 1491920491.
[5] Kiayias, A., Koutsoupias, E., Kyropoulou, M.,
& Tselekounis, Y. (2016). Blockchain mining
games. In Proceedings of the 2016 ACM
Conference on Economics and Computation,
Melbourne, Australia (pp. 365-382). DOI:
https://doi.org/10.1145/2940716.2940773.
[6] Kumar, R., & Patil, M. E. (2022). Improved
Fingerprint Identification System Using
Hybrid Deep Learning. Industrial
Engineering Journal, vol. 15(11), pp. 24-30.
[7] SaiTeja, C., & Seventline, J. B. (2023). A
hybrid learning framework for multi-modal
facial prediction and recognition using
improvised non-linear SVM classifier. AIP
Advances, vol. 13 (025316), pp. 1-8. DOI:
https://doi.org/10.1063/5.0136623.
[8] Jadhav, A.B, Deshmukh, N.K., & Humbe, V.
T. (2023). HDL-PI: hybrid Deep Learning
technique for person identification using
multimodal finger print, iris and face
biometric features. Multimedia Tools and
Applications. Vol. 82(19), 30039-30064. DOI:
10.1007/s11042-022-14241-9.
[9] Sokoto Coventry Fingerprint Dataset. Kaggle.
Date: 29/12/2023, [Online].
https://www.kaggle.com/datasets/ruizgara/soc
ofing (Accessed Date: July 10, 2024).
[10] Lindeberg, T (2012). Scale Invariant Feature
Transform. Chapter 7(5):104249, in book
Scholarpedia (2012): 10491. DOI:
10.4249/scholarpedia.10491.
[11] Dalal, N., & Triggs, B. (2005). Histograms of
oriented gradients for human detection. IEEE
computer society conference on computer
vision and pattern recognition (CVPR'05),
San Diego, CA, USA (Vol. 1, pp. 886-893).
IEEE. DOI: 10.13140/RG.2.2.23788.85122.
[12] Ahonen, T., Hadid, A., & Pietikainen, M.
(2006). Face description with local binary
patterns: Application to face
recognition. IEEE transactions on pattern
analysis and machine intelligence, vol.
28(12), 2037-2041. DOI:
10.1109/TPAMI.2006.244.
[13] Li, Z., Liu, F., Yang, W., Peng, S., & Zhou, J.
(2021). A survey of convolutional neural
networks: analysis, applications, and
prospects. IEEE Trans Neural Netw Learn
Syst. Vol. 33(12) pp. 6999-7019. DOI:
10.1109/TNNLS.2021.3084827.
[14] Rodriguez-Galiano, V. F., Ghimire, B.,
Rogan, J., Chica-Olmo, M., & Rigol-Sanchez,
J. P. (2012). An assessment of the
effectiveness of a random forest classifier for
land-cover classification. ISPRS journal of
photogrammetry and remote sensing, vol. 67,
pp. 93-104. DOI:
https://doi.org/10.1016/j.isprsjprs.2011.11.002
[15] Yacouby, R., & Axman, D. (2020).
Probabilistic Extension of Precision, Recall,
and F1 Score for More Thorough Evaluation
of Classification Models. Proceedings of the
First Workshop on Evaluation and
Comparison of NLP Systems, pp. 79-91.
DOI:10.18653/v1/2020.eval4nlp-1.9.
[16] Zheng, Z., Xie, S., Dai, H. N., Chen, X., &
Wang, H. (2018). Blockchain challenges and
opportunities: A survey. International journal
of web and grid services, vol. 14(4), 352-375.
DOI: 10.1504/IJWGS.2018.095647.
[17] Nguyen, H. T., & Nguyen, L. T. (2019).
Fingerprints classification through image
analysis and machine learning
method. Algorithms, vol. 12(11), 241, pp.1-
11. DOI: https://doi.org/10.3390/a12110241.
[18] Yang, J., Wu, Z., & Zhang, J. (2018). A
robust fingerprint identification method by
deep learning with Gabor filter
multidimensional feature expansion. In: Sun,
X., Pan, Z., Bertino, E. (eds) Cloud
Computing and Security. ICCCS 2018,
Nagoya, Japan. Lecture Notes in Computer
Science, vol. 11065. Springer, Cham. DOI:
https://doi.org/10.1007/978-3-030-00012-
7_41.
[19] Michelsanti, D., Ene, A. D., Guichi, Y., Stef,
R., Nasrollahi, K., & Moeslund, T. B. (2017).
Fast fingerprint classification with deep neural
networks. In International Conference on
Computer Vision Theory and Applications,
WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.18
Md. Abdul Based, Elias Ur Rahman,
Mohammad Shorif Uddin