[3] Singh, K.N., Devi, S.D., Devi, H. M.,
Mahanta, A. K. (2022). A novel approach for
dimension reduction using word embedding:
An enhanced text classification approach.
International Journal of Information
Management Data Insights, Vol. 2, 2022;
https://doi.org/10.1016/j.jjimei.2022.100061.
[4] Rani, S., Gill, N. S., and Gulia, P. (2021).
Survey of Tools and Techniques for
Sentiment Analysis of Social Networking
Data. International Journal of Advanced
Computer Science and Applications
(IJACSA), Vol. 12, No. 4, 2021. DOI:
10.14569/IJACSA.2021.0120430.
[5] TrustRadius. RapidMiner, [Online].
https://www.trustradius.com/products/rapidm
iner/reviews?qs=pros-and-cons#product-
demos (Accessed Date: January 12, 2024).
[6] Mamta and Kumar, E. (2019). A Real-Time
Twitter Sentiment Analysis and Visualization
System: TwiSent. International Research
Journal of Engineering and Technology
(IRJET), Vol. 6 Issue: 06, June 2019.
[7] Mahadzir, N. H., Omar, M. F. and Nawi, M.
N. M. (2018). A Sentiment Analysis
Visualization System for the Property
Industry. International Journal of
Technology (2018) 8: 1609-1617.
[8] Franco, R.Y.S., Lima, R.S.A.D., Paixão,
R.M., Santos, C.G.R. and Meiguins, B. S.
(2019). UXmood—A Sentiment Analysis
and Information Visualization Tool to
Support the Evaluation of Usability and User
Experience. Information 2019, 10, 366;
https://doi.org/10.3390/info10120366.
[9] Latiff, M.N.M.A, Saad, A. F. and Yani, A.
(2023). Data Visualization Based on
Sentiment Analysis to Identify the Quality of
Internet Service Providers in Malaysia.
International Journal of Recent Technology
and Applied Science. Vol. 5, 2023;
https://doi.org/10.36079/lamintang.ijortas-
0502.572.
[10] Khan, M. F. F., Seki, S. and Sakamura, K.
(2023). Visualization of Online Product
Reviews Written in Japanese Based on Entity
Sentiment Analysis for Enhanced Customer
Experience. Int. J. Advance Soft Compu.
Appl, Vol. 15, No. 1, March 2023. DOI:
10.15849/IJASCA.230320.01.
[11] Jain R, Kumar A, Nayyar A, Dewan K, Garg
R, Raman S, and Ganguly S. (2023).
Explaining sentiment analysis results on
social media texts through visualization.
Multimed Tools Appl 82, 22613–22629
(2023), https://doi.org/10.1007/s11042-023-
14432-y.
[12] Lavanya, A., Waqas Ali, Dr. Jaime Lloret,
Vidya Sagar, S. D., Chivukula Bharadwaj
(2022). A Real-time Visualization of Global
Sentiment Analysis on Declaration of
Pandemic. International Journal of
Computer Engineering in Research Trends.
Vol. 9, 2022,
https://doi.org/10.22362/ijcert/2022/v9/i06/v
9i0602.
[13] Karuna, G., Anvesh, P., Singh, C. S., Reddy,
K. R., Shah, P. K. and Shankar, S. S. (2023).
Feasible Sentiment Analysis of Real Time
Twitter Data. E3S Web of Conferences, Vol.
430, 2023. 15th International Conference on
Materials Processing and Characterization
(ICMPC 2023), Newcastle, England,
September 5-8, 2023,
https://doi.org/10.1051/e3sconf/2023430010
45.
[14] Pacol, C.A. and Palaoag, T.D. (2021).
Bilingual Lexicon Approach to English-
Filipino Sentiment Analysis of Teaching
Performance. IOP Conference Series:
Materials Science and Engineering, Vol.
1077, The 5th International Conference on
Information Technology and Digital
Applications (ICITDA 2020) 13th-14th
November 2020, Yogyakarta, Indonesia,
DOI: 10.1088/1757-899X/1077/1/012044.
[15] Pacol, C. (2024). Sentiment Analysis of
Students’ Feedback on Faculty Online
Teaching Performance using Machine
Learning Techniques. WSEAS Transactions
on Information Science and Applications.
2024,
https://doi.org/10.37394/23209.2024.21.7
[16] Liu, Y., Wang, Y. and Zhang, J. (2012). New
Machine Learning Algorithm: Random
Forest. In: Liu, B., Ma, M., Chang, J. (eds)
Information Computing and Applications.
ICICA 2012. Lecture Notes in Computer
Science, vol 7473. Springer, Berlin,
Heidelberg, https://doi.org/10.1007/978-3-
642-34062-8_32.
[17] Chakraborty, K., Bhattacharyya, S., Bag, R.,
and Hassanien, A.A. (2019). Sentiment
analysis on a set of movie reviews using deep
learning techniques. Social Network
Analytics. Computational Research Methods
and Techniques, pp.127-147,
https://doi.org/10.1016/B978-0-12-815458-
8.00007-4.
WSEAS TRANSACTIONS on COMPUTERS
DOI: 10.37394/23205.2024.23.8